首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advances in plant breeding through marker-assisted selection (MAS) are only possible when genes or quantitative trait loci (QTLs) can contribute to the improvement of elite germplasm. A population of recombinant inbred lines (RILs) was developed for one of the best crosses of the Spanish National Barley Breeding Program, between two six-row winter barley cultivars Orria and Plaisant. The objective of this study was to identify favourable QTLs for agronomic traits in this population, which may help to optimise breeding strategies for these and other elite materials for the Mediterranean region. A genetic linkage map was developed for 217 RILs, using 382 single nucleotide polymorphism markers, selected from the barley oligonucleotide pool assay BOPA1 and two genes. A subset of 112 RILs was evaluated for several agronomic traits over a period of 2 years at three locations, Lleida and Zaragoza (Spain) and Fiorenzuola d’Arda (Italy), for a total of five field trials. An important segregation distortion occurred during population development in the region surrounding the VrnH1 locus. A QTL for grain yield and length of growth cycle was also found at this locus, apparently linked to a differential response of the VrnH1 alleles to temperature. A total of 33 QTLs was detected, most of them for important breeding targets such as plant height and thousand-grain weight. QTL × environment interactions were prevalent for most of the QTLs detected, although most interactions were of a quantitative nature. Therefore, QTLs suitable for MAS for most traits were identified.  相似文献   

2.
Resistance to Fusarium head blight (FHB), deoxynivalenol (DON) accumulation, and kernel discoloration (KD) in barley are difficult traits to introgress into elite varieties because current screening methods are laborious and disease levels are strongly influenced by environment. To improve breeding strategies directed toward enhancing these traits, we identified genomic regions containing quantitative trait loci (QTLs) associated with resistance to FHB, DON accumulation, and KD in a breeding population of F4:7 lines using restriction fragment length polymorphic (RFLP) markers. We evaluated 101 F4:7 lines, derived from a cross between the cultivar Chevron and an elite breeding line, M69, for each of the traits in three or four environments. We used 94 previously mapped RFLP markers to create a linkage map. Using composite interval mapping, we identified 10, 11, and 4 QTLs associated with resistance to FHB, DON accumulation, and KD, respectively. Markers flanking these QTLs should be useful for introgressing resistance to FHB, DON accumulation, and KD into elite barley cultivars. Received: 8 November 1998 / Accepted: 8 January 1999  相似文献   

3.
Net blotch of barley, caused by Pyrenophora teres Drechs., is an important foliar disease worldwide. Deployment of resistant cultivars is the most economic and eco-friendly control method. This report describes mapping of quantitative trait loci (QTL) associated with net blotch resistance in a doubled-haploid (DH) barley population using diversity arrays technology (DArT) markers. One hundred and fifty DH lines from the cross CDC Dolly (susceptible)/TR251 (resistant) were screened as seedlings in controlled environments with net-form net blotch (NFNB) isolates WRS858 and WRS1607 and spot-form net blotch (SFNB) isolate WRS857. The population was also screened at the adult-plant stage for NFNB resistance in the field in 2005 and 2006. A high-density genetic linkage map of 90 DH lines was constructed using 457 DArT and 11 SSR markers. A major NFNB seedling resistance QTL, designated QRpt6, was mapped to chromosome 6H for isolates WRS858 and WRS1607. QRpt6 was associated with adult-plant resistance in the 2005 and 2006 field trials. Additional QTL for NFNB seedling resistance to the more virulent isolate WRS858 were identified on chromosomes 2H, 4H, and 5H. A seedling resistance QTL (QRpts4) for the SFNB isolate WRS857 was detected on chromosome 4H as was a significant QTL (QRpt7) on chromosome 7H. Three QTL (QRpt6, QRpts4, QRpt7) were associated with resistance to both net blotch forms and lines with one or more of these demonstrated improved resistance. Simple sequence repeat (SSR) markers tightly linked to QRpt6 and QRpts4 were identified and validated in an unrelated barley population. The major 6H QTL, QRpt6, may provide adequate NFNB field resistance in western Canada and could be routinely selected for using molecular markers in a practical breeding program.  相似文献   

4.
Wheat (Triticum aestivum L.) has been examined for allelopathic potential against annual ryegrass (Lolium rigidum). The bioassay technique, 'equal-compartment-agar-method', was employed to evaluate seedling allelopathy in a doubled-haploid (DH) population derived from cv Sunco (weakly allelopathic) and cv Tasman (strongly allelopathic). A significant difference in allelopathic activity was found among the DH lines, which inhibited the root length of ryegrass across a range from 23.7 to 88.3%. The phenotypic data showed that wheat allelopathic activity was distributed normally within this DH population and a substantial transgressive segregation for seedling allelopathic activity was also found. Analysis of restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) and microsatellite (SSRs) markers identified two major QTLs on chromosome 2B associated with wheat allelopathy. The linkage analysis of genetic markers and the QTLs may improve genetic gains for the allelopathic activity through marker-assisted selection in wheat breeding. The development of wheat allelopathic cultivars could reduce the over-reliance of weed control on synthetic herbicides.Communicated by J. Dvorak  相似文献   

5.
Seed and seedling traits related to germination and stand establishment are important in the production of cultivated lettuce (Lactuca sativa L.). Six seed and seedling traits segregating in a L. sativa cv. Salinas x L. serriola recombinant inbred line population consisting of 103 F8 families revealed a total of 17 significant quantitative trait loci (QTL) resulting from three seed production environments. Significant QTL were identified for germination in darkness, germination at 25 and 35°C, median maximum temperature of germination, hypocotyl length at 72 h post-imbibition, and plant (seedling) quality. Some QTL for germination and early seedling growth characteristics were co-located, suggestive of pleiotropic loci regulating these traits. A single QTL (Htg6.1) described 25 and 23% of the total phenotypic variation for high temperature germination in California- and Netherlands-grown populations, respectively, and was significant between 33 and 37°C. Additionally, Htg6.1 showed significant epistatic interactions with other Htg QTL and a consistent effect across all the three seed production environments. L. serriola alleles increased germination at these QTL. The estimate of narrow-sense heritability (h2) of Htg6.1 was 0.84, indicating potential for L. serriola as a source of germination thermotolerance for lettuce introgression programs.  相似文献   

6.
This study aimed to identify quantitative trait loci associated with endoparasitic infection in Scottish Blackface sheep. Data were collected from 789 animals over a 3-year period. All of the animals were continually exposed to a mixed nematode infection by grazing. Faecal samples were collected in August, September and October each year at ca. 16, 20 and 24 weeks of age; Nematodirus spp. eggs were counted separately from the other species of nematodes. Blood samples were collected in October from which immunoglobulin A (IgA) activity was measured and DNA was extracted for genotyping. In total, 139 Microsatellite markers were genotyped across eight chromosomal regions (chromosomes 1, 2, 3, 5, 14, 18, 20 and 21) in the sires and progeny were genotyped for the markers that were polymorphic in their sire. Evidence was found for quantitative trait loci (QTL) on chromosomes 2, 3, 14 and 20. QTL associated with specific IgA activity were identified in chromosomes 3 and 20, in regions close to IFNG (chromosome 3) and the MHC (chromosome 20). QTL associated with Nematodirus FEC were identified on chromosomes 2, 3 and 14. Lastly, QTL associated with non-Nematodirus Strongyle FEC were identified on chromosomes 3 and 20. This study has shown that some aspects of host resistance to gastrointestinal parasites are under strong genetic control, therefore these QTL could be utilised in a marker-assisted selection scheme to increase host resistance to gastrointestinal parasites.  相似文献   

7.
During monocarpic senescence in higher plants, functional stay-green delays leaf yellowing, maintaining photosynthetic competence, whereas nonfunctional stay-green retains leaf greenness without sustaining photosynthetic activity. Thus, functional stay-green is considered a beneficial trait that can increase grain yield in cereal crops. A stay-green japonica rice 'SNU-SG1' had a good seed-setting rate and grain yield, indicating the presence of a functional stay-green genotype. SNU-SG1 was crossed with two regular cultivars to determine the inheritance mode and identify major QTLs conferring stay-green in SNU-SG1. For QTL analysis, linkage maps with 100 and 116 DNA marker loci were constructed using selective genotyping with F2 and RIL (recombinant inbred line) populations, respectively. Molecular marker-based QTL analyses with both populations revealed that the functional stay-green phenotype of SNU-SG1 is regulated by several major QTLs accounting for a large portion of the genetic variation. Three main-effect QTLs located on chromosomes 7 and 9 were detected in both populations and a number of epistatic-effect QTLs were also found. The amount of variation explained by several digenic interactions was larger than that explained by main-effect QTLs. Two main-effect QTLs on chromosome 9 can be considered the target loci that most influence the functional stay-green in SNU-SG1. The functional stay-green QTLs may help develop low-input high-yielding rice cultivars by QTL-marker-assisted breeding with SNU-SG1.  相似文献   

8.
The role of genetics in the determination of maximal exercise endurance is unclear. Six- to nine-week-old F2 mice (n = 99; 60 female, 39 male), derived from an intercross of two inbred strains that had previously been phenotyped as having high maximal exercise endurance (Balb/cJ) and low maximal exercise endurance (DBA/2J), were treadmill tested to estimate exercise endurance. Selective genotyping of the F2 cohort (n = 12 high exercise endurance; n = 12 low exercise endurance) identified a significant quantitative trait locus (QTL) on chromosome X (53.7 cM, DXMit121) in the entire cohort and a suggestive QTL on chromosome 8 (36.1 cM, D8Mit359) in the female mice. Fine mapping with the entire F2 cohort and additional informative markers confirmed and narrowed the QTLs. The chromosome 8 QTL (EE8(F)) is homologous with two suggestive human QTLs and one significant rat QTL previously linked with exercise endurance. No effect of sex (P = 0.33) or body weight (P = 0.79) on exercise endurance was found in the F2 cohort. These data indicate that genetic factors in distinct chromosomal regions may affect maximal exercise endurance in the inbred mouse. Whereas multiple genes are located in the identified QTL that could functionally affect exercise endurance, this study serves as a foundation for further investigations delineating the identity of genetic factors influencing maximum exercise endurance.  相似文献   

9.
Quantitative trait loci (QTL) controlling traits associated with winterhardiness in barley (field survival, LT50, growth habit, and crown fructan content) were mapped to chromosome 7 in a population of 100 F1-derived doubled haploid lines. The largest QTL effects for all traits were detected in a 21% recombination interval on the long arm of chromosome 7. QTL in this region accounted for 37-68% of the variation for three measures of cold tolerance, 47% of the variation for growth habit, and 28% of the variation in crown fructan content. Trait association may be due to linkage rather than pleiotropy.  相似文献   

10.
Barley (Hordeum vulgare) is an important cereal crop grown for both the feed and malting industries. Hence, there is great interest to gain deeper insight into the determinants of grain nutritional quality in order to improve the assessment of new traits. Two-dimensional gel electrophoresis was employed for the characterization of the grain proteome of doubled-haploid introgression lines (IL) representing a wild barley genome (Hordeum spontaneum Hs213) within a modern cultivar background (H. vulgare cv. Brenda). Proteome maps were subjected to differential cluster analysis and revealed ILs with similar or different protein expression patterns compared to the Brenda parent. A total of 51 quantitative trait loci for protein expression (pQTL) were detected, and proteins underlying these pQTL were further examined by mass spectrometry. Identification was successful for 49 of the segregating spots and functional annotation of proteins revealed that most proteins are involved in metabolism and disease/defence-related processes. Among those, multigene families of glyceraldehyde-3-phosphate dehydrogenases, heat shock proteins, peroxidases, and serpins were identified. Overall, eight pQTL signals were discovered in two independently grown sets of plants. The mapped spots included protein disulfide isomerase, α-amylase inhibitor BDAI, NADP malic enzyme, adenosine kinase and peroxidase BP1. Specific marker information of proteins involved in developmental events and protein storage as well as in disease- and defence-related processes now allows for targeted breeding approaches to improve the grain quality in barley.  相似文献   

11.
An F2 population established by crossing a broiler male line and a layer line was used to map quantitative trait loci (QTL) affecting abdominal fat weight, abdominal fat percentage and serum cholesterol and triglyceride concentrations. Two genetic models, the line-cross and the half-sib, were applied in the QTL analysis, both using the regression interval method. Three significant QTL and four suggestive QTL were mapped in the line-cross analysis and four significant and four suggestive QTL were mapped in the half-sib analysis. A total of five QTL were mapped for abdominal fat weight, six for abdominal fat percentage and four for triglyceride concentration in both analyses. New QTL associated with serum triglyceride concentration were mapped on GGA5, GGA23 and GG27. QTL mapped between markers LEI0029 and ADL0371 on GGA3 for abdominal fat percentage and abdominal fat weight and a suggestive QTL on GGA12 for abdominal fat percentage showed significant parent-of-origin effects. Some QTL mapped here match QTL regions mapped in previous studies using different populations, suggesting good candidate regions for fine-mapping and candidate gene searches.  相似文献   

12.
Drought is a major constraint to rice (Oryza sativa) yield and its stability in rainfed and poorly irrigated environments. Identifying genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and development of more drought tolerant cultivars. Quantitative trait loci (QTL) for grain yield and its components and other agronomic traits were identified using a subset of 154 doubled haploid lines derived from a cross between two rice cultivars, CT9993-510 to 1-M and IR62266-42 to 6-2. Drought stress treatments were managed by use of a line source sprinkler irrigation system, which provided a linearly decreasing level of irrigation coinciding with the sensitive reproductive growth stages. The research was conducted at the Ubon Rice Research Center, Ubon, Thailand. A total of 77 QTL were identified for grain yield and its components under varying levels of water stress. Out of the total of 77 QTL, the number of QTL per trait were: 7-grain yield (GY); 8-biological yield (BY); 6-harvest index (HI); 5-d to flowering after initiation of irrigation gradient (DFAIG); 10-total spikelet number (TSN); 7-percent spikelet sterility (PSS); 23-panicle number (PN); and 11-plant height (PH). The phenotypic variation explained by individual QTL ranged from 7.5% to 55.7%. Under well-watered conditions, we observed a high genetic association for BY, HI, DFAIG, PSS, TSN, PH, and GY. However, only BY and HI were found to be significantly associated with GY under drought treatments. QTL flanked by markers RG104 to RM231, EMP2_2 to RM127, and G2132 to RZ598 on chromosomes 3, 4, and 8 were associated with GY, HI, DFAIG, BY, PSS, and PN under drought treatments. The aggregate effects of these QTL on chromosomes 3, 4, and 8 resulted in higher grain yield. These QTL will be useful for rainfed rice improvement, and will also contribute to our understanding of the genetic control of GY under drought conditions at the sensitive reproductive stage. Close linkage or pleiotropy may be responsible for the coincidence of QTL detected in this experiment. Digenic interactions between QTL main effects for GY, BY, HI, and PSS were observed under irrigation treatments. Most (but not all) DH lines have the same response in measure of productivity when the intensity of water deficit was increased, but no QTL by irrigation treatment interaction was detected. The identification of genomic regions associated with GY and its components under drought stress will be useful for marker-based approaches to improve GY and its stability for farmers in drought-prone rice environments.  相似文献   

13.
Major objectives of the poultry industry are to increase meat production and to reduce carcass fatness, mainly abdominal fat. Information on growth performance and carcass composition are important for the selection of leaner meat chickens. To enhance our understanding of the genetic architecture underlying the chemical composition of chicken carcasses, an F2 population developed from a broiler × layer cross was used to map quantitative trait loci (QTL) affecting protein, fat, water and ash contents in chicken carcasses. Two genetic models were applied in the QTL analysis: the line‐cross and the half‐sib models, both using the regression interval mapping method. Six significant and five suggestive QTL were mapped in the line‐cross analysis, and four significant and six suggestive QTL were mapped in the half‐sib analysis. A total of eleven QTL were mapped for fat (ether extract), five for protein, four for ash and one for water contents in the carcass using both analyses. No study to date has reported QTL for carcass chemical composition in chickens. Some QTL mapped here for carcass fat content match, as expected, QTL regions previously associated with abdominal fat in the same or in different populations, and novel QTL for protein, ash and water contents in the carcass are presented here. The results described here also reinforce the need for fine mapping and to perform multi‐trait analyses to better understand the genetic architecture of these traits.  相似文献   

14.
Drought stress during the reproductive stage is one of the most important environmental factors reducing the grain yield and yield stability of pearl millet. A QTL mapping approach has been used in this study to understand the genetic and physiological basis of drought tolerance in pearl millet and to provide a more-targeted approach to improving the drought tolerance and yield of this crop in water-limited environments. The aim was to identify specific genomic regions associated with the enhanced tolerance of pearl millet to drought stress during the flowering and grain-filling stages. Testcrosses of a set of mapping-population progenies, derived from a cross of two inbred pollinators that differed in their response to drought, were evaluated in a range of managed terminal drought-stress environments. A number of genomic regions were associated with drought tolerance in terms of both grain yield and its components. For example, a QTL associated with grain yield per se and for the drought tolerance of grain yield mapped on linkage group 2 and explained up to 23% of the phenotypic variation. Some of these QTLs were common across stress environments whereas others were specific to only a particular stress environment. All the QTLs that contributed to increased drought tolerance did so either through better than average maintenance (compared to non-stress environments) of harvest index, or harvest index and biomass productivity. It is concluded that there is considerable potential for marker-assisted backcross transfer of selected QTLs to the elite parent of the mapping population and for their general use in the improvement of pearl millet productivity in water-limited environments. Received: 15 November 2000 / Accepted: 12 April 2001  相似文献   

15.
Salinity stress is a major limitation in barley production. Substantial genetic variation in tolerance occurs among genotypes of barley, so the development of salt-tolerant cultivars is a potentially effective approach for minimizing yield losses. The lack of economically viable methods for screening salinity tolerance in the field remains an obstacle to breeders, and molecular marker-assisted selection is a promising alternative. In this study, salinity tolerance of 172 doubled-haploid lines generated from YYXT (salinity-tolerant) and Franklin (salinity-sensitive) was assessed in glasshouse trials during the vegetative phase. A high-density genetic linkage map was constructed from 76 pairs of simple sequence repeats and 782 Diversity Arrays Technology markers which spanned a total of 1,147 cM. Five significant quantitative trait loci (QTL) for salinity tolerance were identified on chromosomes 1H, 2H, 5H, 6H and 7H, accounting for more than 50% of the phenotypic variation. The tolerant variety, YYXT, contributed the tolerance to four of these QTL and Franklin contributed the tolerance to one QTL on chromosome 1H. Some of these QTL mapped to genomic regions previously associated with salt tolerance in barley and other cereals. Markers associated with the major QTL identified in this study have potential application for marker-assisted selection in breeding for enhanced salt tolerance in barley.  相似文献   

16.
Quantitative trait loci in Drosophila   总被引:1,自引:0,他引:1  
Phenotypic variation for quantitative traits results from the simultaneous segregation of alleles at multiple quantitative trait loci. Understanding the genetic architecture of quantitative traits begins with mapping quantitative trait loci to broad genomic regions and ends with the molecular definition of quantitative trait loci alleles. This has been accomplished for some quantitative trait loci in Drosophila. Drosophila quantitative trait loci have sex-, environment- and genotype-specific effects, and are often associated with molecular polymorphisms in non-coding regions of candidate genes. These observations offer valuable lessons to those seeking to understand quantitative traits in other organisms, including humans.  相似文献   

17.
18.
Powdery mildew and scald can cause significant yield loss in barley. In order to identify new resistance genes for powdery mildew and scald in barley, two barley doubled haploid (DH) populations were screened for adult plant resistance in the field and glasshouse under natural infection. The mapping populations included 92 DH lines from the cross of TX9425 × Franklin and 177 DH lines from the cross of Yerong × Franklin. Two quantitative trait loci (QTL) for resistance to powdery mildew were identified in the TX9425 × Franklin population. These QTL were mapped to chromosomes 7H and 5H, respectively. The phenotypic variation explained by the two QTL detected in this population was 22 and 17%, respectively. Three significant QTL were identified from the Yerong × Franklin population for the resistance to powdery mildew; the major one, detected on the short arm of chromosome 1H, explained 66% of phenotypic variation. The major QTL for scald resistance, identified from two different populations which shared a common parent, Franklin, were mapped in the similar position on 3H. However, the Franklin allele provided resistance to one population but susceptibility to the other population. The Yerong allele on 3H showed much better resistance to scald than the Franklin allele, which has not been reported before. Using high-density maps for both populations, some markers which were very close to the resistance genes were identified. Transgression beyond the parents in disease resistances of the DH populations indicates that both small-effect QTLs and genetic background may also have significant contributions towards the resistance.  相似文献   

19.
Quantitative trait loci with parent-of-origin effects in chicken   总被引:1,自引:0,他引:1  
We investigated potential effects of parent-of-origin specific quantitative trait loci (QTL) in chicken. Two divergent egg-layer lines differing in egg quality were reciprocally crossed to produce 305 F2 hens. Searching the genome using models with uni-parental expression, we identified four genome-wide significant QTL with parent-of-origin effects and three highly suggestive QTL affecting age at first egg, egg weight, number of eggs, body weight, feed intake, and egg white quality. None of these QTL had been detected previously using Mendelian models. Two genome-wide significant and one highly suggestive QTL show exclusive paternal expression while the others show exclusive maternal expression. Each of the parent-of-origin specific QTL explained 3-5 % of the total phenotypic variance, with the effects ranging from 0.18 to 0.4 phenotypic SD in the F2. Using simulations and further detailed analyses, it was shown that departure from fixation in the founder lines, grand-maternal effects (i.e. mitochondrial or W-linked) and Z-linked QTL were unlikely to give rise to any spurious parent-of-origin effects. The present results suggest that QTL with parent-of-origin specific expression are a plausible explanation for some reciprocal effects in poultry and deserve more attention. An intriguing hypothesis is whether these effects could be the result of genomic imprinting, which is often assumed to be unique to eutherian mammals.  相似文献   

20.
Infectious disease is an important problem for animal breeders, farmers and governments worldwide. One approach to reducing disease is to breed for resistance. This linkage study used a Charolais-Holstein F2 cattle cross population (n = 501) which was genotyped for 165 microsatellite markers (covering all autosomes) to search for associations with phenotypes for Bovine Respiratory Syncytial Virus (BRSV) specific total-IgG, IgG1 and IgG2 concentrations at several time-points pre- and post-BRSV vaccination. Regions of the bovine genome which influenced the immune response induced by BRSV vaccination were identified, as well as regions associated with the clearance of maternally derived BRSV specific antibodies. Significant positive correlations were detected within traits across time, with negative correlations between the pre- and post-vaccination time points. The whole genome scan identified 27 Quantitative Trait Loci (QTL) on 13 autosomes. Many QTL were associated with the Thymus Helper 1 linked IgG2 response, especially at week 2 following vaccination. However the most significant QTL, which reached 5% genome-wide significance, was on BTA 17 for IgG1, also 2 weeks following vaccination. All animals had declining maternally derived BRSV specific antibodies prior to vaccination and the levels of BRSV specific antibody prior to vaccination were found to be under polygenic control with several QTL detected.Heifers from the same population (n = 195) were subsequently immunised with a 40-mer Foot-and-Mouth Disease Virus peptide (FMDV) in a previous publication. Several of these QTL associated with the FMDV traits had overlapping peak positions with QTL in the current study, including the QTL on BTA23 which included the bovine Major Histocompatibility Complex (BoLA), and QTL on BTA9 and BTA24, suggesting that the genes underlying these QTL may control responses to multiple antigens. These results lay the groundwork for future investigations to identify the genes underlying the variation in clearance of maternal antibody and response to vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号