首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A detailed computer analysis of the untranslated regions, 5′-UTR and 3′- UTR, of human mRNA sequences is reported. The compositional properties of these regions, compared with those of the corresponding coding regions, indicate that 5′-UTR and 3′-UTR are less affected by the isochore compartmentalization than the corresponding third codon positions of mRNAs. The presence of higher functional constraints in 5′-UTR is also reported. Dinucleotide analysis shows a depletion of CpG and TpA in both sequences. A search for significant sequence motifs using the WORDUP algorithm reveals the patterns already known to have a functional role in the mRNA UTR, and several other motifs whose functional roles remain to be demonstrated. This type of analysis may be particularly useful for guiding site-directed mutagenesis experiments. In addition, it can be used for assessing the nature of anonymous sequences now produced in large amounts in megabase sequencing projects.  相似文献   

2.
Pairwise sequence alignments aim to decide whether two sequences are related and, if so, to exhibit their related domains. Recent works have pointed out that a significant number of true homologous sequences are missed when using classical comparison algorithms. This is the case when two homologous sequences share several little blocks of homology, too small to lead to a significant score. On the other hand, classical alignment algorithms, when detecting homologies, may fail to recognize all the significant biological signals. The aim of the paper is to give a solution to these two problems. We propose a new scoring method which tends to increase the score of an alignment when "blocks" are detected. This so-called Block-Scoring algorithm, which makes use of dynamic programming, is worth being used as a complementary tool to classical exact alignments methods. We validate our approach by applying it on a large set of biological data. Finally, we give a limit theorem for the score statistics of the algorithm.  相似文献   

3.
The constrained multiple sequence alignment problem is to align a set of sequences of maximum length n subject to a given constrained sequence, which arises from some knowledge of the structure of the sequences. This paper presents new algorithms for this problem, which are more efficient in terms of time and space (memory) than the previous algorithms, and with a worst-case guarantee on the quality of the alignment. Saving the space requirement by a quadratic factor is particularly significant as the previous O(n4)-space algorithm has limited application due to its huge memory requirement. Experiments on real data sets confirm that our new algorithms show improvements in both alignment quality and resource requirements.  相似文献   

4.
With the quick progress of the Human Genome Project, a great amount of uncharacterized DNA sequences needs to be annotated copiously by better algorithms. Recognizing shorter coding sequences of human genes is one of the most important problems in gene recognition, which is not yet completely solved. This paper is devoted to solving the issue using a new method. The distributions of the three stop codons, i.e., TAA, TAG and TGA, in three phases along coding, noncoding, and intergenic sequences are studied in detail. Using the obtained distributions and other coding measures, a new algorithm for the recognition of shorter coding sequences of human genes is developed. The accuracy of the algorithm is tested based on a larger database of human genes. It is found that the average accuracy achieved is as high as 92.1% for the sequences with length of 192 base pairs, which is confirmed by sixfold cross-validation tests. It is hoped that by incorporating the present method with some existing algorithms, the accuracy for identifying human genes from unannotated sequences would be increased.  相似文献   

5.
With discovery of diverse roles for RNA, its centrality in cellular functions has become increasingly apparent. A number of algorithms have been developed to predict RNA secondary structure. Their performance has been benchmarked by comparing structure predictions to reference secondary structures. Generally, algorithms are compared against each other and one is selected as best without statistical testing to determine whether the improvement is significant. In this work, it is demonstrated that the prediction accuracies of methods correlate with each other over sets of sequences. One possible reason for this correlation is that many algorithms use the same underlying principles. A set of benchmarks published previously for programs that predict a structure common to three or more sequences is statistically analyzed as an example to show that it can be rigorously evaluated using paired two-sample t-tests. Finally, a pipeline of statistical analyses is proposed to guide the choice of data set size and performance assessment for benchmarks of structure prediction. The pipeline is applied using 5S rRNA sequences as an example.  相似文献   

6.
We present here a fast and sensitive method designed to isolate short nucleotide sequences which have non-random statistical properties and may thus be biologically active. It is based on a first order Markov analysis and allows us to detect statistically significant sequence motifs from six to ten nucleotides long which are significantly shared (or avoided) in the sequences under investigation. This method has been tested on a set of 521 sequences extracted from the Eukaryotic Promoter Database (2). Our results demonstrate the accuracy and the efficiency of the method in that the sequence motifs which are known to act as eukaryotic promoters, such as the TATA-box and the CAAT-box, were clearly identified. In addition we have found other statistically significant motifs, the biological roles of which are yet to be clarified.  相似文献   

7.
Subtle motifs: defining the limits of motif finding algorithms   总被引:4,自引:0,他引:4  
MOTIVATION: What constitutes a subtle motif? Intuitively, it is a motif that is almost indistinguishable, in the statistical sense, from random motifs. This question has important practical consequences: consider, for example, a biologist that is generating a sample of upstream regulatory sequences with the goal of finding a regulatory pattern that is shared by these sequences. If the sequences are too short then one risks losing some of the regulatory patterns that are located further upstream. Conversely, if the sequences are too long, the motif becomes too subtle and one is then likely to encounter random motifs which are at least as significant statistically as the regulatory pattern itself. In practical terms one would like to recognize the sequence length threshold, or the twilight zone, beyond which the motifs are in some sense too subtle. RESULTS: The paper defines the motif twilight zone where every motif finding algorithm would be exposed to random motifs which are as significant as the one which is sought. We also propose an objective tool for evaluating the performance of subtle motif finding algorithms. Finally we apply these tools to evaluate the success of our MULTIPROFILER algorithm to detect subtle motifs.  相似文献   

8.

Background  

Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary.  相似文献   

9.
10.
Tao T  Zhai CX  Lu X  Fang H 《Applied bioinformatics》2004,3(2-3):115-124
Automatic discovery of new protein motifs (i.e. amino acid patterns) is one of the major challenges in bioinformatics. Several algorithms have been proposed that can extract statistically significant motif patterns from any set of protein sequences. With these methods, one can generate a large set of candidate motifs that may be biologically meaningful. This article examines methods to predict the functions of these candidate motifs. We use several statistical methods: a popularity method, a mutual information method and probabilistic translation models. These methods capture, from different perspectives, the correlations between the matched motifs of a protein and its assigned Gene Ontology terms that characterise the function of the protein. We evaluate these different methods using the known motifs in the InterPro database. Each method is used to rank candidate terms for each motif. We then use the expected mean reciprocal rank to evaluate the performance. The results show that, in general, all these methods perform well, suggesting that they can all be useful for predicting the function of an unknown motif. Among the methods tested, a probabilistic translation model with a popularity prior performs the best.  相似文献   

11.
We present an approach to predicting protein structural class that uses amino acid composition and hydrophobic pattern frequency information as input to two types of neural networks: (1) a three-layer back-propagation network and (2) a learning vector quantization network. The results of these methods are compared to those obtained from a modified Euclidean statistical clustering algorithm. The protein sequence data used to drive these algorithms consist of the normalized frequency of up to 20 amino acid types and six hydrophobic amino acid patterns. From these frequency values the structural class predictions for each protein (all-alpha, all-beta, or alpha-beta classes) are derived. Examples consisting of 64 previously classified proteins were randomly divided into multiple training (56 proteins) and test (8 proteins) sets. The best performing algorithm on the test sets was the learning vector quantization network using 17 inputs, obtaining a prediction accuracy of 80.2%. The Matthews correlation coefficients are statistically significant for all algorithms and all structural classes. The differences between algorithms are in general not statistically significant. These results show that information exists in protein primary sequences that is easily obtainable and useful for the prediction of protein structural class by neural networks as well as by standard statistical clustering algorithms.  相似文献   

12.
An evolutionary model for maximum likelihood alignment of DNA sequences   总被引:16,自引:0,他引:16  
Summary Most algorithms for the alignment of biological sequences are not derived from an evolutionary model. Consequently, these alignment algorithms lack a strong statistical basis. A maximum likelihood method for the alignment of two DNA sequences is presented. This method is based upon a statistical model of DNA sequence evolution for which we have obtained explicit transition probabilities. The evolutionary model can also be used as the basis of procedures that estimate the evolutionary parameters relevant to a pair of unaligned DNA sequences. A parameter-estimation approach which takes into account all possible alignments between two sequences is introduced; the danger of estimating evolutionary parameters from a single alignment is discussed.  相似文献   

13.
An improved method for testing similarities or repeats in protein sequences is described. It includes three features: a measure of similarity for amino acids, based on observed substitutions in homologous proteins; a search procedure which compares all pairs of segments of two proteins; new statistical tests which estimate the probabilities that observed correlations could have occurred by chance. Calculations show that gene duplication has probably not occurred in plant ferredoxins; phage Qβ and f2 coat proteins may be homologous; and repeats in cytochrome c are not statistically significant. The method predicted an alignment of cytochrome c and c551 sequences which later appeared consistent with Dickerson's atomic model of horse cytochrome c.  相似文献   

14.
The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences.  相似文献   

15.
The location of mammalian interspersed repeats (MIRs) and their density have been determined in the complete nucleotide sequence of human chromosome 22. The approach developed by us has allowed detection of 9675 MIRs at a statistically significant level, which by 15% exceeds the MIR number revealed by all previous approaches. It has been demonstrated that a considerable amount of MIRs missed by the algorithms applied earlier occurs in known DNA sequences of the human genome. The study of the MIR density revealed substantial irregularity of their distribution along the chromosome. The data on the MIRs thus found and the computer program searching for diverged sequences are available by E-mail: katrin2@mail.ru or katrin22@mtu-net.ru.  相似文献   

16.
The location of mammalian interspersed repeats (MIRs) and their density have been determined in the complete nucleotide sequence of human chromosome 22. The approach developed by us has allowed detection of 9675 MIRs at a statistically significant level, which by 15% exceeds the MIR number revealed by all previous approaches. It has been demonstrated that a considerable amount of MIRs missed by the algorithms applied earlier occurs in known DNA sequences of the human genome. The study of the MIR density revealed substantial irregularity of their distribution along the chromosome. The data on the MIRs thus found and the computer program searching for diverged sequences are available by E-mail: katrin2@mail.ru or katrin22@mtu-net.ru.  相似文献   

17.
A new method for homology search of DNA sequences is suggested. This method may be used to find extensive and not strong homologies with point mutations and deletions. The running program time for comparing sequences is less then the dynamic program algorithms at least at two orders of magnitude. It makes possible to use the method for homology searching throughover the nucleotide bank by personal computers.  相似文献   

18.
Liu DQ  Liu H  Shen HB  Yang J  Chou KC 《Amino acids》2007,32(4):493-496
Summary. A newly synthesized secretory protein in cells bears a special sequence, called signal peptide or sequence, which plays the role of “address tag” in guiding the protein to wherever it is needed. Such a unique function of signal sequences has stimulated novel strategies for drug design or reprogramming cells for gene therapy. To realize these new ideas and plans, however, it is important to develop an automated method for fast and accurately identifying the signal sequences or their cleavage sites. In this paper, a new method is developed for predicting the signal sequence of a query secretory protein by fusing the results from a series of global alignments through a voting system. The very high success rates thus obtained suggest that the novel approach is very promising, and that the new method may become a useful vehicle in identifying signal sequence, or at least serve as a complementary tool to the existing algorithms of this field.  相似文献   

19.
Locally optimal subalignments using nonlinear similarity functions   总被引:2,自引:0,他引:2  
Nonlinear similarity functions are often better than linear functions at distinguishing interesting subalignments from those due to chance. Nonlinear similarity functions useful for comparing biological sequences are developed. Several new algorithms are presented for finding locally optimal subalignments of two sequences. Unlike previous algorithms, they may use any reasonable similarity function as a selection criterion. Among these algorithms are VV-1, which finds all and only the locally optimal subalignments of two sequences, and CC-1, which finds all and only the weakly locally optimal subalignments of two sequences. The VV-1 algorithm is slow and interesting only for theoretical reasons. In contrast, the CC-1 algorithm has average time complexityO(MN) when used to find only very good subalignments.  相似文献   

20.
Position weight matrices are an important method for modeling signals or motifs in biological sequences, both in DNA and protein contexts. In this paper, we present fast algorithms for the problem of finding significant matches of such matrices. Our algorithms are of the online type, and they generalize classical multipattern matching, filtering, and superalphabet techniques of combinatorial string matching to the problem of weight matrix matching. Several variants of the algorithms are developed, including multiple matrix extensions that perform the search for several matrices in one scan through the sequence database. Experimental performance evaluation is provided to compare the new techniques against each other as well as against some other online and index-based algorithms proposed in the literature. Compared to the brute-force O(mn) approach, our solutions can be faster by a factor that is proportional to the matrix length m. Our multiple-matrix filtration algorithm had the best performance in the experiments. On a current PC, this algorithm finds significant matches (p = 0.0001) of the 123 JASPAR matrices in the human genome in about 18 minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号