首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
QTLs for grain carbon isotope discrimination in field-grown barley   总被引:4,自引:4,他引:0  
In several crops including cereals, carbon isotope discrimination (Delta) has been associated with drought tolerance in terms of water-use efficiency and yield stability in drought-prone environments. By using a complete genetic map generated from 167 recombinant inbred lines from a cross between Tadmor and Er/Apm, QTLs associated with grain Delta have been detected in barley grown in three Mediterranean field environments, two differing only in water availability. Ten QTLs were identified: one was specific to one environment, two presented interaction with the environment, six presented main effects across three or two environments and one presented both effects. Heading date did not contribute to the environment (E) and G x E effects acting on Delta. Seasonal rainfall and the ratio of rainfall to evapo-transpiration made large contributions to the environmental effect, but their influence on G x E was weaker. Eight QTLs for Delta co-located with QTLs for physiological traits related to plant water status and/or osmotic adjustment, and/or for agronomic traits previously measured on the same population. Some perspectives in terms of characterising drought tolerance are evoked.  相似文献   

2.
A review is presented of genetic strategies deployed in a 3-yr project on drought tolerance in barley. Data were collected on genetic, physiological and agronomic traits in non-irrigated and irrigated field trials in Egypt, Morocco and Tunisia. A wide range of barley germplasm (developed from African and European cultivars, adapted landraces and wild barleys) was tested, and positive traits were found in each gene pool. The contrasting environments of the three North African countries had major effects on plant/genotype performance. Genetic effects were also detected, as were genotype × environment interactions. A range of strategies were deployed to investigate the physiology and genetics of quantitative traits associated with field performance. Quantitative trait locus (QTL) analysis was performed using backcross lines, recombinant inbred lines and doubled haploid mapping populations. A detailed genetic map was generated in the Tadmor × (ER/Apm) recombinant inbred lines, an important mapping population specifically developed by ICARDA (Centre for Agricultural Research in Dry Areas) and CIMMYT (International Maize and Wheat Improvement Center) to study drought. Quantitative trait loci (QTLs) for grain yield and other important morphological and physiological traits were also identified in a population of doubled haploids derived from F2BCj plants from a cross between a cultivar and a wild barley accession. Significantly, the wild parental line was found to contribute a number of positive alleles for yield. Effects of major developmental genes could explain many of the responses observed. QTLs were found to cluster around major genes controlling flowering time (sghI), plant stature (sdwI and arie.GP) and ear type (vrsl), and it is highly likely that the associations represent pleiotropic effects. Some QTLs were associated with candidate genes such as dehydrins and rubisco activase. One of the most significant results was the identification and generation of material that out performed the best local standards in the three participating North African countries; the selected lines have now entered local breeding programmes. The strategies adopted provided information on physiological traits, genotypes and genetic markers that could be used for marker-assisted selection. Target QTLs and their associated genetic markers may be deployed in marker assisted selection programmes to match crop phenology to the field environment.  相似文献   

3.

Key message

Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments.

Abstract

The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred line (RIL) population, ARKE derived from the Syrian barley landrace, Arta and the Australian feed cultivar, Keel. The population was field tested for agronomic performance at two locations in Syria for 4 years with two sowing dates, in autumn and winter. Genotypic variability in yield of the RIL population was mainly affected by year-to-year variation presumably caused by inter-annual differences in rainfall distribution. The spring growth habit and early flowering inherited from the Australian cultivar Keel increased plant height and biomass and improved yield stability in Syrian environments. QTL for yield and biomass coincided with the map location of flowering time genes, in particular the vernalisation genes Vrn-H1 and Vrn-H2. In marginal environments with terminal drought, the Vrn-H1 allele inherited from Keel improved final biomass and yield. Under changing climate conditions, such as shorter winters, reduced rainfall, and early summer drought, spring barley might thus outperform the traditional vernalisation-sensitive Syrian landraces. We present the ARKE population as a valuable genetic resource to further elucidate the genetics of drought adaptation of barley in the field.  相似文献   

4.
In order to identify quantitative trait loci (QTLs) controlling agronomic trait variation and their consistency under Mediterranean conditions in barley, a progeny of 167 recombinant inbred lines (RILs) and the parents Tadmor and Er/Apm, originating from the Mediterranean basin, were grown under Mediterranean conditions in 1995, 1996, 1997 and 1999. For the 2 first years (M95 and G96), one replicate was grown, but for the latter (M97 and M99) two rainfed (rain) and two irrigated (ir) replicates were produced. M95, G96, M97rain, M97ir, M99rain and M99ir were considered as six different environments and were compared in terms of their meteorological conditions and water supply. Grain yield and yield components were assessed, as well as heading date and plant height. Highly significant differences were noted between environments. QTLs were obtained from each environment separately and from a multiple environment analysis (simple interval mapping and simplified composite interval mapping). Despite heterogeneity between environments, numerous QTLs were common to several environments. This was particularly true for traits like plant height and thousand-grain weight. The most reliable QTLs which explained the largest part of the phenotypic variation were obtained for plant height on chromosomes 3 (3H) and 6 (6H). The multiple-environment analysis provided an opportunity to identify consistent QTLs for agronomic traits over six Mediterranean environments. A total of 24 consistent QTLs were detected. Out of these, 11 presented main effects, seven presented QTL×E interaction, and six presented both effects. In addition, 18 of the consistent QTLs were common to other published work and six seemed specific to this study. These latter QTLs could be involved in Mediterranean adaptive specificities or could be specific to the studied genetic background. Finally, when the rainfed and the irrigated environments of M97 were considered separately, a total of 16 QTLs presenting main effects over the two water conditions were identified, whereas five QTLs seemed dependent on the water conditions. Received: 31 January 2001 / Accepted: 19 February 2001  相似文献   

5.
The expression of a quantitative phenotype can be controlled through genotype, environment and genotype by environment interaction effects. Further, genotype effects can be attributed to major genes, quantitative trait loci (QTL) and gene by gene interactions, which are also termed epistatic interactions. The present study demonstrates that two-way epistatic interactions can play an important role for the expression of domestication-related traits like heading date, plant height and yield. In the BC2DH population S42, carrying wild barley introgressions in the genetic background of the spring barley cultivar Scarlett, 13, 8 and 12 marker by marker interaction effects could be detected for the traits heading date, plant height and yield, respectively. Significant allelic combinations at interacting loci coincided for heading date, plant height and yield suggesting the presence of pleiotropic effects rather than several linked QTL. The mode of epistasis observed was primarily characterised by either (1) compensatory effects, where allelic combinations from the same genotype buffered the phenotype, or (2) augmented effects, where only the combination of the exotic allele at both interacting loci caused an altered phenotype. The present study shows that estimates of main effects of QTL can be confounded by interactions with background loci, suggesting that the identification of epistatic effects is important for gene cloning and marker-assisted selection. Furthermore, interaction effects between loci and putative candidate genes detected in the present study reveal potential functional relationships, which can be used to further elucidate gene networks in barley.  相似文献   

6.
Rice double-haploid (DH) lines of an indica and japonica cross were grown at nine different locations across four countries in Asia. Genotype-by-environment (G x E) interaction analysis for 11 growth- and grain yield-related traits in nine locations was estimated by AMMI analysis. Maximum G x E interaction was exhibited for fertility percentage number of spikelets and grain yield. Plant height was least affected by environment, and the AMMI model explained a total of 76.2% of the interaction effect. Mean environment was computed by averaging the nine environments and subsequently analyzed with other environments to map quantitative trait loci (QTL). QTL controlling the 11 traits were detected by interval analysis using mapmaker/qtl. A threshold LOD of >/=3.20 was used to identify significant QTL. A total of 126 QTL were identified for the 11 traits across nine locations. Thirty-four QTL common in more than one environment were identified on ten chromosomes. A maximum of 44 QTL were detected for panicle length, and the maximum number of common QTL were detected for days to heading detected. A single locus for plant height (RZ730-RG810) had QTL common in all ten environments, confirming AMMI results that QTL for plant height were affected the least by environment, indicating the stability of the trait. Two QTL were detected for grain yield and 19 for thousand-grain weight in all DH lines. The number of QTL per trait per location ranged from zero to four. Clustering of the QTL for different traits at the same marker intervals was observed for plant height, panicle number, panicle length and spikelet number suggesting that pleiotropism and or tight linkage of different traits could be the possible reason for the congruence of several QTL. The many QTL detected by the same marker interval across environments indicate that QTL for most traits are stable and not essentially affected by environmental factors.  相似文献   

7.
Drought is a major abiotic stress limiting rice production and yield stability in rainfed ecosystems. Identifying quantitative trait loci (QTL) for rice yield and yield components under water limited environments will help to develop drought resilient cultivars using marker assisted breeding (MAB) strategy. A total of 232 recombinant inbred lines of IR62266/Norungan were used to map QTLs for plant phenology and production traits under rainfed condition in target population of environments. A total of 79 QTLs for plant phenology and production traits with phenotypic variation ranging from 4.4 to 72.8% were detected under non-stress and drought stress conditions across two locations. Consistent QTLs for phenology and production traits were detected across experiments and water regimes. The QTL region, RM204-RM197-RM217 on chromosome 6 was linked to days to 50% flowering and grain yield per plant under both rainfed and irrigated conditions. The same genomic region, RM585-RM204-RM197 was also linked to harvest index under rainfed condition with positive alleles from Norungan, a local landrace. QTLs for plant production and drought resistance traits co-located near RM585-RM204-RM197-RM217 region on chromosome 6 in several rice genotypes. Thus with further fine mapping, this region may be useful as a candidate QTL for MAB, map-based cloning of genes and functional genomics studies for rainfed rice improvement.  相似文献   

8.
Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.  相似文献   

9.
Drought is a major stress which can seriously limit yield in many crops including barley. Wild barley introgression lines (ILs) like the S42IL library may enhance drought stress tolerance of barley cultivars through the introduction of exotic alleles. The S42IL library was already characterized with 636 Illumina SNPs. New approaches like genotyping by sequencing (GBS) are available for barley to enhance the characterization of ILs. We generated an improved genetic map of the S42IL library, consisting of 4,201 SNPs by adding GBS data. The new map with a total length of 989.2 cM confirmed the extent of wild barley introgressions. Adding GBS data increased the resolution of the S42IL map tenfold from 0.4 to 4.2 markers/cM. This may assist to select possible candidate genes that improve drought tolerance. In four greenhouse experiments, juvenile drought stress response of 52 barley S42ILs was tested to identify quantitative trait loci (QTL). Thirteen S42ILs showed effects for plant biomass and leaf senescence. Subsequently, two verification experiments were conducted with these S42ILs. Nine out of eleven QTL were verified, and 22 additional QTL were detected. For 21 QTL, the Hsp allele increased trait performance, indicating the value of wild barley introgressions. For example, S42IL-107 and S42IL-123 produced more biomass under drought. Two different water-saving strategies were observed. S42IL-143 and S42IL-129 both revealed increased relative water content under drought. While S42IL-143 reduced biomass under drought, S42IL-129 maintained a high biomass production. We recommend using S42IL-107, S42IL-123 and S42IL-129 in barley breeding programs to enhance drought tolerance.  相似文献   

10.
Stability of grain yield performance is an important characteristic in the selection of new crop cultivars. Information from cultivar trials, however, is seldom fully analysed for genotype by environment interactions and, therefore, information on stability of current crop cultivars is lacking. The objectives of this study were to investigate the stability of agronomic traits among genotypes of barley (Hordeum vulgare) across 17 environments (location‐years) in Maryland (USA) from 1994 through 1997 and to examine the effect of locations and years of testing on grain yield performance in this region. Significant differences were observed among barley cultivars and experimental lines for grain yield, plant height, and heading date. Grain yield was positively correlated with plant height and negatively correlated with heading date. Genotype x environment interactions measured through regression analysis were significant for grain yield, heading date and plant height, with the environmental component having the largest effect. Most barley genotypes tested (90%) had regression slopes for grain yield that did not differ from 1.0, indicating good potential for yield response under improving environmental conditions. The most widely grown cultivar in the mid‐Atlantic region, ‘Nomini’, had a regression slope that was higher than 1.0 for grain yield. This indicates that it tends to respond with increasingly higher yields under favorable conditions. In this study, the slope and the standard error of the slope were moderately correlated with grain yield. The genotype's coefficient of variation was not a good indicator of stability for this region. Grain yields of genotype entries common to all years and locations were correlated with corresponding yields at each of the locations and years to assess the relative performance of each location and year. Correlation coefficients across locations were relatively high (r=0.64) within each year of testing. Correlations between years for the same and across locations were generally much lower. The data presented here supports a testing program over more years rather than increased locations to fully characterise the performance of new cultivars.  相似文献   

11.
A better understanding of the genetics of complex traits, such as yield, may be achieved by using molecular tools. This study was conducted to estimate the number, genome location, effect and allele phase of QTLs determining agronomic traits in the two North American malting barley (Hordeum vulgare L.) quality variety standards. Using a doubled haploid population of 140 lines from the cross of two-rowed Harrington×six-rowed Morex, agronomic phenotypic data sets from nine environments, and a 107-marker linkage map, we performed QTL analyses using simple interval mapping and simplified composite interval mapping procedures. Thirty-five QTLs were associated, either across environments or in individual environments, with five grain and agronomic traits (yield, kernel plumpness, test weight, heading date, and plant height). Significant QTL×environment interaction was detected for all traits. These interactions resulted from both changes in the magnitude of response and changes in the sign of the allelic effect. QTLs for multiple traits were coincident. The vrs1 locus on chromosome 2 (2H), which determines inflorescence row type, was coincident with the largest-effect QTL determining four traits (yield, kernel plumpness, test weight, and plant height). QTL analyses were also conducted separately for each sub-population (six-rowed and two-rowed). Seven new QTLs were detected in the sub-populations. Positive transgressive segregants were found for all traits, but they were more prevalent in the six-rowed sub-population.QTL analysis should be useful for identifying candidate genes and introgressing favorable alleles between germplasm groups. Received: 18 August 2000 / Accepted: 15 December 2000  相似文献   

12.
Drought is a major limiting factor for barley production, especially in the primary areas of its cultivation. Wild barley represents a major source of favourable alleles for increasing the genetic variation for multiple traits including resistance to both biotic and abiotic stresses. We used advanced backcross quantitative trait locus (AB-QTL) analysis of a BC3-doubled haploid population developed between the cultivated parent Brenda (Hordeum vulgare ssp. vulgare) and the wild accession HS584 (H. vulgare ssp. spontaneum) to study the contribution of wild barley in improving various agronomic and seed quality traits under post-anthesis drought. The experiment was carried out at two different locations (IPK, Gatersleben and Nordsaat, Böhnshausen) and terminal drought was imposed by withholding water or spraying with potassium iodide at 10 days after flowering under greenhouse or field conditions, respectively. QTL analysis indicated that wild barley contributed favourably to most of the traits studied under both control and drought conditions. A total of seven hot-spot QTL regions with co-localizing QTL for various traits harboured more than 80 % of the stable QTL detected in the present study. For yield and thousand-grain weight and their respective drought tolerance indices, most of the QTL were derived from Brenda. On the other hand, for traits like seed length and seed nitrogen content, all the QTL were contributed by HS584, the parent having higher trait value. A significantly reduced carbon/nitrogen (C/N) ratio in the selected contrasting inferior lines compared to superior ones suggests that C/N ratio could be a potential parameter for screening not just seed quality parameters but also grain weight performance under terminal drought.  相似文献   

13.
One hundred and forty six barley doubled-haploid lines (DH lines) were tested for variation in grain yield, yield components, plant height, and heading date after artificial infection with a German isolate of barley yellow dwarf virus (BYDV-PAV-Braunschweig). Of these 146 lines 76 were derived from the cross of the barley yellow dwarf virus (BYDV) tolerant cultivar ’Post’ to cv ’Vixen’ (Ryd2) and 70 from the cross of Post to cv ’Nixe’. Phenotypic measurements were gathered on both non-infected plants and plants artificially inoculated with BYDV-PAV by viruliferous aphids in pot and field experiments for three years at two locations. For all traits a continuous variation was observed suggesting a quantitative mode of inheritance for tolerance against BYDV-PAV. Using skeleton maps constructed using SSRs, AFLPs and RAPDs, two QTLs for relative grain yield per plant after BYDV infection, explaining about 47% of the phenotypic variance, were identified in Post × Vixen at the telomeric region of chromosome 2HL and at a region containing the Ryd2 gene on chromosome 3HL. In Post × Nixe, a QTL was found in exactly the same chromosome 2HL marker interval. In this cross, additional QTL were mapped on chromosomes 7H and 4H and together these explained about 40% of the phenotypic variance. QTL for effects of BYDV infection on yield components, plant height, and heading date generally mapped to the same marker intervals, or in the vicinity of the QTL for relative grain yield, on chromosomes 2HL and 3HL, suggesting that these regions are of special importance for tolerance to the Braunschweig isolate of BYDV-PAV. Possible applications of marker-assisted selection for BYDV tolerance based on these results are discussed. Received: 1 December 2000 / Accepted: 9 March 2001  相似文献   

14.
Drought is a major abiotic stress factor limiting rice production in rainfed areas. In this study we identified a large-effect quantitative trait locus (QTL) associated with grain yield under stress in five different populations on chromosome 1. The effect of this QTL was further confirmed and characterized in five backcross populations in a total of sixteen stress and non-stress trials during 2006 and 2008. In all the stress trials (eight in total) qDTY1.1 showed strong association with grain yield explaining on average 58% of the genetic variation in the trait. Homozygotes for the tolerant parent allele (Apo) yielded on average 27% more than the susceptible parent allele (IR64) homozygotes. Using an Apo/3*IR64 population, the peak of this QTL (qDTY1.1) was mapped to an interval between RM486 and RM472 at 162.8?cM at a LOD score of 9.26. qDTY1.1 was strongly associated with plant height in all the environments; this was probably due to the presence of the sd1 locus in this genomic region. In a Vandana/3*IR64 population segregating for sd1, a strong relation between plant height and yield under stress was observed. The observed relation between increased height and drought tolerance is likely due to tight linkage between qDTY1.1 and sd1 and not due to pleiotrophy of sd1. Thus there is a possibility of combining reduced plant height and drought tolerance in rice. The large and consistent effect of qDTY1.1 across several genetic backgrounds and environments makes it a potential strong candidate for use in molecular breeding of rice for drought tolerance.  相似文献   

15.
Drought has become more frequent in Central Europe causing large losses in cereal yields, especially of spring crops. The development of new varieties with increased tolerance to drought is a key tool for improvement of agricultural productivity. Material for the study consisted of 100 barley recombinant inbred lines (RILs) (LCam) derived from the cross between Syrian and European parents. The RILs and parental genotypes were examined in greenhouse experiments under well-watered and water-deficit conditions. During vegetation the date of heading, yield and yield-related traits were measured. RIL population was genotyped with microsatellite and single nucleotide polymorphism markers. This population, together with two other populations, was the basis for the consensus map construction, which was used for identification of quantitative trait loci (QTLs) affecting the traits. The studied lines showed a large variability in heading date. It was noted that drought-treatment negatively affected the yield and its components, especially when applied at the flag leaf stage. In total, 60 QTLs were detected on all the barley chromosomes. The largest number of QTLs was found on chromosome 2H. The main QTL associated with heading, located on chromosome 2H (Q.HD.LC-2H), was identified at SNP marker 5880–2547, in the vicinity of Ppd-H1 gene. SNP 5880–2547 was also the closest marker to QTLs associated with plant architecture, spike morphology and grain yield. The present study showed that the earliness allele from the Syrian parent, as introduced into the genome of an European variety could result in an improvement of barley yield performance under drought conditions.  相似文献   

16.
Spring radiation frost is a major abiotic stress in southern Australia, reducing yield potential and grain quality of barley by damaging sensitive reproductive organs in the latter stages of development. Field-based screening methods were developed, and genetic variation for reproductive frost tolerance was identified. Mapping populations that were segregating for reproductive frost tolerance were screened and significant QTL identified. QTL on chromosome 2HL were identified for frost-induced floret sterility in two different populations at the same genomic location. This QTL was not associated with previously reported developmental or stress-response loci. QTL on chromosome 5HL were identified for frost-induced floret sterility and frost-induced grain damage in all three of the populations studied. The locations of QTL were coincident with previously reported vegetative frost tolerance loci close to the vrn-H1 locus. This locus on chromosome 5HL has now been associated with response to cold stress at both vegetative and reproductive developmental stages in barley. This study will allow reproductive frost tolerance to be seriously pursued as a breeding objective by facilitating a change from difficult phenotypic selection to high-throughput genotypic selection.  相似文献   

17.

Background

Drought and salinity are two major abiotic stresses that severely limit barley production worldwide. Physiological and genetic complexity of these tolerance traits has significantly slowed the progress of developing stress-tolerant cultivars. Marker-assisted selection (MAS) may potentially overcome this problem. In the current research, seventy two double haploid (DH) lines from a cross between TX9425 (a Chinese landrace variety with superior drought and salinity tolerance) and a sensitive variety, Franklin were used to identify quantitative trait loci (QTL) for drought and salinity tolerance, based on a range of developmental and physiological traits.

Results

Two QTL for drought tolerance (leaf wilting under drought stress) and one QTL for salinity tolerance (plant survival under salt stress) were identified from this population. The QTL on 2H for drought tolerance determined 42% of phenotypic variation, based on three independent experiments. This QTL was closely linked with a gene controlling ear emergency. The QTL on 5H for drought tolerance was less affected by agronomic traits and can be effectively used in breeding programs. A candidate gene for this QTL on 5H was identified based on the draft barley genome sequence. The QTL for proline accumulation, under both drought and salinity stresses, were located on different positions to those for drought and salinity tolerance, indicating no relationship with plant tolerance to either of these stresses.

Conclusions

Using QTL mapping, the relationships between QTL for agronomic and physiological traits and plant drought and salinity tolerance were studied. A new QTL for drought tolerance which was not linked to any of the studied traits was identified. This QTL can be effectively used in breeding programs. It was also shown that proline accumulation under stresses was not necessarily linked with drought or salinity tolerance based on methods of phenotyping used in this experiment. The use of proline content in breeding programs can also be limited by the accuracy of phenotyping.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1243-8) contains supplementary material, which is available to authorized users.  相似文献   

18.
Drought stress during the reproductive stage is one of the most important environmental factors reducing the grain yield and yield stability of pearl millet. A QTL mapping approach has been used in this study to understand the genetic and physiological basis of drought tolerance in pearl millet and to provide a more-targeted approach to improving the drought tolerance and yield of this crop in water-limited environments. The aim was to identify specific genomic regions associated with the enhanced tolerance of pearl millet to drought stress during the flowering and grain-filling stages. Testcrosses of a set of mapping-population progenies, derived from a cross of two inbred pollinators that differed in their response to drought, were evaluated in a range of managed terminal drought-stress environments. A number of genomic regions were associated with drought tolerance in terms of both grain yield and its components. For example, a QTL associated with grain yield per se and for the drought tolerance of grain yield mapped on linkage group 2 and explained up to 23% of the phenotypic variation. Some of these QTLs were common across stress environments whereas others were specific to only a particular stress environment. All the QTLs that contributed to increased drought tolerance did so either through better than average maintenance (compared to non-stress environments) of harvest index, or harvest index and biomass productivity. It is concluded that there is considerable potential for marker-assisted backcross transfer of selected QTLs to the elite parent of the mapping population and for their general use in the improvement of pearl millet productivity in water-limited environments. Received: 15 November 2000 / Accepted: 12 April 2001  相似文献   

19.
Drought is a major constraint to rice (Oryza sativa) yield and its stability in rainfed and poorly irrigated environments. Identifying genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and development of more drought tolerant cultivars. Quantitative trait loci (QTL) for grain yield and its components and other agronomic traits were identified using a subset of 154 doubled haploid lines derived from a cross between two rice cultivars, CT9993-510 to 1-M and IR62266-42 to 6-2. Drought stress treatments were managed by use of a line source sprinkler irrigation system, which provided a linearly decreasing level of irrigation coinciding with the sensitive reproductive growth stages. The research was conducted at the Ubon Rice Research Center, Ubon, Thailand. A total of 77 QTL were identified for grain yield and its components under varying levels of water stress. Out of the total of 77 QTL, the number of QTL per trait were: 7-grain yield (GY); 8-biological yield (BY); 6-harvest index (HI); 5-d to flowering after initiation of irrigation gradient (DFAIG); 10-total spikelet number (TSN); 7-percent spikelet sterility (PSS); 23-panicle number (PN); and 11-plant height (PH). The phenotypic variation explained by individual QTL ranged from 7.5% to 55.7%. Under well-watered conditions, we observed a high genetic association for BY, HI, DFAIG, PSS, TSN, PH, and GY. However, only BY and HI were found to be significantly associated with GY under drought treatments. QTL flanked by markers RG104 to RM231, EMP2_2 to RM127, and G2132 to RZ598 on chromosomes 3, 4, and 8 were associated with GY, HI, DFAIG, BY, PSS, and PN under drought treatments. The aggregate effects of these QTL on chromosomes 3, 4, and 8 resulted in higher grain yield. These QTL will be useful for rainfed rice improvement, and will also contribute to our understanding of the genetic control of GY under drought conditions at the sensitive reproductive stage. Close linkage or pleiotropy may be responsible for the coincidence of QTL detected in this experiment. Digenic interactions between QTL main effects for GY, BY, HI, and PSS were observed under irrigation treatments. Most (but not all) DH lines have the same response in measure of productivity when the intensity of water deficit was increased, but no QTL by irrigation treatment interaction was detected. The identification of genomic regions associated with GY and its components under drought stress will be useful for marker-based approaches to improve GY and its stability for farmers in drought-prone rice environments.  相似文献   

20.
Community genetic studies generally ignore the plasticity of the functional traits through which the effect is passed from individuals to the associated community. However, the ability of organisms to be phenotypically plastic allows them to rapidly adapt to changing environments and plasticity is commonly observed across all taxa. Owing to the fitness benefits of phenotypic plasticity, evolutionary biologists are interested in its genetic basis, which could explain how phenotypic plasticity is involved in the evolution of species interactions. Two current ideas exist: (i) phenotypic plasticity is caused by environmentally sensitive loci associated with a phenotype; (ii) phenotypic plasticity is caused by regulatory genes that simply influence the plasticity of a phenotype. Here, we designed a quantitative trait loci (QTL) mapping experiment to locate QTL on the barley genome associated with barley performance when the environment varies in the presence of aphids, and the composition of the rhizosphere. We simultaneously mapped aphid performance across variable rhizosphere environments. We mapped main effects, QTL × environment interaction (QTL×E), and phenotypic plasticity (measured as the difference in mean trait values) for barley and aphid performance onto the barley genome using an interval mapping procedure. We found that QTL associated with phenotypic plasticity were co-located with main effect QTL and QTL×E. We also located phenotypic plasticity QTL that were located separately from main effect QTL. These results support both of the current ideas of how phenotypic plasticity is genetically based and provide an initial insight into the functional genetic basis of how phenotypically plastic traits may still be important sources of community genetic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号