共查询到20条相似文献,搜索用时 15 毫秒
1.
MIGUEL ALCAIDE 《Molecular ecology》2010,19(18):3842-3844
Genes of the major histocompatibility complex (MHC) have provided some of the clearest examples of how natural selection generates discordances between adaptive and neutral variation in natural populations. The type and intensity of selection as well as the strength of genetic drift are believed to be important in shaping the resulting pattern of MHC diversity. However, evaluating the relative contribution of multiple microevolutionary forces is challenging, and empirical studies have reported contrasting results. For instance, balancing selection has been invoked to explain high levels of MHC diversity and low population differentiation in comparison with other nuclear markers. Other studies have shown that genetic drift can sometimes overcome selection and then patterns of genetic variation at adaptive loci cannot be discerned from those occurring at neutral markers. Both empirical and simulated data also indicate that loss of genetic diversity at adaptive loci can occur faster than at neutral loci when selection and population bottlenecks act simultaneously. Diversifying selection, on the other hand, explains accelerated MHC divergence as the result of spatial variation in pathogen‐mediated selective regimes. Because of all these possible scenarios and outcomes, collecting information from as many study systems as possible, is crucial to enhance our understanding about the evolutionary forces driving MHC polymorphism. In this issue, Miller and co‐workers present an illuminating contribution by combining neutral markers (microsatellites) and adaptive MHC class I loci during the investigation of genetic differentiation across island populations of tuatara Sphenodon punctatus. Their study of geographical variation reveals a major role of genetic drift in shaping MHC variation, yet they also discuss some support for diversifying selection. 相似文献
2.
Eimes JA Bollmer JL Whittingham LA Johnson JA VAN Oosterhout C Dunn PO 《Journal of evolutionary biology》2011,24(9):1847-1856
Population bottlenecks may reduce genetic variation and potentially increase the risk of extinction. Here, we present the first study to use historic samples to analyse loss of variation at the major histocompatibility complex (MHC), which plays a central role in vertebrate disease resistance. Balancing selection acts on the MHC and could moderate the loss of variation expected from drift; however, in a Wisconsin population of greater prairie-chickens (Tympanuchus cupido), the number of MHC class II B alleles per individual declined by 44% following a population bottleneck, compared to a loss of only 8% at microsatellites. Simulations indicate that drift likely reduced MHC variation at the population level, as well as within individuals by reducing the number of gene copies per individual or by fixing the same alleles across multiple loci. These multiple effects of genetic drift on MHC variation could have important implications for immunity and fitness. 相似文献
3.
M.K. Oliver S. Telfer S.B. Piertney 《Proceedings. Biological sciences / The Royal Society》2009,276(1659):1119-1128
The fundamental role of the major histocompatibility complex (MHC) in immune recognition has led to a general consensus that the characteristically high levels of functional polymorphism at MHC genes is maintained by balancing selection operating through host–parasite coevolution. However, the actual mechanism by which selection operates is unclear. Two hypotheses have been proposed: overdominance (or heterozygote superiority) and negative frequency-dependent selection. Evidence for these hypotheses was evaluated by examining MHC–parasite relationships in an island population of water voles (Arvicola terrestris). Generalized linear mixed models were used to examine whether individual variation at an MHC class II DRB locus explained variation in the individual burdens of five different parasites. MHC genotype explained a significant amount of variation in the burden of gamasid mites, fleas (Megabothris walkeri) and nymphs of sheep ticks (Ixodes ricinus). Additionally, MHC heterozygotes were simultaneously co-infected by fewer parasite types than homozygotes. In each case where an MHC-dependent effect on parasite burden was resolved, the heterozygote genotype was associated with fewer parasites, and the heterozygote outperformed each homozygote in two of three cases, suggesting an overall superiority against parasitism for MHC heterozygote genotypes. This is the first demonstration of MHC heterozygote superiority against multiple parasites in a natural population, a mechanism that could help maintain high levels of functional MHC genetic diversity in natural populations. 相似文献
4.
S. MONA B. CRESTANELLO S. BANKHEAD‐DRONNET E. PECCHIOLI S. INGROSSO S. D’AMELIO L. ROSSI P. G. MENEGUZ G. BERTORELLE 《Molecular ecology》2008,17(18):4053-4067
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen‐mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high dn/ds ratio and the presence of trans‐species polymorphisms suggest that a strong long‐term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D‐loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000–30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift. 相似文献
5.
J. A. ANMARKRUD A. JOHNSEN L. BACHMANN J. T. LIFJELD 《Journal of evolutionary biology》2010,23(6):1206-1217
The genes of the major histocompatibility complex (MHC) are important model genes for understanding selective forces in evolution. Here, we document, using a cloning and sequencing approach, high polymorphism at the exon 2 of the MHC class II B (MHCIIB) genes in the bluethroat (Luscinia svecica); a minimum of 61 unique alleles were detected in 20 individuals, and at least 11 functional loci. In addition, several pseudogenes were revealed. The specimens originated from three different bluethroat subspecies (azuricollis, cyanecula and svecica), and we also analysed four specimens of the closely related thrush nightingale (L. luscinia) for comparison. Phylogenetic analyses of the functional alleles revealed 258 equally parsimonious trees with poor statistical support for the majority of nodes. The distribution of the sequences in the trees point to an ancestral origin of the polymorphism in MHC class II B genes, a portion of which predated the phylogenetic split between the bluethroat and the thrush nightingale. Strong signatures of balancing selection were uncovered for the codons coding for the peptide‐binding residues of the functional MHCIIB exon 2 alleles. Our results highlight the importance of duplication and recombination events for shaping passerine MHC and give insights in the evolutionary dynamics of MHC variation among closely related taxa. 相似文献
6.
Agudo R Alcaide M Rico C Lemus JA Blanco G Hiraldo F Donázar JA 《Molecular ecology》2011,20(11):2329-2340
Insular populations have attracted the attention of evolutionary biologists because of their morphological and ecological peculiarities with respect to their mainland counterparts. Founder effects and genetic drift are known to distribute neutral genetic variability in these demes. However, elucidating whether these evolutionary forces have also shaped adaptive variation is crucial to evaluate the real impact of reduced genetic variation in small populations. Genes of the major histocompatibility complex (MHC) are classical examples of evolutionarily relevant loci because of their well-known role in pathogen confrontation and clearance. In this study, we aim to disentangle the partial roles of genetic drift and natural selection in the spatial distribution of MHC variation in insular populations. To this end, we integrate the study of neutral (22 microsatellites and one mtDNA locus) and MHC class II variation in one mainland (Iberia) and two insular populations (Fuerteventura and Menorca) of the endangered Egyptian vulture (Neophron percnopterus). Overall, the distribution of the frequencies of individual MHC alleles (n=17 alleles from two class II B loci) does not significantly depart from neutral expectations, which indicates a prominent role for genetic drift over selection. However, our results point towards an interesting co-evolution of gene duplicates that maintains different pairs of divergent alleles in strong linkage disequilibrium on islands. We hypothesize that the co-evolution of genes may counteract the loss of genetic diversity in insular demes, maximize antigen recognition capabilities when gene diversity is reduced, and promote the co-segregation of the most efficient allele combinations to cope with local pathogen communities. 相似文献
7.
Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni) 总被引:1,自引:0,他引:1
Understanding the selective forces that shape genetic variation in natural populations remains a high priority in evolutionary biology. Genes at the major histocompatibility complex (MHC) have become excellent models for the investigation of adaptive variation and natural selection because of their crucial role in fighting off pathogens. Here we present one of the first data sets examining patterns of MHC variation in wild populations of a bird of prey, the lesser kestrel, Falco naumanni . We report extensive polymorphism at the second exon of a putatively functional MHC class II gene, Fana- DAB*1. Overall, 103 alleles were isolated from 121 individuals sampled from Spain to Kazakhstan. Bayesian inference of diversifying selection suggests that several amino acid sites may have experienced strong positive selection (ω = 4.02 per codon). The analysis also suggests a prominent role of recombination in generating and maintaining MHC diversity (ρ = 4 Nc = 0.389 per codon, θ = 0.017 per codon). Both the Fana -DAB*1 locus and a set of eight polymorphic microsatellite markers revealed an isolation-by-distance pattern across the Western Palaearctic ( r = 0.67; P = 0.01 and r = 0.50; P = 0.04, respectively). Nonetheless, geographical variation at the MHC contrasts with relatively uniform distributions in the frequencies of microsatellite alleles. In addition, we found lower fixation rates in the MHC than those predicted by genetic drift after controlling for neutral mitochondrial sequences. Our results therefore underscore the role of balancing selection as well as spatial variations in parasite-mediated selection regimes in shaping MHC diversity when gene flow is limited. 相似文献
8.
Marsden CD Woodroffe R Mills MG McNutt JW Creel S Groom R Emmanuel M Cleaveland S Kat P Rasmussen GS Ginsberg J Lines R André JM Begg C Wayne RK Mable BK 《Molecular ecology》2012,21(6):1379-1393
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift. 相似文献
9.
The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian MHC class I genes tend to cluster by species. Concerted evolution has the potential to homogenize different loci, whereas birth-and-death evolution can lead to the loss of orthologs; both processes result in monophyletic groups within species. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. We present the first study of MHC class I genes in a species from the superfamily Musteloidea. The European badger (Meles meles) exhibits moderate variation in MHC class I sequences when compared to other carnivores. We identified seven putatively functional sequences and nine pseudogenes from genomic (gDNA) and complementary (cDNA) DNA, signifying at least two functional class I loci. We found evidence for separate evolutionary histories of the α1 and α2/α3 domains. In the α1 domain, several sequences from different species were more closely related to each other than to sequences from the same species, resembling orthology or trans-species polymorphism. Balancing selection and probable recombination maintain genetic diversity in the α1 domain, evidenced by the detection of positive selection and a recombination event. By comparison, two recombination breakpoints indicate that the α2/α3 domains have most likely undergone concerted evolution, where recombination has homogenized the α2/α3 domains between genes, leading to species-specific clusters of sequences. Our findings highlight the importance of analyzing MHC domains separately. 相似文献
10.
Two bovine genomic clones that crosshybridize with HLA-DR beta cDNA have been isolated. Nucleotide sequence analysis of the beta 1, beta 2 and transmembrane (TM) exon regions for one of these clones revealed 70, 89 and 86% identity with the corresponding HLA-DR beta exons. Stop codons are present in the beta 1 and TM exons and a single base deletion toward the 3' end of the TM exon negates the consensus sequence for exon/intron splicing. Therefore, we conclude this is a bovine DR beta-like pseudogene, BoDR beta I. Exon-containing regions have been used as probes in Southern blot analyses of bovine genomic DNA digested with EcoRI. The beta 2 exon of BoDR beta I results in prominent bands of 18.9, 7.8, 7.2, 6.4, 5.6, 3.6, 3.0 and 2.7 kb. Polymorphisms were observed for all but the 18.9 kb band and at least three of these bands were identified in each of the 185 animals sampled. A probe containing the TM exon of BoDR beta I hybridizes only to the 5.6- and 3.6-kb bands, suggesting that these are allelic bands corresponding to this pseudogene. Results from hybridizations of a TM exon-containing probe of the second bovine DR beta-like clone (BoDR beta II) suggest that the 6.4- and 2.7-kb bands correspond to this second bovine gene. A nonpolymorphic 8.1-kb band results from a probe containing the BoDR beta I beta 1 exon. Major differences in frequency for the 6.4/2.7 alleles were found for the four breeds sampled. 相似文献
11.
The confounding effects of population structure complicate efforts to identify regions of the genome under the influence of selection in natural populations. Here we test for evidence of selection in three genes involved in vertebrate immune function - the major histocompatibility complex (MHC), interferon gamma (IFNG) and natural resistance associated macrophage polymorphism (NRAMP) - in highly structured populations of wild thinhorn sheep (Ovis dalli). We examined patterns of variation at microsatellite loci linked to these gene regions and at the DNA sequence level. Simple Watterson's tests indicated balancing selection at all three gene regions. However, evidence for selection was confounded by population structure, as the Watterson's test statistics from linked markers were not outside of the range of values from unlinked and presumably neutral microsatellites. The translated coding sequences of thinhorn IFNG and NRAMP are fixed and identical to those of domestic sheep (Ovis aries). In contrast, the thinhorn MHC DRB locus shows significant evidence of overdominance through both an excess of nonsynonymous substitution and trans-species polymorphism. The failure to detect balancing selection at microsatellite loci linked to the MHC is likely the result of recombination between the markers and expressed gene regions. 相似文献
12.
Tollenaere C Bryja J Galan M Cadet P Deter J Chaval Y Berthier K Ribas Salvador A Voutilainen L Laakkonen J Henttonen H Cosson JF Charbonnel N 《Journal of evolutionary biology》2008,21(5):1307-1320
We investigated the factors mediating selection acting on two MHC class II genes (DQA and DRB) in water vole (Arvicola scherman) natural populations in the French Jura Mountains. Population genetics showed significant homogeneity in allelic frequencies at the DQA1 locus as opposed to neutral markers (nine microsatellites), indicating balancing selection acting on this gene. Moreover, almost exhaustive screening for parasites, including gastrointestinal helminths, brain coccidia and antibodies against viruses responsible for zoonoses, was carried out. We applied a co-inertia approach to the genetic and parasitological data sets to avoid statistical problems related to multiple testing. Two alleles, Arte-DRB-11 and Arte-DRB-15, displayed antagonistic associations with the nematode Trichuris arvicolae, revealing the potential parasite-mediated selection acting on DRB locus. Selection mechanisms acting on the two MHC class II genes thus appeared different. Moreover, overdominance as balancing selection mechanism was showed highly unlikely in this system. 相似文献
13.
Genes of the major histocompatibility complex (MHC) have a crucial role in the immune response of vertebrates, alter the individual odour and are involved in shaping mating preferences. Pathogen-mediated selection, sexual selection and maternal-fetal interactions have been proposed as the main drivers of frequently observed high levels of polymorphism in functionally important parts of the MHC. Bats constitute the second largest mammalian order and have recently emerged as important vectors of infectious diseases. In addition, Chiroptera are interesting study subjects in evolutionary ecology in the context of olfactory communication, mate choice and associated fitness benefits. Thus, it is surprising that they belong to the least studied mammalian taxa in terms of their MHC diversity. In this study, we investigated the variability in the functionally important MHC class II gene DRB, evidence for selection and population structure in the group-living lesser bulldog bat, Noctilio albiventris, in Panama. We found a single expressed, polymorphic Noal-DRB gene. The substitution pattern of the nucleotide sequences of the 18 detected alleles provided evidence for positive selection acting above the evolutionary history of the species in shaping MHC diversity. Roosting colonies were not genetically differentiated but females showed lower levels of heterozygosity than males, which might be a sign that the sexes differ in the selection pressures acting on the MHC. This study provides the prerequisites for further investigations of the role of the individual MHC constitution in parasite resistance, olfactory communication and mate choice in N. albiventris and other bats. 相似文献
14.
Chen J Källman T Ma X Gyllenstrand N Zaina G Morgante M Bousquet J Eckert A Wegrzyn J Neale D Lagercrantz U Lascoux M 《Genetics》2012,191(3):865-881
Understanding the genetic basis of local adaptation is challenging due to the subtle balance among conflicting evolutionary forces that are involved in its establishment and maintenance. One system with which to tease apart these difficulties is clines in adaptive characters. Here we analyzed genetic and phenotypic variation in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce (Picea abies), arrayed along a latitudinal gradient ranging from 47°N to 68°N. We confirmed that variation in bud set is strongly clinal, using a subset of five populations. Genotypes for 137 single-nucleotide polymorphisms (SNPs) chosen from 18 candidate genes putatively affecting bud set and 308 control SNPs chosen from 264 random genes were analyzed for patterns of genetic structure and correlation to environment. Population genetic structure was low (F(ST) = 0.05), but latitudinal patterns were apparent among Scandinavian populations. Hence, part of the observed clinal variation should be attributable to population demography. Conditional on patterns of genetic structure, there was enrichment of SNPs within candidate genes for correlations with latitude. Twenty-nine SNPs were also outliers with respect to F(ST). The enrichment for clinal variation at SNPs within candidate genes (i.e., SNPs in PaGI, PaPhyP, PaPhyN, PaPRR7, and PaFTL2) indicated that local selection in the 18 populations, and/or selection in the ancestral populations from which they were recently derived, shaped the observed cline. Validation of these genes using expression studies also revealed that PaFTL2 expression is significantly associated with latitude, thereby confirming the central role played by this gene in the control of phenology in plants. 相似文献
15.
Individuals in natural populations are frequently exposed to a wide range of pathogens. Given the diverse profile of gene products involved in responses to different types of pathogen, this potentially results in complex pathogen-specific selection pressures acting on a broad spectrum of immune system genes in wild animals. Thus far, studies into the evolution of immune genes in natural populations have focused almost exclusively on the Major Histocompatibility Complex (MHC). However, the MHC represents only a fraction of the immune system and there is a need to broaden research in wild species to include other immune genes. Here, we examine the evidence for natural selection in a range of non-MHC genes in a natural population of field voles (Microtus agrestis). We concentrate primarily on genes encoding cytokines, signalling molecules critical in eliciting and mediating immune responses and identify signatures of natural selection acting on several of these genes. In particular, genetic diversity within Interleukin 1 beta and Interleukin 2 appears to have been maintained through balancing selection. Taken together with previous findings that polymorphism within these genes is associated with variation in resistance to multiple pathogens, this suggests that pathogen-mediated selection may be an important force driving genetic diversity at cytokine loci in voles and other natural populations. These results also suggest that, along with the MHC, preservation of genetic variation within cytokine genes should be a priority for the conservation genetics of threatened wildlife populations. 相似文献
16.
Summers K Roney KE da Silva J Capraro G Cuthbertson BJ Kazianis S Rosenthal GG Ryan MJ McConnell TJ 《Genetica》2009,135(3):379-390
Two MHC class II loci, DAB (a classical class II locus) and DXB (putatively a non-classical class II locus), were sequenced in samples of individuals from two populations of swordtail fish,
Xiphophorus multilineatus and X. pygmaeus. The DAB locus showed higher levels of genetic variation in the B1-encoding region, (putative binding region) than the DXB locus. We used two methods to investigate dN/dS ratios. The results from a maximum likelihood method based on phylogenetic relationships indicated positive selection on
the B1 region of DAB (this method could not be used on DXB). Results from a coalescent-based method also showed evidence for positive selection in the B1 region of DAB, but only weak evidence for selection on the DXB. Further analyses indicated that recombination is an important source of variation in the B1 region of DAB, but has a relatively small effect on DXB. Overall, our results were consistent with the hypothesis that the DAB locus is under positive selection driven by antagonistic coevolution, and that the DXB locus plays the role of a non-classical MHC II locus. We also used simulations to investigate the presence of an elevated
synonymous substitution rate in the binding region. The simulations revealed that the elevated rate could be caused by an
interaction between positive selection and codon bias.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
17.
Historical population bottlenecks and natural selection have important effects on the current genetic diversity and structure of long‐lived trees. Dracaena cambodiana is an endangered, long‐lived tree endemic to Hainan Island, China. Our field investigations showed that only 10 populations remain on Hainan Island and that almost all have been seriously isolated and grow in distinct habitats. A considerable amount of genetic variation at the species level, but little variation at the population level, and a high level of genetic differentiation among the populations with limited gene flow in D. cambodiana were detected using inter‐simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) analyses. No significant correlation was found between genetic diversity and actual population size, as the genetic diversities were similar regardless of population size. The Mantel test revealed that there was no correlation between genetic and geographic distances among the 10 populations. The UPGMA, PCoA and Bayesian analyses showed that local adaptive divergence has occurred among the D. cambodiana populations, which was further supported by habitat‐private fragments. We suggest that the current genetic diversity and population differentiation of D. cambodiana resulted from historical population bottlenecks and natural selection followed by historical isolation. However, the lack of natural regeneration of D. cambodiana indicates that former local adaptations with low genetic diversity may have been genetically weak and are unable to adapt to the current ecological environments. 相似文献
18.
Patterns of genetic diversity and differentiation among five wild and four hatchery populations of Atlantic salmon in the Baltic Sea were assessed based on eight assumedly neutral microsatellite loci and six gene-associated markers, including four expressed sequence tag (EST) linked and two major histocompatibility complex (MHC) linked tandem repeat markers (micro- and mini-satellites). The coalescent simulations based on the method of Beaumont and Nichols (1996, Proc. R. Soc. Lond. Ser. B – Biol. Sci., 263, 1619–1626) indicated that two loci (MHCIIα and Ssa171, with the lowest and highest overall FST estimates, respectively) exhibited significant departures (P<0.05) from the neutral expectations. Another coalescent-based test for selective neutrality (Vitalis et al. 2001, Genetics, 158, 1811–1823) further supported the outlier status of the Ssa171 microsatellite locus but not of the MHCIIα linked minisatellite. In addition, actin related protein linked microsatellite locus was identified with this test as an outlier in six pairwise population comparisons. All genetic diversity estimates revealed more genetic variation in hatchery stocks than in the small wild salmon populations from the Gulf of Finland. However, the wild populations possessed alleles at gene-associated markers (e.g. MHCI and IGF) not found in the hatchery stocks, which together with moderate genetic differentiation and distinctive environmental conditions justifies the special conservation measures for the last remaining native salmon populations in the Gulf of Finland. 相似文献
19.
The comparison of the degree of differentiation in neutral marker loci and genes coding quantitative traits with standardized and equivalent measures of genetic differentiation (FST and QST, respectively) can provide insights into two important but seldom explored questions in evolutionary genetics: (i) what is the relative importance of random genetic drift and directional natural selection as causes of population differentiation in quantitative traits, and (ii) does the degree of divergence in neutral marker loci predict the degree of divergence in genes coding quantitative traits? Examination of data from 18 independent studies of plants and animals using both standard statistical and meta‐analytical methods revealed a number of interesting points. First, the degree of differentiation in quantitative traits (QST) typically exceeds that observed in neutral marker genes (FST), suggesting a prominent role for natural selection in accounting for patterns of quantitative trait differentiation among contemporary populations. Second, the FST – QST difference is more pronounced for allozyme markers and morphological traits, than for other kinds of molecular markers and life‐history traits. Third, very few studies reveal situations were QST < FST, suggesting that selection pressures, and hence optimal phenotypes, in different populations of the same species are unlikely to be often similar. Fourth, there is a strong correlation between QST and FST indices across the different studies for allozyme (r=0.81), microsatellite (r=0.87) and combined (r=0.75) marker data, suggesting that the degree of genetic differentiation in neutral marker loci is closely predictive of the degree of differentiation in loci coding quantitative traits. However, these interpretations are subject to a number of assumptions about the data and methods used to derive the estimates of population differentiation in the two sets of traits. 相似文献
20.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes. 相似文献