首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The neuronal coordination of metabolic homeostasis requires the integration of hormonal signals with multiple interrelated central neuronal circuits to produce appropriate levels of food intake, energy expenditure and fuel availability. Ghrelin, a peripherally produced peptide hormone, circulates at high concentrations during nutrient scarcity. Ghrelin promotes food intake, an action lost in ghrelin receptor null mice and also helps maintain fasting blood glucose levels, ensuring an adequate supply of nutrients to the central nervous system. To better understand mechanisms of ghrelin action, we have examined the roles of ghrelin receptor (GHSR) expression in the mouse hindbrain. Notably, selective hindbrain ghrelin receptor expression was not sufficient to restore ghrelin-stimulated food intake. In contrast, the lowered fasting blood glucose levels observed in ghrelin receptor-deficient mice were returned to wild-type levels by selective re-expression of the ghrelin receptor in the hindbrain. Our results demonstrate the distributed nature of the neurons mediating ghrelin action.  相似文献   

2.
Growth hormone (GH)-releasing peptides (GHRPs) are synthetic peptides that strongly induce GH release. GHRPs act via a specific receptor, the GHRP receptor (GHSR), of which ghrelin is a natural ligand. GHRPs also induce adrenocorticotropic hormone (ACTH) release in healthy subjects. GHRPs or ghrelin stimulate ACTH release via corticotropin-releasing factor (CRF) and arginin vasopressin in the hypothalamus. Stress-activated CRF neurons are suppressed by glucocorticoids in the hypothalamic paraventricular nucleus (PVN), while CRF gene is up-regulated by glucocorticoids in the PVN cells without the influence of input neurons. However, little is known about the regulation of ghrelin and GHSR type 1a (GHSR1a) genes by glucocorticoids in PVN cells. To elucidate the regulation of ghrelin and GHSR gene expression by glucocorticoids in PVN cells, here we used a homologous PVN neuronal cell line, hypothalamic 4B, because these cells show characteristics of the parvocellular neurons of the PVN. These cells also express ghrelin and GHSR1a mRNA. Dexamethasone increased ghrelin mRNA levels. A potent glucocorticoid receptor antagonist, RU-486, significantly blocked dexamethasone-induced increases in ghrelin mRNA levels. Dexamethasone also significantly stimulated GHSR1a mRNA and protein levels. Finally, ghrelin increased CRF mRNA levels, as did dexamethasone. Incubation with both dexamethasone and ghrelin had an additive effect on CRF and ghrelin mRNA levels. The ghrelin-GHSR1a system is activated by glucocorticoids in the hypothalamic cells.  相似文献   

3.
The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft‐L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O‐acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft‐L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft‐L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre‐treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway.  相似文献   

4.
The G protein-coupled ghrelin receptor GHSR1a is a potential pharmacological target for treating obesity and addiction because of the critical role ghrelin plays in energy homeostasis and dopamine-dependent reward. GHSR1a enhances growth hormone release, appetite, and dopamine signaling through Gq/11, Gi/o, and G12/13 as well as β-arrestin-based scaffolds. However, the contribution of individual G protein and β-arrestin pathways to the diverse physiological responses mediated by ghrelin remains unknown. To characterize whether a signaling bias occurs for GHSR1a, we investigated ghrelin signaling in a number of cell-based assays, including Ca2+ mobilization, serum response factor response element, stress fiber formation, ERK1/2 phosphorylation, and β-arrestin translocation, utilizing intracellular second loop and C-tail mutants of GHSR1a. We observed that GHSR1a and β-arrestin rapidly form metastable plasma membrane complexes following exposure to an agonist, but replacement of the GHSR1a C-tail by the tail of the vasopressin 2 receptor greatly stabilizes them, producing complexes observable on the plasma membrane and also in endocytic vesicles. Mutations of the contiguous conserved amino acids Pro-148 and Leu-149 in the GHSR1a intracellular second loop generate receptors with a strong bias to G protein and β-arrestin, respectively, supporting a role for conformation-dependent signaling bias in the wild-type receptor. Our results demonstrate more balance in GHSR1a-mediated ERK signaling from G proteins and β-arrestin but uncover an important role for β-arrestin in RhoA activation and stress fiber formation. These findings suggest an avenue for modulating drug abuse-associated changes in synaptic plasticity via GHSR1a and indicate the development of GHSR1a-biased ligands as a promising strategy for selectively targeting downstream signaling events.  相似文献   

5.
Cells expressing the dopamine D1 receptor (DRD1) have significant functional roles in diverse physiological processes including locomotion and drug addiction. The present work presents a novel in vivo DRD1-Bacterial Artificial Chromosome (BAC) Tet-on system allowing for the inducible activation of tet-operated transgenes specifically within DRD1-expressing cells of transgenic mice. It is shown that the DRD1-rtTA BAC-driven expression of a tet-operated reporter is under tight regulation by doxycycline and is restricted to DRD1-expressing brain regions. The model will be a useful research tool in studies of movement and reward and associated pathologies such as Parkinson’s disease and addiction.  相似文献   

6.
The distribution and function of neurons coexpressing the dopamine D1 and D2 receptors in the basal ganglia and mesolimbic system are unknown. We found a subset of medium spiny neurons coexpressing D1 and D2 receptors in varying densities throughout the basal ganglia, with the highest incidence in nucleus accumbens and globus pallidus and the lowest incidence in caudate putamen. These receptors formed D1-D2 receptor heteromers that were localized to cell bodies and presynaptic terminals. In rats, selective activation of D1-D2 heteromers increased grooming behavior and attenuated AMPA receptor GluR1 phosphorylation by calcium/calmodulin kinase IIα in nucleus accumbens, implying a role in reward pathways. D1-D2 heteromer sensitivity and functional activity was up-regulated in rat striatum by chronic amphetamine treatment and in globus pallidus from schizophrenia patients, indicating that the dopamine D1-D2 heteromer may contribute to psychopathologies of drug abuse, schizophrenia, or other disorders involving elevated dopamine transmission.  相似文献   

7.
The peptide hormone ghrelin mediates through action on its receptor, the growth hormone secretagogue receptor (GHSR), and is known to play an important role in a variety of metabolic functions including appetite stimulation, weight gain, and suppression of insulin secretion. In light of the fact that obesity is one of the major health problems plaguing the modern society, the ghrelin signaling system continues to remain an important and attractive pharmacological target for the treatment of obesity. In vivo imaging of the GHSR could shed light on the mechanism by which ghrelin affects feeding behavior and thus offers a new therapeutic perspective for the development of effective treatments. Recently, a series of piperidine-substituted quinazolinone derivatives was reported to be selective and potent GHSR antagonists with high binding affinities. Described herein is the synthesis, in vitro, and in vivo evaluation of (S)-6-(4-fluorophenoxy)-3-((1-[(11)C]methylpiperidin-3-yl)methyl)-2-o-tolylquinazolin-4(3H)-one ([(11)C]1), a potential PET radioligand for imaging GHSR.  相似文献   

8.
Previously, using artificial cell systems, we identified receptor heteromers between the dopamine D(1) or D(2) receptors and the histamine H(3) receptor. In addition, we demonstrated two biochemical characteristics of the dopamine D(1) receptor-histamine H(3) receptor heteromer. We have now extended this work to show the dopamine D(1) receptor-histamine H(3) receptor heteromer exists in the brain and serves to provide a novel link between the MAPK pathway and the GABAergic neurons in the direct striatal efferent pathway. Using the biochemical characteristics identified previously, we found that the ability of H(3) receptor activation to stimulate p44 and p42 extracellular signal-regulated MAPK (ERK 1/2) phosphorylation was only observed in striatal slices of mice expressing D(1) receptors but not in D(1) receptor-deficient mice. On the other hand, the ability of both D(1) and H(3) receptor antagonists to block MAPK activation induced by either D(1) or H(3) receptor agonists was also found in striatal slices. Taken together, these data indicate the occurrence of D(1)-H(3) receptor complexes in the striatum and, more importantly, that H(3) receptor agonist-induced ERK 1/2 phosphorylation in striatal slices is mediated by D(1)-H(3) receptor heteromers. Moreover, H(3) receptor-mediated phospho-ERK 1/2 labeling co-distributed with D(1) receptor-containing but not with D(2) receptor-containing striatal neurons. These results indicate that D(1)-H(3) receptor heteromers work as processors integrating dopamine- and histamine-related signals involved in controlling the function of striatal neurons of the direct striatal pathway.  相似文献   

9.
The motilin receptor (MR) belongs to a family of Class I G protein-coupled receptors that also includes growth hormone secretagogue receptor (GHSR). Their potentially unique structure and the molecular basis of their binding and activation are not yet clear. We previously reported that the perimembranous residues in the predicted extracellular loops and amino-terminal tail of the MR were important for responses to the natural peptide ligand, motilin, and the transmembrane domains of the MR were important for a non-peptidyl ligand, erythromycin. We also reported that the perimembranous residues in the second extracellular loop of the GHSR were critical for natural ligand ghrelin binding and activity. The MR is 52% identical to GHSR, with 86% sequence identity in the transmembrane domains. In the current work, to gain insight into a relationship between MR and GHSR, we studied functional responses to motilin, erythromycin and ghrelin of expression cells of chimeric constructs of MR and GHSR and co-expression cells of both MR and GHSR. We also generated human MR transgenic mice, and clarified a relationship between motilin and ghrelin. MR(1-62)/GHSR(68-366) construct responded only to ghrelin, MR(1-102)/GHSR(108-366) responded to ghrelin and erythromycin, and MR(1-129)/GHSR(135-366) and MR(1-178)/GHSR(184-366) responded to erythromycin, while GHSR(1-183)/MR(179-412) responded to neither motilin, erythromycin nor ghrelin. MR and GHSR co-expression cells have no additional responses to these ligands. Motilin or erythromycin administration to human MR transgenic mice resulted in a decrease of serum acyl-ghrelin levels, while MR and GHSR mRNA expression in the gastrointestinal tracts were not changed. These data suggested that in species expressing both motilin-MR and ghrelin-GHSR, there is a compensatory relationship in vivo.  相似文献   

10.
Recent discoveries indicate an important role for ghrelin in drug and alcohol reward and an ability of ghrelin to regulate mesolimbic dopamine activity. The role of dopamine in novelty seeking, and the association between this trait and drug and alcohol abuse, led us to hypothesize that ghrelin may influence novelty seeking behavior. To test this possibility we applied several complementary rodent models of novelty seeking behavior, i.e. inescapable novelty-induced locomotor activity (NILA), novelty-induced place preference and novel object exploration, in rats subjected to acute ghrelin receptor (growth hormone secretagogue receptor; GHSR) stimulation or blockade. Furthermore we assessed the possible association between polymorphisms in the genes encoding ghrelin and GHSR and novelty seeking behavior in humans. The rodent studies indicate an important role for ghrelin in a wide range of novelty seeking behaviors. Ghrelin-injected rats exhibited a higher preference for a novel environment and increased novel object exploration. Conversely, those with GHSR blockade drastically reduced their preference for a novel environment and displayed decreased NILA. Importantly, the mesolimbic ventral tegmental area selective GHSR blockade was sufficient to reduce the NILA response indicating that the mesolimbic GHSRs might play an important role in the observed novelty responses. Moreover, in untreated animals, a striking positive correlation between NILA and sucrose reward behavior was detected. Two GHSR single nucleotide polymorphisms (SNPs), rs2948694 and rs495225, were significantly associated with the personality trait novelty seeking, as assessed using the Temperament and Character Inventory (TCI), in human subjects. This study provides the first evidence for a role of ghrelin in novelty seeking behavior in animals and humans, and also points to an association between food reward and novelty seeking in rodents.  相似文献   

11.
Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. However, the neural circuits that mediate the ghrelin-induced activation of this neuroendocrine axis are mostly uncharacterized. In the current study, we characterized in vivo the mechanism by which ghrelin activates the hypophysiotropic CRF neurons in mice. We found that peripheral or intra-cerebro-ventricular administration of ghrelin strongly activates c-fos--a marker of cellular activation--in CRF-producing neurons. Also, ghrelin activates CRF gene expression in the paraventricular nucleus of the hypothalamus and the hypothalamic-pituitary-adrenal axis at peripheral level. Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly.  相似文献   

12.
The melanocortin receptor accessory protein 2 (MRAP2) is essential for several physiological functions of the ghrelin receptor growth hormone secretagogue receptor 1a (GHSR1a), including increasing appetite and suppressing insulin secretion. In the absence of MRAP2, GHSR1a displays high constitutive activity and a weak G-protein–mediated response to ghrelin and readily recruits β-arrestin. In the presence of MRAP2, however, G-protein–mediated signaling via GHSR1a is strongly dependent on ghrelin stimulation and the recruitment of β-arrestin is significantly diminished. To better understand how MRAP2 modifies GHSR1a signaling, here we investigated the role of several phosphorylation sites within the C-terminal tail and third intracellular loop of GHSR1a, as well as the mechanism behind MRAP2-mediated inhibition of β-arrestin recruitment. We show that Ser252 and Thr261 in the third intracellular loop of GHSR1a contribute to β-arrestin recruitment, whereas the C-terminal region is not essential for β-arrestin interaction. Additionally, we found that MRAP2 inhibits GHSR1a phosphorylation by blocking the interaction of GRK2 and PKC with the receptor. Taken together, these data suggest that MRAP2 alters GHSR1a signaling by directly impacting the phosphorylation state of the receptor and that the C-terminal tail of GHSR1a prevents rather than contribute to β-arrestin recruitment.

The “hunger hormone” ghrelin is secreted by X/A cells of the oxyntic mucosa of the stomach in response to a low energetic state, which leads to an increase in appetite (1, 2) and prevents hypoglycemia (3, 4). Ghrelin is the agonist of the growth hormone secretagogue receptor 1a (GHSR1a), a G-protein–coupled receptor (GPCR) expressed in the brain and in multiple peripheral organs including the heart and the endocrine pancreas. Activation of GHSR1a by ghrelin in hypothalamic agouti-related protein (AgRP) neurons potently stimulates feeding (5, 6, 7). In pituitary somatotrophs, GHSR1a stimulation promotes growth hormone release (8, 9, 10). Finally, in cardiomyocytes, ghrelin increases cell survival and contractility (11, 12) while in the endocrine pancreas the hormone inhibits insulin secretion (13, 14).GHSR1a primarily couples to Gαq/11, thus stimulating the production of intracellular inositol triphosphate (IP) 3. Like other GPCRs, agonist stimulation results in phosphorylation of GHSR1a by kinases, including GPCR kinase 2 (GRK2) and PKC (15), and β-arrestin recruitment. Notably, GHSR1a contains several phosphorylation sites within the C-terminal tail, some of which have been shown to be important for β-arrestin recruitment (16). However, although other putative phosphorylation sites are present in the third intracellular loop (ICL3) of GHSR1a, their role in β-arrestin recruitment has not yet been described.When expressed in heterologous cells, GHSR1a displays a high constitutive activity and a limited ghrelin-stimulated responses (17).Both constitutive- and agonist-stimulated GHSR1a signaling are regulated by the single transmembrane melanocortin receptor accessory protein 2 (MRAP2), which functions to drastically reduce GHSR1a constitutive activity and increase ghrelin-stimulated responses (17). Additionally, MRAP2 significantly inhibits ghrelin-induced β-arrestin recruitment to GHSR1a (17). As such, MRAP2 is essential for several physiological functions of ghrelin including its orexigenic activity (18) and its insulinostatic actions (14). Global or AGRP neuron–targeted deletion of MRAP2 abrogates the effect of ghrelin on food intake (18) and global or pancreatic δ-cell-targeted deletion of MRAP2 prevents ghrelin-mediated inhibition of insulin secretion (14).Although expressed in AGRP neurons and pancreatic δ-cells (thus promoting G-protein coupling and inhibiting β-arrestin-dependent signaling), MRAP2 is not present in every GHSR1a-expressing tissue. Consequently, it is possible that β-arrestin signaling plays an important role in the physiological function of ghrelin in tissues where MRAP2 is absent. Whereas, the inhibition of β-arrestin recruitment to GHSR1a by MRAP2 is well established and the domains of MRAP2 required for this function have been identified (17), the molecular mechanism by which MRAP2 alters GHSR1a signaling is not yet understood. In this study, we investigated the importance of GHSR1a phosphorylation for β-arrestin recruitment and the mechanism involved in MRAP2-mediated inhibition of β-arrestin recruitment.  相似文献   

13.
14.
The ghrelin receptor is a G-protein-coupled receptor (GPCR) widely expressed in the brain, stomach and the intestine. It was firstly identified during studies aimed to find synthetic modulators of growth hormone (GH) secretion. GHSR and its endogenous ligand ghrelin were found to be involved in hunger response. Through food intake regulation, they could affect body weight and adiposity. Thus GHSR antagonists rapidly became an attractive target to treat obesity and feeding disorders. In this study we describe the biological properties of new indolinone derivatives identified as a new, chiral class of ghrelin antagonists. Their synthesis as well as the structure-activity relationship will be discussed herein. The in vitro identified compound 14f was a potent GHSR1a antagonist (IC(50)=7nM). When tested in vivo, on gastric emptying model, 14f showed an inhibitory intrinsic effect when given alone and it dose dependently inhibited ghrelin stimulation. Compound 14f also reduced food intake stimulated both by fasting condition (high level of endogenous ghrelin) and by icv ghrelin. Moreover this compound improved glucose tolerance in ipGTT test.  相似文献   

15.
目的:探讨Ghrelin对糖尿病大鼠下丘脑弓状核胃扩张敏感神经元和胃运动的影响。方法:逆行追踪结合免疫组化观察ARC中GHSR-1的表达,细胞外放电记录,观察ghrelin对GD神经元放电活动的影响及电刺激ARC对GD神经元放电活动和胃运动的影响。结果:电生理实验结果表明,在ARC Ghrelin能够能激发GD兴奋性神经元(GD-E)和GD抑制性神经元(GD-I)。然而,ghrelin可以兴奋更少的GD-E神经元,在正常大鼠中ghrelin对于GD-E的兴奋作用比在DM大鼠中的作用弱。在体胃运动研究表明,在ARC中微量注射ghrelin可以明显的增强胃运动,并且呈现剂量依赖关系。Ghrelin在糖尿病大鼠促胃动力作用低于正常大鼠。Ghrelin诱导的效应可被生长激素促分泌素受体(GHSR)拮抗剂阻断[d-lys-3]-GHRP-6或bim28163。放射免疫法和实时荧光定量PCR数据表明胃血浆ghrelin水平,在ARC ghrelin mRNA的表达水平先上升后下降,糖尿病大鼠(DM)中,在ARC中GHSR-1a mRNA表达保持在一个比较低的水平。结论:ghrelin可以调节GD敏感神经元以及胃运动,通过ARC中ghrelin受体。在糖尿病大鼠中,Ghrelin促进胃运动作用减弱可能与ARC中ghrelin受体表达减少有关。  相似文献   

16.

Introduction

Ghrelin and cannabinoids stimulate appetite, this effect possibly being mediated by the activation of hypothalamic AMP-activated protein kinase (AMPK), a key enzyme in appetite and metabolism regulation. The cannabinoid receptor type 1 (CB1) antagonist rimonabant can block the orexigenic effect of ghrelin. In this study, we have elucidated the mechanism of the putative ghrelin-cannabinoid interaction.

Methods

The effects of ghrelin and CB1 antagonist rimonabant in wild-type mice, and the effect of ghrelin in CB1-knockout animals, were studied on food intake, hypothalamic AMPK activity and endogenous cannabinoid content. In patch-clamp electrophysiology experiments the effect of ghrelin was assessed on the synaptic inputs in parvocellular neurons of the hypothalamic paraventricular nucleus, with or without the pre-administration of a CB1 antagonist or of cannabinoid synthesis inhibitors.

Results and Conclusions

Ghrelin did not induce an orexigenic effect in CB1-knockout mice. Correspondingly, both the genetic lack of CB1 and the pharmacological blockade of CB1 inhibited the effect of ghrelin on AMPK activity. Ghrelin increased the endocannabinoid content of the hypothalamus in wild-type mice and this effect was abolished by rimonabant pre-treatment, while no effect was observed in CB1-KO animals. Electrophysiology studies showed that ghrelin can inhibit the excitatory inputs on the parvocellular neurons of the paraventricular nucleus, and that this effect is abolished by administration of a CB1 antagonist or an inhibitor of the DAG lipase, the enzyme responsible for 2-AG synthesis. The effect is also lost in the presence of BAPTA, an intracellular calcium chelator, which inhibits endocannabinoid synthesis in the recorded parvocellular neuron and therefore blocks the retrograde signaling exerted by endocannabinoids. In summary, an intact cannabinoid signaling pathway is necessary for the stimulatory effects of ghrelin on AMPK activity and food intake, and for the inhibitory effect of ghrelin on paraventricular neurons.  相似文献   

17.
Our objective is to determine the neuromodulatory role of ghrelin in the brain. To identify neurons that express the ghrelin receptor [GH secretagogue receptor (GHS-R)], we generated GHS-R-IRES-tauGFP mice by gene targeting. Neurons expressing the GHS-R exhibit green fluorescence and are clearly evident in the hypothalamus, hippocampus, cortex, and midbrain. Using immunohistochemistry in combination with green fluorescent protein fluorescence, we identified neurons that coexpress the dopamine receptor subtype 1 (D1R) and GHS-R. The potential physiological relevance of coexpression of these two receptors and the direct effect of ghrelin on dopamine signaling was investigated in vitro. Activation of GHS-R by ghrelin amplifies dopamine/D1R-induced cAMP accumulation. Intriguingly, amplification involves a switch in G protein coupling of the GHS-R from Galpha(11/q) to Galpha(i/o) by a mechanism consistent with agonist-dependent formation of GHS-R/D1R heterodimers. Most importantly, these results indicate that ghrelin has the potential to amplify dopamine signaling selectively in neurons that coexpress D1R and GHS-R.  相似文献   

18.

Background

The gustatory system plays a critical role in determining food preferences, food intake and energy balance. The exact mechanisms that fine tune taste sensitivity are currently poorly defined, but it is clear that numerous factors such as efferent input and specific signal transduction cascades are involved.

Methodology/Principal Findings

Using immunohistochemical analyses, we show that ghrelin, a hormone classically considered to be an appetite-regulating hormone, is present within the taste buds of the tongue. Prepro-ghrelin, prohormone convertase 1/3 (PC 1/3), ghrelin, its cognate receptor (GHSR), and ghrelin-O-acyltransferase (GOAT , the enzyme that activates ghrelin) are expressed in Type I, II, III and IV taste cells of mouse taste buds. In addition, ghrelin and GHSR co-localize in the same taste cells, suggesting that ghrelin works in an autocrine manner in taste cells. To determine a role for ghrelin in modifying taste perception, we performed taste behavioral tests using GHSR null mice. GHSR null mice exhibited significantly reduced taste responsivity to sour (citric acid) and salty (sodium chloride) tastants.

Conclusions/Significance

These findings suggest that ghrelin plays a local modulatory role in determining taste bud signaling and function and could be a novel mechanism for the modulation of salty and sour taste responsivity.  相似文献   

19.
Evolution of Haplotypes at the DRD2 Locus   总被引:4,自引:0,他引:4       下载免费PDF全文
We present here the first evolutionary perspective on haplotypes at DRD2, the locus for the dopamine D2 receptor. The dopamine D2 receptor plays a critical role in the functioning of many neural circuits in the human brain. If functionally relevant variation at the DRD2 locus exists, understanding the evolution of haplotypes on the basis of polymorphic sites encompassing the gene should provide a powerful framework for identifying that variation. Three DRD2 polymorphisms (TaqI “A” and “B” RFLPs and the (CA)n short tandem repeat polymorphism) encompassing the coding sequences have been studied in 15 populations; these markers are polymorphic in all the populations studied, and they display strong and significant linkage disequilibria with each other. The common haplotypes for the two TaqI RFLPs are separately derived from the ancestral haplotype but predate the spread of modern humans around the world. The knowledge of how the various haplotypes have evolved, the allele frequencies of the haplotypes in human populations, and the physical relationships of the polymorphisms to each other and to the functional parts of the gene should now allow proper design and interpretation of association studies.  相似文献   

20.
This study was performed to observe the effects of ghrelin on the activity of gastric distention (GD) sensitive neurons in the arcuate nucleus of hypothalamus (Arc) and on gastric motility in vivo in streptozocin (STZ) induced diabetes mellitus (DM) rats. Electrophysiological results showed that ghrelin could excite GD-excitatory (GD-E) neurons and inhibit GD-inhibitory (GD-I) neurons in the Arc. However, fewer GD-E neurons were excited by ghrelin and the excitatory effect of ghrelin on GD-E neurons was much weaker in DM rats. Gastric motility research in vivo showed that microinjection of ghrelin into the Arc could significantly promote gastric motility and it showed a dose-dependent manner. The effect of ghrelin promoting gastric motility in DM rats was weaker than that in normal rats. The effects induced by ghrelin could be blocked by growth hormone secretagogue receptor (GHSR) antagonist [d-Lys-3]-GHRP-6 or BIM28163. RIA and real-time PCR data showed that the levels of ghrelin in the plasma, stomach and ghrelin mRNA in the Arc increased at first but decreased later and the expression of GHSR-1a mRNA in the Arc maintained a low level in DM rats. The present findings indicate that ghrelin could regulate the activity of GD sensitive neurons and gastric motility via ghrelin receptors in the Arc. The reduced effects of promoting gastric motility induced by ghrelin could be connected with the decreased expression of ghrelin receptors in the Arc in diabetes. Our data provide new experimental evidence for the role of ghrelin in gastric motility disorder in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号