首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The basal lamina (BM) contains numerous components with a predominance of type IV collagens. Clinical manifestations associated with mutations of the human COL4A1 gene include perinatal cerebral hemorrhage and porencephaly, hereditary angiopathy, nephropathy, aneurysms and muscle cramps (HANAC), ocular dysgenesis, myopathy, Walker–Warburg syndrome and systemic tissue degeneration. In Drosophila, the phenotype associated with dominant temperature sensitive mutations of col4a1 include severe myopathy resulting from massive degradation of striated muscle fibers, and in the gut, degeneration of circular visceral muscle cells and epithelial cells following detachment from the BM. In order to determine the consequences of altered BM functions due to aberrant COL4A1 protein, we have carried out a series of tests using Drosophila DTS-L3 mutants from our allelic series of col4a1 mutations with confirmed degeneration of various cell types and lowest survival rate among the col4a1 mutant lines at restrictive temperature. Results demonstrated epithelial cell degeneration in the gut, shortened gut, enlarged midgut with multiple diverticulae, intestinal dysfunction and shortened life span. Midgut immunohistochemistry analyses confirmed altered expression and distribution of BM components integrin PSI and PSII alpha subunits, laminin gamma 1, and COL4A1 both in larvae and adults. Global gene expression analysis revealed activation of the effector AMP genes of the primary innate immune system including Metchnikowin, Diptericin, Diptericin B, and edin that preceded morphological changes. Attacin::GFP midgut expression pattern further supported these changes. An increase in ROS production and changes in gut bacterial flora were also noted and may have further enhanced an immune response. The phenotypic features of Drosophila col4a1 mutants confirmed an essential role for type IV collagen in maintaining epithelial integrity, gut morphology and intestinal function and suggest that aberrant structure and function of the COL4A1 protein may also be a significant factor in modulating immunity.  相似文献   

2.
The 73AD salivary chromosome region of Drosophila melanogaster was subjected to mutational analysis in order to (1) generate a collection of chromosome breakpoints that would allow a correlation between the genetic, cytological and molecular maps of the region and (2) define the number and gross organization of complementation groups within this interval. Eighteen complementation groups were defined and mapped to the 73A2-73B7 region, which is comprised of 17 polytene bands. These complementation groups include the previously known scarlet (st), transformer (tra) and Dominant temperature-sensitive lethal-5 (DTS-5) genes, as well as 13 new recessive lethal complementation groups and one male and female sterile locus. One of the newly identified lethal complementation groups corresponds to the molecularly identified abl locus, and another gene is defined by mutant alleles that exhibit an interaction with the abl mutants. We also recovered several mutations in the 73C1-D1.2 interval, representing two lethal complementation groups, one new visible mutant, plucked (plk), and a previously known visible, dark body (db). There is no evidence of a complex of sex determination genes in the region near tra.  相似文献   

3.
4.
5.
C. Woodard  T. Huang  H. Sun  S. L. Helfand    J. Carlson 《Genetics》1989,123(2):315-326
A simple means of measuring Drosophila olfactory response is described, and the behavior which it measures is characterized. The assay was used to screen for X-linked mutants defective in olfactory function. Six ota mutants were isolated and characterized (ota = olfactory trap abnormal). Four of the mutants were found to be abnormal in another chemosensory behavior as well. Two of the mutant phenotypes extend to include another sensory system: they are defective in visual system physiology. All were normal, however, in a test of giant fiber system physiology. Two of the mutations are dominant, and the recessive mutations define two complementation groups. Mutations representing each complementation group, as well as one of the dominant mutations, were mapped. For the mutants with defective visual system physiology, the visual defects were shown to cosegregate with olfactory phenotypes.  相似文献   

6.
R. M. Cripps  E. Ball  M. Stark  A. Lawn    J. C. Sparrow 《Genetics》1994,137(1):151-164
To identify further mutations affecting muscle function and development in Drosophila melanogaster we recovered 22 autosomal dominant flightless mutations. From these we have isolated eight viable and lethal alleles of the muscle myosin heavy chain gene, and seven viable alleles of the indirect flight muscle (IFM)-specific Act88F actin gene. The Mhc mutations display a variety of phenotypic effects, ranging from reductions in myosin heavy chain content in the indirect flight muscles only, to reductions in the levels of this protein in other muscles. The Act88F mutations range from those which produce no stable actin and have severely abnormal myofibrillar structure, to those which accumulate apparently normal levels of actin in the flight muscles but which still have abnormal myofibrils and fly very poorly. We also recovered two recessive flightless mutants on the third chromosome. The remaining five dominant flightless mutations are all lethal alleles of a gene named lethal(3)Laker. The Laker alleles have been characterized and the gene located in polytene bands 62A10,B1-62B2,4. Laker is a previously unidentified locus which is haplo-insufficient for flight. In addition, adult wild-type heterozygotes and the lethal larval trans-heterozygotes show abnormalities of muscle structure indicating that the Laker gene product is an important component of muscle.  相似文献   

7.
Phenotypic reversion of ethanolamine-requiring Saccharomyces cerevisiae cho1 mutants is predominantly due to recessive mutations at genes unlinked to the chromosome V cho1 locus. The recessive suppressors do not correct the primary cho1 defect in phosphatidylserine synthesis but circumvent it with a novel endogenous supply of ethanolamine. One suppressor (eam1) was previously mapped to chromosome X, and 135 suppressor isolates were identified as eam1 alleles by complementation analysis. Additional meiotic recombination studies have identified a second genetic locus, eam2, that falls in the eam1 complementation group but maps close to the centromere of chromosome IV. Although the normal EAM1 and EAM2 alleles are fully dominant over recessive mutant alleles, their dominance fails in diploids heterozygous for defects in both genes simultaneously. The unusual complementation pattern could be explained by interaction of the gene products in formation of the same enzyme.  相似文献   

8.
Tunicamycin is a nucleoside antibiotic complex produced by Streptomyces lysosuperficus which inhibits glycosylation. Several mutants have been isolated in this laboratory that are resistant to tunicamycin, of which the majority are recessive and a few are dominant. The mutations are possibly due to some loss of transport function or alteration in the membrane. These recessive mutations have been mapped to chromosome 1 by the 2 mu mapping method. Studies are underway to map the dominant mutations as well and to group these mutations into its complementation groups and to characterize them biochemically. Both mating types of these mutant strains have been generated in our laboratory.  相似文献   

9.
SYK. Tiong  D. Nash 《Genetics》1990,124(4):889-897
The Gart gene of Drosophila melanogaster is known, from molecular biological evidence, to encode a polypeptide that serves three enzymatic functions in purine biosynthesis. It is located in polytene chromosome region 27D. One mutation in the gene (ade3(1)) has been described previously. We report here forty new ethyl methanesulfonate-induced mutations selected aga!nst a synthetic deficiency of the region from 27C2-9 to ++28B3-4. The mutations were characterized cytogenetically and by complementation analysis. The analysis apparently identifies 12 simple complementation groups. In addition, two segments of the chromosome exhibit complex complementation behavior. The first, the 28A region, gave three recessive lethals and also contains three known visible mutants, spade (spd), Sternopleural (Sp) and wingless (wg); a complex pattern of genetic interaction in the region incorporates both the new and the previously known mutants. The second region is at 27D, where seven extreme semilethal mutations give a complex complementation pattern that also incorporates ade3(1). Since ade3(1) is defective in one of the enzymatic functions encoded in the Gart gene, we assume the other seven also affect the gene. The complexity of the complementation pattern presumably reflects the functional complexity of the gene product. The phenotypic effects of the mutants at 27D are very similar to those described for ade2 mutations, which also interrupt purine biosynthesis.  相似文献   

10.
11.
Muscle-eye-brain disease (MEB) and Walker Warburg Syndrome (WWS) belong to a spectrum of autosomal recessive diseases characterized by ocular dysgenesis, neuronal migration defects, and congenital muscular dystrophy. Until now, the pathophysiology of MEB/WWS has been attributed to alteration in dystroglycan post-translational modification. Here, we provide evidence that mutations in a gene coding for a major basement membrane protein, collagen IV alpha 1 (COL4A1), are a novel cause of MEB/WWS. Using a combination of histological, molecular, and biochemical approaches, we show that heterozygous Col4a1 mutant mice have ocular dysgenesis, neuronal localization defects, and myopathy characteristic of MEB/WWS. Importantly, we identified putative heterozygous mutations in COL4A1 in two MEB/WWS patients. Both mutations occur within conserved amino acids of the triple-helix-forming domain of the protein, and at least one mutation interferes with secretion of the mutant proteins, resulting instead in intracellular accumulation. Expression and posttranslational modification of dystroglycan is unaltered in Col4a1 mutant mice indicating that COL4A1 mutations represent a distinct pathogenic mechanism underlying MEB/WWS. These findings implicate a novel gene and a novel mechanism in the etiology of MEB/WWS and expand the clinical spectrum of COL4A1-associated disorders.  相似文献   

12.
In an attempt to identify mutations in the Drosophila synaptotagmin gene we have isolated many new rearrangements, point mutations and P element insertions in the 22F1-2; 23B1-2 cytological interval on chromosome arm 2L. This interval encompasses 13 cytological bands and is shown to contain 13 essential complementation groups, including decapentaplegic, synaptotagmin and Curly. Through chemical and P element mutagenesis we have isolated seven new deletions, which combined with previously isolated rearrangements, have allowed us to order most genes in the interval. A genomic walk covering approximately 100 kb within this interval spans at least five essential genes as identified by chromosomal aberrations. Preliminary phenotypic characterizations of the mutant phenotype and lethal phase is presented for many mutations. Three loci within this interval are shown to be required for proper neural development. Given that the average number of alleles per complementation group is greater than seven, it is very likely that all essential genes within this cytological interval have been identified.  相似文献   

13.
Collagen, type IV, alpha 1 (COL4A1) and alpha 2 (COL4A2) form heterotrimers and are abundant components of basement membranes, including those of the cerebral vasculature. COL4A1 mutations are an increasingly recognized cause of multisystem disorders, including highly penetrant cerebrovascular disease and intracerebral hemorrhage (ICH). Because COL4A1 and COL4A2 are structurally and functionally associated, we hypothesized that variants in COL4A2 would also cause ICH. We sequence COL4A2 in 96 patients with ICH and identify three rare, nonsynonymous coding variants in four patients that are not present in a cohort of 144 ICH-free individuals. All three variants change evolutionarily conserved amino acids. Using a cellular assay, we show that these putative mutations cause intracellular accumulation of COL4A1 and COL4A2 at the expense of their secretion, which supports their pathogenecity. Furthermore, we show that Col4a2 mutant mice also have completely penetrant ICH and that mutations in mouse and human lead to retention of COL4A1 and COL4A2 within the endoplasmic reticulum (ER). Importantly, two of the three putative mutations found in patients trigger ER stress and activate the unfolded protein response. The identification of putative COL4A2 mutations that might contribute to ICH in human patients provides insight into the pathogenic mechanisms of this disease. Our data suggest that COL4A2 mutations impair COL4A1 and COL4A2 secretion and can also result in cytotoxicity. Finally, our findings suggest that, collectively, mutations in COL4A1 and COL4A2 contribute to sporadic cases of ICH.  相似文献   

14.
The human DNA-excision repair gene ERCC-1 is cloned by its ability to correct the excision-repair defect of the ultraviolet light- and mitomycin-C-sensitive CHO mutant cell line 43-3B. This mutant is assigned to complementation group 2 of the excision-repair-deficient CHO mutants. In order to establish whether the correction by ERCC-1 is confined to CHO mutants of one complementation group, the cloned repair gene, present on cosmid 43-34, was transfected to representative cell lines of the 6 complementation groups that have been identified to date. Following transfection, mycophenolic acid was used to select for transferants expressing the dominant marker gene Ecogpt, also present on cosmid 43-34. Cotransfer of the ERCC-1 gene was shown by Southern blot analysis of DNA from pooled (500-2000 independent colonies) transformants of each mutant. UV survival and UV-induced UDS showed that only mutants belonging to complementation group 2 and no mutants of other groups were corrected by the ERCC-1 gene. This demonstrates that ERCC-1 does not provide an aspecific bypass of excision-repair defects in CHO mutants and supports the assumption that the complementation analysis is based on mutations in different repair genes.  相似文献   

15.
An ethyl methanesulfonate mutagenesis of Drosophila melanogaster was undertaken, and >3000 mutagenized second chromosomes were generated. More than 800 homozygous viable lines were established, and adults were screened directly under polarized light for muscle defects. A total of 16 mutant strains in which the indirect flight muscles were reduced in volume or disorganized or were otherwise abnormal were identified. These fell into seven recessive and one semidominant complementation groups. Five of these eight complementation groups, including the semidominant mutation, have been mapped using chromosomal deficiencies and meiotic recombination. Two complementation groups mapped close to the Myosin heavy chain gene, but they are shown to be in different loci. Developmental analysis of three mutations showed that two of these are involved in the early stages of adult myogenesis while the other showed late defects. This is the first report of results from a systematic and direct screen for recessive flight muscle defects. This mutant screen identifies genes affecting the flight muscles, which are distinct from those identified when screening for flightlessness.  相似文献   

16.
Revertants of unc-15(e73)I, a paralyzed mutant with an altered muscle paramyosin, include six dominant and two recessive intragenic unc-15 revertants, two new alleles of the previously identified suppressor gene, sup-3 V, and a new suppressor designated sup-19(m210)V. The recessive intragenic unc-15 revertants exhibit novel alterations in paramyosin paracrystal structure and distribution, and these alterations are modified by interaction with unc-82(e1220)IV, another mutation that affects paramyosin. A strain containing both unc-15 and a mutation in sup-3 V that restores movement was mutagenized, and paralyzed mutants resembling unc-15 were isolated. Twenty mutations that interfere with suppression were divided into three classes (nonmuscle, sus-1, and mutations within sup-3) based on phenotype, genetic map position and dominance. The nonmuscle mutations include dumpy and uncoordinated types that have no obvious direct effect on muscle organization. Two recessive mutations define a new gene, sus-1 III. These mutations modify the unc-15(e73) phenotype to produce a severely paralyzed, dystrophic double mutant that is not suppressed by sup-3. Five semidominant, intragenic sup-3 antisuppressor mutations, one of which occurred spontaneously, restore the wild-type sup-3 phenotype of nonsuppression. However, reversion of these mutants generated no new suppressor alleles of sup-3, suggesting that the sup-3 antisuppressor alleles are not wild type but may be null alleles.  相似文献   

17.
Isolated dystonia is a disorder characterized by involuntary twisting postures arising from sustained muscle contractions. Although autosomal-dominant mutations in TOR1A, THAP1, and GNAL have been found in some cases, the molecular mechanisms underlying isolated dystonia are largely unknown. In addition, although emphasis has been placed on dominant isolated dystonia, the disorder is also transmitted as a recessive trait, for which no mutations have been defined. Using whole-exome sequencing in a recessive isolated dystonia-affected kindred, we identified disease-segregating compound heterozygous mutations in COL6A3, a collagen VI gene associated previously with muscular dystrophy. Genetic screening of a further 367 isolated dystonia subjects revealed two additional recessive pedigrees harboring compound heterozygous mutations in COL6A3. Strikingly, all affected individuals had at least one pathogenic allele in exon 41, including an exon-skipping mutation that induced an in-frame deletion. We tested the hypothesis that disruption of this exon is pathognomonic for isolated dystonia by inducing a series of in-frame deletions in zebrafish embryos. Consistent with our human genetics data, suppression of the exon 41 ortholog caused deficits in axonal outgrowth, whereas suppression of other exons phenocopied collagen deposition mutants. All recessive mutation carriers demonstrated early-onset segmental isolated dystonia without muscular disease. Finally, we show that Col6a3 is expressed in neurons, with relevant mRNA levels detectable throughout the adult mouse brain. Taken together, our data indicate that loss-of-function mutations affecting a specific region of COL6A3 cause recessive isolated dystonia with underlying neurodevelopmental deficits and highlight the brain extracellular matrix as a contributor to dystonia pathogenesis.  相似文献   

18.
This paper describes genetic mapping studies with several respiration-deficient mutants of Chinese hamster fibroblasts which have a defect in complex I of the electron transport chain (NADH-coenzyme Q reductase). The mutations associated with two different complementation groups map on the X chromosome. In two cases (G14 and G20) karyotypic and isozyme analyses in hybrids have shown that a gene(s) on the mouse X chromosome complements the mutation(s) in the hamster cell mutant(s). A cosegregation analysis in hybrid cells has shown the corresponding genes to be linked to the HPRT genes (hamster-mouse hybrids of G14, and hamster-hamster hybrids for G14 and G20). By the same method the defective gene in a third mutant (G4) was also shown to be X-linked. A mutation representing a third complementation group (G11) was shown to be on an autosomal gene. These results provide an explanation for our observation that cells with recessive mutations in complementation groups I and II can be selected at relatively high frequencies.  相似文献   

19.
We have isolated a Drosophila melanogaster alpha-actinin gene and partially characterized several mutant alleles. The Drosophila protein sequence is very similar (68% identity) to those of chicken alpha-actinin isoforms, but less closely related (30% identity) to Dictyostelium alpha-actinin. The gene is within subdivision 2C of the X chromosome, coincident with 15 lethal (1)2Cb mutations. At least four alleles, l(1)2Cb1, l(1)2Cb2, l(1)2Cb4, and l(1)2Cb5 are interrupted by rearrangement breakpoints and must be null. In all four cases, hemizygous mutants complete embryogenesis and do not die until the second day of larval growth, signifying that either the role of alpha-actinin in nonmuscle cells is redundant or that a distinct and only distantly related gene encodes the non-muscle isoform. Allelic but less severely affected fliA mutants are apparently due to point mutations, and develop into adults having thoracic muscle abnormalities. EM of mutant muscles reveals that Z discs and myofibrillar attachments are disrupted, whereas epithelial "tendon" cells are less affected. We discuss these phenotypes in the light of presumed in vivo alpha-actinin functions.  相似文献   

20.
Cytogenetic region 31 of the second chromosome of Drosophila melanogaster was screened for recessive lethal mutations. One hundred and thirty nine new recessive lethal alleles were isolated that fail to complement Df(2L)J2 (31A-32A). These new alleles, combined with preexisting mutations in the region, define 52 complementation groups, 35 of which have not previously been described. Among the new mutations were alleles of the cdc2 and mfs(2)31 genes. Six new deficiencies were also isolated and characterized identifying 16 deficiency subintervals within region 31. The new deficiencies were used to further localize three loci believed to encode non-histone chromosomal proteins. Suvar(2)1/Su(var)214, a dominant suppressor of position-effect variegation (PEV), maps to 31A-B, while the recessive suppressors of PEV mfs(2)31 and wdl were localized to regions 31E and 31F-32A, respectively. In addition, the cytological position of several mutations that interact with heterochromatin were more precisely defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号