首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously reported that the hypothalamic hormone oxytocin (OT), best known for its uterotonic activity, also stimulates migration and invasion in human umbilical vein endothelial cells (HUVECs), thus suggesting a possible role for the peptide in the regulation of angiogenesis. We identified the Gq coupling of OT receptors (OTRs) and phospholipase C (PLC) as the main effectors of OT's action in HUVECs. Moreover, the pro-migratory effect of OT required the OTR-induced activation of the phosphatidylinositol-3-kinase (PI-3-K)/AKT/endothelial nitric oxide synthase (eNOS) pathway. To better characterize the proposed pro-angiogenic effect of OT in HUVECs, we have now utilized a three-dimensional (3-D) in vitro angiogenesis assay, and demonstrated that OT stimulates the outgrowth of capillary-like structures from HUVEC spheroids to an extent comparable to that of vascular endothelial growth factor (VEGF). This OT effect was abolished by inhibitors of PLC, PI-3-K and Src kinase. It was also found that OT phosphorylates proline-rich tyrosine kinase-2 (Pyk-2) and Src kinase in a PLC- and calcium-dependent manner. Furthermore, knockdown of Pyk-2 expression by RNA interference markedly impaired Src phosphorylation, migration and endothelial cell sprouting induced by OT. In conclusion, by using a pharmacological and genetic approach, the OT pro-angiogenic action and the cascade of intracellular signals responsible for it were defined by showing for the first time that OT, by interacting with its Gq-coupled receptor, induces HUVEC capillary outgrowth via Pyk-2 phosphorylation, which activates Src which in turn activates the PI-3-K/AKT pathway.  相似文献   

3.
DTX4(Deltex 4 homolog)蛋白属于Deltex家族成员|Deltex家族是Notch信号通路的调节因子. 已知Notch信号通路在成肌分化中发挥重要作用. 然而,DTX4是否参与调控肌肉发育尚未有报道. 本研究探索DTX4对成肌分化的影响及作用机制. 实时定量PCR和蛋白质印迹分析揭示,伴随小鼠C2C12成肌细胞(myoblast)分化为肌管(myotube)过程,成肌分化标志蛋白肌球蛋白重链(myosin heavy-chain,MyHC)、肌细胞生成素(myogenin)表达逐渐升高,DTX4 mRNA及蛋白质表达水平也逐渐升高. 通过顺序专一的siRNA敲减DTX4表达后,C2C12成肌细胞肌管面积和肌管融合指数明显减少|MyHC、肌细胞生成素蛋白表达水平明显降低|但ERK信号通路未见明显变化.上述结果表明,敲减DTX4表达抑制C2C12细胞成肌分化.我们的结果提示,DTX4可能参与C2C12细胞成肌分化.  相似文献   

4.
Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors   总被引:10,自引:0,他引:10  
Bone Morphogenetic Protein-2 (BMP-2) is highly overexpressed in the majority of patient-derived lung carcinomas. However, a mechanism revealing its role in cancer has not been established. Here we report that BMP-2 enhances the neovascularization of developing tumors. Recombinant BMP-2 stimulated blood vessel formation in tumors formed from A549 cells injected s.c. into thymic nude mice. Recombinant BMP-2 also enhanced angiogenesis in Matrigel plugs containing A549 cells in nude mice. The BMP-2 antagonist noggin abrogated BMP-2-induced angiogenic response. Furthermore, antisense transfection of BMP-2 cDNA resulted in a decrease in blood vessel formation in the Matrigel assays. BMP-2 induced tube formation in both human aortic endothelial cells (HAEC) and umbilical vein endothelial cells. BMP-2 also stimulated proliferation of HAEC. The ability of BMP-2 to activate endothelial cells was further demonstrated by its ability to phosphorylate Smad 1/5/8 and ERK-1/2 and to increase expression of Id1. This study reveals that BMP-2 enhanced the angiogenic response in developing tumors. Furthermore, these data suggest that BMP-2 stimulation of angiogenesis may involve the activation of endothelial cells.  相似文献   

5.
The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.  相似文献   

6.
The enigmatic role of angiopoietin-1 in tumor angiogenesis   总被引:13,自引:0,他引:13  
A tumor vasculature is highly unstable and immature, characterized by a high proliferation rate of endothelial cells, hyper-permeability, and chaotic blood flow. The dysfunctional vasculature gives rise to continual plasma leakage and hypoxia in the tumor, resulting in constant on-sets of inflammation and angiogenesis. Tumors are thus likened to wounds that will not heal. The lack of functional mural cells, including pericytes and vascular smooth muscle cells, in tumor vascular structure contributes significantly to the abnormality of tumor vessels. Angiopoietin-1 (Ang 1) is aphysiological angiogenesis promoter during embryonic development. The function of Angl is essential to endothelial cell survival, vascular branching, and pericyte recruitment. However, an increasing amount of experimental data suggest that Angl-stimulated association of mural cells with endothelial cells lead to stabilization of newly formed blood vessels. This in turn may limit the otherwise continuous angiogenesis in the tumor, and consequently give riseto inhibition of tumor growth. We discuss the enigmatic role of Angl in tumor angiogenesis in this review.  相似文献   

7.
Kaposi's sarcoma (KS) is a highly angiogenic and inflammatory neoplasia. The angiogenic and inflammatory cytokine angiopoietin-2 (Ang-2) is strongly expressed in KS due to Kaposi's sarcoma-associated herpesvirus (KSHV) infection. In the present study, we determined how Ang-2 contributes to development of KS by using telomerase-immortalized human umbilical vein endothelial cells (TIVE) as a model, which become malignantly transformed and express increased levels of Ang-2 following KSHV infection. Ang-2 released from TIVE-KSHV cells induces tyrosine phosphorylation of Tie-2 receptor from both human and mouse endothelial cells and promotes angiogenesis in nude mice. Functional inhibition or expressional “knock-down” of Ang-2 in these cells blocks angiogenesis and inhibits tumor growth. Ang-2 suppression also reduces the numbers of infiltrating monocytes/macrophages in tumors. In transwell-based cell migration assays, Ang-2 indeed enhances migration of human monocytes in a dose-dependent manner. These results underscore a pivotal role of KSHV-induced Ang-2 in KS tumor development by promoting both angiogenesis and inflammation. Our data also suggest that selective drug targeting of Ang-2 may be used for treatment of KS.  相似文献   

8.
探讨ACTL6A在人类白血病NB4细胞分化中的作用及其相关机制。我们用ATRA人为诱导NB4细胞分化,Western blotting检测ACTL6A和CD11b的表达水平变化;敲低ACTL6A,通过瑞氏染色观察NB4细胞的形态学改变,Western blotting检测ACTL6A和CD11b的表达水平变化及其相关蛋白的表达水平;敲低同时用ATRA处理NB4细胞,用流式细胞术检测分化标志物CD11b的阳性率;免疫荧光检测ACTL6A在NB4细胞中的空间定位;结果显示NB4经敲低ACTL6A后,CD11b的蛋白水平表达升高;瑞氏染色观察到分化改变;免疫荧光检测到ACTL6A主要分布于细胞核; Western blotting检测到Notch1,Hes1,Sox2蛋白表达水平明显下调。研究表明,敲低ACTL6A可以促进人类白血病NB4细胞分化;其机制涉及Notch1信号通路的抑制。  相似文献   

9.
Aldosterone plays a central role in the development of cardiac pathological states involving ion transport imbalances, especially sodium transport. We have previously demonstrated a cardioprotective effect of proanthocyanidins in aldosterone-treated rats. Our objective was to investigate for the first time the effect of proanthocyanidins on serum and glucocorticoid-regulated kinase 1 (SGK1), epithelial Na+ channel (γ-ENaC), neuronal precursor cells expressed developmentally down-regulated 4-2 (Nedd4-2) and phosphoNedd4-2 protein expression in the hearts of aldosterone-treated rats. Male Wistar rats received aldosterone (1 mg kg−1 day−1)+1% NaCl for 3 weeks. Half of the animals in each group were simultaneously treated with the proanthocyanidins-rich extract (80% w/w) (PRO80, 5 mg kg−1 day−1). Hypertension and diastolic dysfunction induced by aldosterone were abolished by treatment with PRO80. Expression of fibrotic, inflammatory and oxidative mediators were increased by aldosterone–salt administration and blunted by PRO80. Antioxidant capacity was improved by PRO80. The up-regulated aldosterone mediator SGK1, ENaC and p-Nedd4-2/total Nedd4-2 ratio were blocked by PRO80. PRO80 blunted aldosterone–mineralocorticoid-mediated up-regulation of ENaC provides new mechanistic insight of the beneficial effect of proanthocyanidins preventing the cardiac alterations induced by aldosterone excess.  相似文献   

10.
In order to investigate the mechanism of angiogenesis involved in inflammatory processes, the effects of leukotrienes and prostaglandin E2 on in vitro tube formation of cultured vascular endothelial cells were examined. Endothelial cells from bovine carotid artery were cultured for 4 days between two layers of collagen gel and the lengths of organized tubes were quantitatively estimated with an image analyzer. Treatment with 10(-8)-10(-6)M of prostaglandin E2 increased the tubular lengths, and leukotriene C4 stimulated tube formation at far lower concentrations (10(-15)-10(-9)M) but leukotriene B4 and D4 were not effective on the tube formation. It was also found that endothelial cell migration was stimulated by almost the same concentrations of leukotriene C4 as those stimulating tube formation. These data suggest that leukotriene C4 is, at least, one of the important factors involved in angiogenesis during inflammatory processes.  相似文献   

11.
Qiu J  Peng Q  Zheng Y  Hu J  Luo X  Teng Y  Jiang T  Yin T  Tang C  Wang G 《Biochimica et biophysica acta》2012,1821(10):1361-1369
Angiogenesis plays remarkable roles in the development of atherosclerotic rupture plaques. However, its essential mechanism remains unclear. The purpose of the study was to investigate whether inhibitor of DNA binding-1 or inhibitor of differentiation 1 (Id1) promoted angiogenesis when exposed to oxidised low-density lipoprotein (oxLDL), and to determine the molecular mechanism involved. Using aortic ring assay and tube formation assay as a model system, a low concentration of oxLDL was found to induce angiogenic sprouting and capillary lumen formation of endothelial cell. But the Id1 expression was significantly upregulated by oxLDL at low and high concentrations. The Id1 was localised in the nuclei of the human umbilical vein endothelial cells in the control group and in the high-concentration oxLDL group. Id1 was translocated to the cytoplasm at low oxLDL concentrations. The nucleocytoplasmic shuttling at low oxLDL concentration was inhibited by treatment with the nuclear export inhibitor leptomycin B. Protein kinase A (PKA) inhibitor H89 promoted nuclear export of Id1, and phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 reduced the nuclear export of Id1. PI3K inhibition blocked oxLDL-induced angiogenesis. Low concentrations of oxLDL promoted angiogenic sprouting and capillary formation. And this process depends on nuclear export of Id1, which in turn is controlled by the PI3K pathway. This report presents a new link between oxLDL and Id1 localisation, and may provide a new insight into the interactions of ox-LDL and Id1 in the context of atherosclerosis.  相似文献   

12.
Heregulin-beta1 promotes the activation of p21-activated kinase 1 (Pak1) and the motility and invasiveness of breast cancer cells. In this study, we identified vascular endothelial growth factor (VEGF) as a gene product induced by heregulin-beta1. The stimulation by heregulin-beta1 of breast cancer epithelial cells induced the expression of the VEGF mRNA and protein and its promoter activity. Heregulin-beta1 also stimulated angiogenesis in a VEGF-dependent manner. Herceptin, an anti-HER2 antibody inhibited heregulin-beta1-mediated stimulation of both VEGF expression in epithelial cells and angiogenesis in endothelial cells. Because the activation of Pak1 and VEGF expression are positively regulated by heregulin-beta1, we hypothesized that Pak1 regulates VEGF expression, and hence explored the role of Pak1 in angiogenesis. We provide new evidence to implicate Pak1 signaling in VEGF expression. Overexpression of a kinase-dead K299R Pak1 leads to suppression of VEGF promoter activity, as well as VEGF mRNA expression and secretion of VEGF protein. Conversely, kinase-active T423E Pak1 promotes the expression and secretion of VEGF. Furthermore, expression of the heregulin-beta1 transgene, HRG, in harderian tumors in mice enhances the activation of Pak1 as well as expression of VEGF and angiogenic marker CD34 antigen. These results suggest that heregulin-beta1 regulates angiogenesis via up-regulation of VEGF expression and that Pak1 plays an important role in controlling VEGF expression and, consequently, VEGF secretion and function.  相似文献   

13.
Previously, we demonstrated that lipocalin-type prostaglandin D(2) synthase (L-PGDS) knockout mice become glucose intolerant and display signs of diabetic nephropathy and accelerated atherosclerosis. In the current study we sought to explain the link between L-PGDS and glucose tolerance. Using the insulin-sensitive rat skeletal muscle cell line, L6, we showed that L-PGDS could stimulate glucose transport approximately 2-fold as well as enhance insulin-stimulated glucose transport, as measured by 2-deoxy-[(3)H]-glucose uptake. The increased glucose transport was not attributed to increased GLUT4 production but rather the stimulation of GLUT4 translocation to the plasma membrane, a phenomenon that was lost when cells were cultured under hyperglycemic (20 mM) conditions or pretreated with wortmannin. There was however, an increase in GLUT1 expression as well as a 3-fold increase in hexokinase III expression, which was increased to nearly 5-fold in the presence of insulin, in response to L-PGDS at 20 mM glucose. In addition, adipocytes isolated from L-PGDS knockout mice were significantly less sensitive to insulin-stimulated glucose transport than wild-type. We conclude that L-PGDS, via production of prostaglandin D(2), is an important mediator of muscle and adipose glucose transport which is modulated by glycemic conditions and plays a significant role in the glucose intolerance associated with type 2 diabetes.  相似文献   

14.
15.
The translation inhibitor and tumor suppressor Pdcd4 was reported to be lost in various tumors and put forward as prognostic marker in tumorigenesis. Decreased Pdcd4 protein stability due to PI3K-mTOR-p70S6K1 dependent phosphorylation of Pdcd4 followed by β-TrCP1-mediated ubiquitination, and proteasomal destruction of the protein was characterized as a major mechanism contributing to the loss of Pdcd4 expression in tumors. In an attempt to identify stabilizers of Pdcd4, we used a luciferase-based high-throughput compatible cellular assay to monitor phosphorylation-dependent proteasomal degradation of Pdcd4 in response to mitogen stimulation. Following a screen of approximately 2000 compounds, we identified 1,2-bis(4-chlorophenyl)disulfide as a novel Pdcd4 stabilizer. To determine an initial structure-activity relationship, we used 3 additional compounds, synthesized according to previous reports, and 2 commercially available compounds for further testing, in which either the linker between the aryls was modified (compounds 2–4) or the chlorine residues were replaced by groups with different electronic properties (compounds 5 and 6). We observed that those compounds with alterations in the sulfide linker completely lost the Pdcd4 stabilizing potential. In contrast, modifications in the chlorine residues showed only minor effects on the Pdcd4 stabilizing activity. A reporter with a mutated phospho-degron verified the specificity of the compounds for stabilizing the Pdcd4 reporter. Interestingly, the active diaryl disulfides inhibited proliferation and viability at concentrations where they stabilized Pdcd4, suggesting that Pdcd4 stabilization might contribute to the anti-proliferative properties. Finally, computational modelling indicated that the flexibility of the disulfide linker might be necessary to exert the biological functions of the compounds, as the inactive compound appeared to be energetically more restricted.  相似文献   

16.
17.
《Cell reports》2023,42(8):112964
  1. Download : Download high-res image (227KB)
  2. Download : Download full-size image
  相似文献   

18.
Ras and calcineurin are members of two independent pathways in muscle growth but their interaction is not known. This work shows that the transfection of about 1% of the muscle fibers with dominant negative Ras (dnRas) shows a wilder effect; it stimulates the fiber growth in the entire regenerating soleus muscle, including the nontransfected fibers. Co-transfection with the calcineurin inhibitor cain/cabin prevented the growth stimulation. Injection of antibody for interleukin-4 (IL-4) also abolished the growth ameliorating effect. These results suggest that the inactivation of Ras in 1% of the fibers upregulates the calcineurin-NFAT-IL-4 pathway and the secreted IL-4 triggers fiber growth stimulation in the whole regenerating soleus muscle of the rat. The results highlight the importance of the autocrine-paracrine regulation in muscle regeneration and hint to a novel method of gene theraphy of degenerative-regenerative muscle dystrophies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号