首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have shown that intracellular cGMP levels increase during retinoic acid- and mycophenolic acid-induced neuroblastoma differentiation and that a 6 days treatment with 1 mM dbcGMP lead LAN5 cell to elaborate a network of neuritic processes suggesting an involvement of cGMP in neuroblastoma differentiation. We have also investigated the effects of some specific inhibitors of phosphodiesterases (PDE1, PDE3, PDE4 and PDE5) on human neuroblastoma (LAN5 and SHEP) growth and differentiation. After six days of incubation in the presence of each specific inhibitor at 10 x IC50 levels a cytostatic and differentiating effect was only observed with the PDE5 inhibitors Zaprinast and MY-5445. The cytostatic effect of these compounds increased increasing their concentrations far above their IC50 levels for PDE5, suggesting that these compounds could act by interfering with other molecular events than direct cGMP-PDE inhibition. No appreciable effect was observed using Dipyridamole, another specific PDE5 inhibitor.  相似文献   

2.
Growth induction in resting fibroblast cultures by serum or growth factors induces a fast, transient cGMP peak which may constitute the intracellular signal for growth. A similar cGMP peak occurs when 3T3 cells arrested at the restriction point or in G0 by starvation for certain amino acids are induced for growth by readdition of the lacking nutrients. Both 3T3 and SV3T3 cells which are arrested randomly all around the cell cycle do not exhibit major changes in cyclic nucleotides after growth induction. Determination of intracellular cAMP and cGMP levels in normal and transformed fibroblasts under different growth conditions shows that the transition between growing and resting state (G0 arrest) is accompanied and probably induced by characteristic changes in cAMP to cGMP ratios. cGMP is decreased 2-5-fold in resting as compared to growing cultures, and increased 10-20-fold in activated cultures 20 min after serum induction. No major cGMP change was observed in growing, confluent, or serum-activated cultures of transformed cells. Measurement of guanylcyclase under unphysiological conditions (2 mM Mn++) in crude and purified membranes from 3T3 and SV3T3 cultures did not show increased enzyme activity in the transformed cells. Significant differences may only show up when synchronized cells pass through the restriction point in G1 phase. As a hypothesis it is proposed that transformed cells have an activated guanylcyclase system or a relaxed cGMP-pleiotypic response mechanism at the restriction point of their cell cycle.  相似文献   

3.
Summary The organ culture technique was used for the study of early cytodifferentiation in explanted rat and mouse embryonic shields. After 15 daysin vitro the main tissues were differentiated in explants. The full differentiation depended on the presence of homologous serum in the culture medium. 95% oxygen in the atmosphere was either deleterious or without measurable effect if introduced from the beginning or toward the end of the cultivation period, respectively. Some chemically defined media supported the development for only a limited time span during the initial period of cultivation.This investigation was partly supported by NIH PL 480 Research Agreement No. 02-138-1.  相似文献   

4.
5.
6.
7.
Although local epithelial-mesenchymal tissue interactions which are presumably mediated by extracellular matrix molecules are important regulators of tooth morphogenesis and differentiation, our studies have indicated that these developmental processes also depend on circulating molecules. The iron-carrying serum protein transferrin is necessary for the early morphogenesis of mouse tooth in organ culture (A-M. Partanen, I. Thesleff, and P. Ekblom, 1984, Differentiation 27, 59-66). In the present study we have examined the effects of other growth factors on mouse tooth germs grown in a chemically defined medium containing transferrin. Fibroblast growth factor and platelet derived growth factor had no detectable effects but epidermal growth factor (EGF) inhibited dramatically the morphogenesis of teeth, and prevented odontoblast and ameloblast cell differentiation. EGF stimulated cell proliferation in the explants measured as [3H]thymidine incorporation in DNA. However, when the distribution of dividing cells was visualized in autoradiographs, it was observed that cell proliferation was stimulated in the dental epithelium but was inhibited in the dental mesenchyme. The inhibition of cell proliferation in the dental mesenchyme apparently caused the inhibition of morphogenesis. We do not know whether the dental epithelium or mesenchyme was the primary target for the action of EGF in the inhibition of morphogenesis. It is, however, apparent that the response of the dental mesenchymal cells to EGF (inhibition of proliferation) is regulated by their local environment, since EGF enhanced proliferation when these cells were disaggregated and cultured as monolayers. This indicates that the organ culture system where the various embryonic cell lineages are maintained in their original environment corresponds better to the in vivo situation when the roles of exogenous growth factors during development are examined.  相似文献   

8.
Conflicting results have been published concerning the effects of cyclic nucleotides on amphibian cell differentiation. Here we report the effects of cyclic adenosine monophosphate (cAMP) and dibutyryl-cyclic adenosine monophosphate (db-cAMP) on isolated explants from late blastulae of Ambystoma mexicanum and Xenopus laevis. Both cAMP and db-cAMP (10(-4)-10(-9) M) promote 'neuralizing' differentiation in Ambystoma explants. Xenopus explants treated with the nucleotides (10(-4), 10(-6), 10(-8) M) LiCl or heparan sulphate only give rise to ciliated aggregates or dissociation. The results confirm observations that different amphibian species react in different ways to activating chemicals.  相似文献   

9.
Summary Embryonic heart cells undergo cyclic strain as the developing heart circulates blood to the embryo. Cyclic strain may have an important regulatory role in formation of the adult structure. This study examines the feasibility of a computerized cell-stretching device for applying strain to embryonic cardiocytes to allow measurement of the cellular response. A primary coculture of myocytes and a secondary culture of nonmyocytes from stage-31 (7 d) embryonic chick hearts were grown on collagen-coated membranes that were subsequently strained at 2 Hz to 20% maximal radial strain. After 24 h, total cell number increased by 37±6% in myocyte cocultures and by 26±6% in nonmyocyte cultures over unstrained controls. Lactate dehydrogenase and apoptosis assays showed no significant differences in cell viabilities between strained and unstrained cells. After 2 h strain, bromodeoxyuridine incorporation was 38±1.2% versus 19±0.2% (P<0.01) in strained versus unstrained myocyte cocultures, and 35±2.1% versus 16±0.2% (P=0.01) in nonmyocyte cultures. MF20 antibody labeling and periodic acid-Schiff (PAS) staining estimated the number of myocytes in strained wells as 50–67% larger than in control wells. Tyrosine phosphorylation may play a role in the cellular response to strain, as Western blot analysis showed an increase in tyrosine phosphorylation of two proteins with approximate molecular weights of 63 and 150 kDa within 2 min of strain. The results of this study indicate that embryonic chick cardiocytes can be cultured in an active mechanical environment without significant detachment and damage and that increased proliferation may be a primary response to strain.  相似文献   

10.
11.
Considerable changes in concentrations of cAMP and cGMP and in the CAMPOcGMP ratio were found in the thymus and blood plasma of rats subjected to long-term irradiation at cumulative doses of 10 to 20 Gy. This might be a manifestation of adaptation reactions that develop in response to the effect of ionizing radiation.  相似文献   

12.
R I Garcia  I Werner  G Szabo 《In vitro》1979,15(10):779-788
Chicken embryo retinal pigment cells cultured for 2 weeks in 1 or 10 microns BrdU accumulate only 25% of the amount of melanin found in controls. Growth is inhibited by 10 microns BrdU but not by 1 micron BrdU. Cells cultured with BrdU had decreased tyrosinase activity and lost the typical epithelial appearance of controls. Equimolar concentrations of deoxythymidine did not prevent the inhibition of melanogenesis due to BrdU but did prevent the growth inhibition of the higher concentration of BrdU (10 microns). Tenfold higher concentrations of deoxythymidine prevented inhibition of epithelial differentiation and melanogenesis. Ultrastructurally, BrdU produced an absence of melanosomes and disruption of the lamellar array of rough endoplasmic reticulum. The perinuclear arrangement of microfilaments became irregular. The cell surface was radically affected as membranes were no longer ruffled and cell junctions disappeared. Melanogenesis is a complex form of differentiated function, involving synthesis of tyrosinase and control of its activity, macromolecular synthesis of the melanosome, and the subsequent synthesis of melanin within the melanosome. BrdU appears to inhibit melanogenesis through a coordinated and simultaneous interference with these processes, suggesting that there may be a "program" of gene activity for melanogenesis that is regulated as a unit.  相似文献   

13.
14.
Summary Some effects of culturing adult rat hepatocytes on each of four different substrates—laminin (LN), collagen type I (C-I), collagen type IV (C-IV), and fibronectin (FN)—have been investigated under defined conditions. No differential effect on the attachment of the cells to the various substrates was noted; however, the spreading of hepatocytes shortly after initial plating was most strikingly enhanced by FN, whereas LN exhibited little or no such enhancement. The two collagen substrates enhanced the spreading of hepatocytes more than did LN, but less than FN. The different substrates had no differential effect on the induction of tyrosine aminotransferase by dexamethasone and glucagon for at least the first 10 d in culture. The longevity of the hepatocytes was not changed significantly by any of the substrates, at least through the 14th d of culture. During the culture periods the hepatocytes at high cell density were maintained as confluent monolayers, regardless of the substrate on which they had been cultured. After 14 d of culture, γ-glutamyltranspeptidase activity was highest in cells cultured on C-IV, and lowest in those on FN. DNA synthesis in cultured hepatocytes at a low cell density was highest in cells cultured on FN, with decreasing levels of this parameter in cells cultured on C-IV, C-I, and LN, respectively. These results demonstrate that specific components of the extracellular matrix modulate both differentiated functions and the replication of hepatocytes cultured in serum-free medium. This work was supported in part by grants (CA-07175, CA-09135, CA-22484) from the National Cancer Institute, Bethesda MD. N. Sawada was supported by a Cancer Research Campaign Grant D (U.K.) from the International Union Against Cancer.  相似文献   

15.
16.
17.
Dexamethasone can promote the differentiation of different tissues in vivo while dimethylsulfoxide is a commonly used inducer of differentiation in various tumor cell types in culture. In the present study, the effects of dexamethasone and dimethylsulfoxide on growth and functional activities of cultured differentiating suckling rat hepatocytes stimulated with various combinations of EGF, insulin, and glucagon were evaluated. Hepatocytes stimulated with EGF and either insulin or glucagon entered S phase and mitosis after a lag period of 24 h. These hormonal factors thus provide simple combinations of hepatocyte-growth regulators. Dexamethasone in the presence of EGF and glucagon inhibited the initiation of DNA synthesis and mitosis, but it had no effect on EGF-insulin stimulated cultures. Such a differential effect of dexamethasone was observed at concentrations ranging from 4 nM to 200 microM. alpha-Fetoprotein, albumin, and tyrosine aminotransferase were used as typical markers of hepatocyte differentiation status. Irrespective of the combinations of growth-promoting factors used, dexamethasone inhibited alpha 1-fetoprotein production and maintained albumin production and tyrosine aminotransferase inducibility. In contrast, dimethylsulfoxide at 2% inhibited hepatocyte growth and supported the maintenance of the production of both alpha 1-fetoprotein and albumin, independent of the hormonal growth regulators used. On this basis, dexamethasone and dimethylsulfoxide act as distinct modulators of growth and maturation of cultured differentiating suckling rat hepatocytes.  相似文献   

18.
Cyclic adenosine 3',5'-monophosphate (cAMP) has been implicated in the control of placental function. The present investigation was designed to evaluate the actions of cAMP analogues on the control of rat placental development. Two model systems were used to assess the actions of cAMP in the placenta: 1) a rat placental cell line and 2) rat labyrinth placental explants. Elevation of intracellular cAMP via treatment with cAMP analogues, 3-isobutyl-1-methylxanthine, forskolin, or cholera toxin inhibited placental cell DNA synthesis whereas treatment with an analogue to cyclic guanosine 3',5'-monophosphate was without effect. The inhibitory actions of dibutyryl cAMP on DNA synthesis were at least partially reversible and were not the result of metabolic toxicity. Dibutyryl cAMP had dramatic effects on the organization and morphology of placental cells growing in vitro and diminished the ability of the placental cells to grow following transplantation into allogeneic hosts. Differentiation-associated characteristics of rat placental cells were also affected by cAMP. cAMP analogues stimulated placental cell progesterone release and inhibited placental cell alkaline phosphatase activity. Dibutyryl cAMP had effects on placental labyrinth explants similar to its effects on the placental cell line. Dibutyryl cAMP inhibited explant outgrowth while stimulating explant release of progesterone. In summary, cAMP effectively modulates the growth and differentiation of rat placental cells in vitro.  相似文献   

19.
In vitro neuronal differentiation of cultured human embryonic germ cells   总被引:8,自引:0,他引:8  
Human embryonic germ (hEG) cells, which have been advanced as one of the most important sources of pluripotent stem cells [the other one being human embryonic stem cells], can be propagated in vitro indefinitely in the primitive undifferentiated state while being capable of developing into all three germ layer derivatives, hence have become anticipated developing novel strategies of tissue regeneration and transplantation in the treatment of degenerative diseases. In the experiments here, we derived hEG cells from cultured human primordial germ cells (PGCs) of 6- to 9-week-post-fertilization embryos. They satisfied the criteria previously used to define hEG cells, including the expression of markers characteristic of pluripotent cells-abundant alkaline phosphatase (AP) activity, stage specific embryonic antigen (SSEA)-1(+), SSEA-3(-), SSEA-4(+), TRA-1-60(+), TRA-1-81(+), Oct-4(+), and hTERT(+), the retention of normal karyotypes, and possessing pluripotency by forming embryoid bodies (EBs) in vitro. Furthermore, these derived cells tended to neurally differentiate in vitro, especially under high-density culture conditions. We successfully isolated neural progenitor cells from differentiating hEG cultures and about 10% cells induced by 2microM all-trans-retinoic acid (RA) or 0.1mM dibutyryl cyclic AMP (dbcAMP)/1mM forskolin to mature neurons expressing microtubule-associated protein 2ab (MAP2ab), synaptophysin, beta-tubulin III, neuron-specific enolase (NSE), tyrosine hydroxylase (TH), but no glial fibrillary acid protein (GFAP) and choline acetyl transferase (ChAT). The data suggested that hEG cells may provide a potential source of cells for use in transplantation therapy for neurological degenerative diseases.  相似文献   

20.
A review of the research on cyclic nucleotides and neuromuscular transmission suggests that cAMP is involved in the release of transmitter from motor nerve endings. Lipid-soluble derivations of cAMP cause depolarization of unstimulated nerve endings and prolong the after potentials of stimulated nerve endings. They also increase the frequency of miniature end plate potentials and increase the quantal content of stimulus evoked end plate potentials. Similar effects are produced by compounds that activate adenylate cyclase or inhibit phosphodiesterase. The responses to the derivatives of cAMP and activators of cyclase are enhanced by inhibitors of phosphodiesterase and prevented by compounds that block the flux of calcium into nerve endings. There is no evidence that suggests that cyclic nucleotides are involved in the postjunctional response to transmitter. Thus, it seems likely that cAMP is involved in the regulation of calcium in motor nerve endings and the exocytosis of transmitter. Additional study should expand our knowledge of neuromuscular transmission and contribute to an understanding of the functions of cyclic nucleotides in other synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号