首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Zheng  D Zhang  X Chen  L Yang  Y Wei  X Zhao 《PloS one》2012,7(7):e39119
Endostatin is an important endogenous inhibitor of neovascularization that has been widely used in anti-angiogenesis therapy for the treatment of cancer. However, its clinical application is largely hampered by its low efficacy. Human placenta-derived mesenchymal stem cells (hpMSCs) are particularly attractive cells for clinical use in cell-based therapies. In the present study, hpMSCs were isolated and characterized. We then evaluated the tumor targeting properties and antitumor effects of hpMSCs as gene delivery vehicles for ovarian cancer therapy. We efficiently engineered hpMSCs to deliver endostatin via adenoviral transduction mediated by Lipofectamine 2000. The tropism capacity of the engineered hpMSCs toward tumor cells was then confirmed by in vitro migration assays and in vivo by intraperitoneal injection of hpMSCs into nude mice. The hpMSCs expressing the human endostatin gene demonstrated preferential homing to the tumor site and significantly decreased the tumor volume without apparent systemic toxic effects. These observations were associated with significantly decreased blood sprouts and tumor cell proliferation as well as a dramatically increased tumor apoptosis index. These results suggested that hpMSCs are potentially an effective delivery vehicle for therapeutic genes for the treatment of ovarian cancer.  相似文献   

2.
Genetically modified hematopoietic progenitors represent an important testing platform for a variety of cell-based therapies, pharmaceuticals, diagnostics and other applications. Stable expression of a transfected gene of interest in the cells is often obstructed by its silencing. DNA transposons offer an attractive non-viral alternative of transgene integration into the host genome, but their broad applicability to leukocytes and other “transgene unfriendly” cells has not been fully demonstrated. Here we assess stability of piggyBac transposon-based reporter expression in murine prostate adenocarcinoma TRAMP-C2, human monocyte THP-1 and erythroleukemia K562 cell lines, along with macrophages and dendritic cells (DCs) that have differentiated from the THP-1 transfects. The most efficient and stable reporter activity was observed for combinations of the transposon inverted terminal repeats and one 5’- or two cHS4 core insulators flanking a green fluorescent protein reporter construct, with no detectable silencing over 10 months of continuous cell culture in absence of any selective pressure. In monocytic THP-1 cells, the functional activity of luciferase reporters for NF-κB, Nrf2, or HIF-1α has not decreased over time and was retained following differentiation into macrophages and DCs, as well. These results imply pB as a versatile tool for gene integration in monocytic cells in general, and as a convenient access route to DC-based signaling pathway reporters suitable for high-throughput assays, in particular.  相似文献   

3.
4.
The targeted delivery of therapeutic genes into specific tissues, as well as the determination of the biological fate and potential toxicity of nanoparticles, remains a highly relevant challenge for gene-based therapies. Type 1 insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently over-expressed in lung cancer and mediates cancer cell proliferation as well as tumor growth. In our previous studies, we have successfully applied gene delivery mediated by commercially available nanoparticles (CombiMAG) under a magnetic field, which suppresses IGF-1R expression in a non-small cell lung cancer cell line (A549) in vitro. In the present study, we aimed to investigate the biological distribution and target tumor suppression of magnetofection, as well as its potential toxicity via CombiMAG-carrying plasmids expressing green fluorescent protein (GFP) and short hairpin RNAs (shRNAs) targeting IGF-1R (pGFPshIGF-1Rs) in tumor-bearing mice. The peak expression in various organs appeared 48 h after transfection. Transgene expression via magnetofection was 3-fold improvement than via lipofection. On the 30th day after injection, the tumor size and weight of the CombiMAG-treated group (789.32 ± 39.43 mm(3), 105.5 ± 6.1 mg) were significantly decreased compared with those of the lipofection group (893.83 ± 31.23 mm(3), 164.5 ± 9.1 mg; P< 0.05), and the suppression rate was ~36%. After a 30-day observation, the injection of CombiMAG did not cause any apparent toxicity. Therefore, IGF-1R shRNA nanoparticles can be valuable and safe delivery agents for RNA interference therapy to tumors in vivo.  相似文献   

5.
6.
Nanotechnology is expected to play a vital role in the rapidly developing field of nanomedicine, creating innovative solutions and therapies for currently untreatable diseases, and providing new tools for various biomedical applications, such as drug delivery and gene therapy. In order to optimize the efficacy of nanoparticle (NP) delivery to cells, it is necessary to understand the mechanisms by which NPs are internalized by cells, as this will likely determine their ultimate sub-cellular fate and localisation. Here we have used pharmacological inhibitors of some of the major endocytic pathways to investigate nanoparticle uptake mechanisms in a range of representative human cell lines, including HeLa (cervical cancer), A549 (lung carcinoma) and 1321N1 (brain astrocytoma). Chlorpromazine and genistein were used to inhibit clathrin and caveolin mediated endocytosis, respectively. Cytochalasin A and nocodazole were used to inhibit, respectively, the polymerisation of actin and microtubule cytoskeleton. Uptake experiments were performed systematically across the different cell lines, using carboxylated polystyrene NPs of 40 nm and 200 nm diameters, as model NPs of sizes comparable to typical endocytic cargoes. The results clearly indicated that, in all cases and cell types, NPs entered cells via active energy dependent processes. NP uptake in HeLa and 1321N1 cells was strongly affected by actin depolymerisation, while A549 cells showed a stronger inhibition of NP uptake (in comparison to the other cell types) after microtubule disruption and treatment with genistein. A strong reduction of NP uptake was observed after chlorpromazine treatment only in the case of 1321N1 cells. These outcomes suggested that the same NP might exploit different uptake mechanisms to enter different cell types.  相似文献   

7.
Ischemic heart disease is the main cause of death and morbidity in most industrialized countries. Stem- and progenitor cell-based treatment approaches for ischemic heart disease are therefore an important frontier in cardiovascular and regenerative medicine. Experimental studies have shown that bone-marrow-derived stem cells and endothelial progenitor cells can improve cardiac function after myocardial infarction, clinical phase I and II studies were rapidly initiated to translate this concept into the clinical setting. However, as of now the effects of stem/progenitor cell administration on cardiac function in the clinical setting have not met expectations. Thus, a better understanding of causes of the current limitations of cell-based therapies is urgently required. Importantly, the number and function of endothelial progenitor cells is reduced in patients with cardiovascular risk factors and/or coronary artery disease. These observations may provide opportunities for an optimization of cell-based treatment approaches. This review provides a summary of current evidence for the role and potential of stem and progenitor cells in the pathophysiology and treatment of ischemic heart disease, including the properties, and repair and regenerative capacities of various stem and progenitor cell populations. In addition, we describe modes of stem/progenitor cell delivery, modulation of their homing as well as potential approaches to "prime" stem/progenitor cells for cardiovascular cell-based therapies.  相似文献   

8.
《遗传学报》2022,49(7):599-611
The CD4+FOXP3+ regulatory T (Treg) cells are essential for maintaining immune homeostasis in healthy individuals. Results from clinical trials of Treg cell-based therapies in patients with graft versus host disease (GVHD), type 1 diabetes (T1D), liver transplantation, and kidney transplantation have demonstrated that adoptive transfer of Treg cells is emerging as a promising strategy to promote immune tolerance. Here we provide an overview of recent progresses and current challenges of Treg cell-based therapies. We summarize the completed and ongoing clinical trials with human Treg cells. Notably, a few of the chimeric antigen receptor (CAR)-Treg cell therapies are currently undergoing clinical trials. Meanwhile, we describe the new strategies for engineering Treg cells used in preclinical studies. Finally, we envision that the use of novel synthetic receptors, metabolic regulators, combined therapies, and in vivo generated antigen-specific or engineered Treg cells through the delivery of modified mRNA and CRISPR-based gene editing will further promote the advances of next-generation Treg cell therapies.  相似文献   

9.
Scavenger receptor (SR)-BI mediates the selective uptake of high density lipoprotein (HDL) cholesteryl esters and the efflux of free cholesterol. In Chinese hamster ovary (CHO) cells, SR-BI is predominantly associated with caveolae which we have recently demonstrated are the initial loci for membrane transfer of HDL cholesteryl esters. Because cholesterol accumulation in macrophages is a critical event in atherogenesis, we investigated the expression of SR-BI and caveolin-1 in several macrophage cell lines. Human THP-1 monocytes were examined before and after differentiation to macrophages by treatment with 200 nm phorbol ester for 72 h. Undifferentiated THP-1 cells expressed caveolin-1 weakly whereas differentiation up-regulated caveolin-1 expression greater than 50-fold. In contrast, both undifferentiated and differentiated THP-1 cells expressed similar levels of SR-BI. Differentiation of THP-1 cells increased the percent of membrane cholesterol associated with caveolae from 12% +/- 1.9% to 38% +/- 3.1%. The increase in caveolin-1 expression was associated with a 2- to 3-fold increase in selective cholesterol ether uptake from HDL. Two mouse macrophage cell lines, J774 and RAW, expressed levels of SR-BI similar to differentiated THP-1 cells but did not express detectable levels of caveolin-1. In comparison to differentiated THP-1 cells, RAW and J774 cells internalized 9- to 10-fold less cholesteryl ester. We conclude that differentiated THP-1 cells express both caveolin-1 and SR-BI and that their co-expression is associated with enhanced selective cholesteryl ester uptake.  相似文献   

10.
To determine the initial feasibility of using magnetic resonance (MR) imaging to detect early atherosclerosis, we investigated inflammatory cells labeled with a positive contrast agent in an endothelial cell-based testing system. The human monocytic cell line THP-1 was labeled by overnight incubation with a gadolinium colloid (Gado CELLTrack) prior to determination of the in vitro release profile from T1-weighted MR images. Next, MR signals arising from both a synthetic model of THP-1/human umbilical vein endothelial cell (HUVEC) accumulation and the dynamic adhesion of THP-1 cells to activated HUVECs under flow were obtained. THP-1 cells were found to be successfully--but not optimally--labeled with gadolinium colloid, and MR images demonstrated increased signal from labeled cells in both the synthetic and dynamic THP-1/HUVEC models. The observed THP-1 contrast release profile was rapid, suggesting the need for an agent that is optimized for retention in the target cells for use in further studies. Detection of labeled THP-1 cells was accomplished with no signal enhancement from unlabeled cells. These achievements demonstrate the feasibility of targeting early atherosclerosis with MR imaging, and suggest that using an in vitro system like the one described provides a rapid, efficient, and cost-effective way to support the development and evaluation of novel MR contrast agents.  相似文献   

11.
S Wang  J M Vos 《Journal of virology》1996,70(12):8422-8430
We have developed a miniviral vector, pH300, based on the human herpesviruses 1 and 4, herpes simplex virus type 1 (HSV-1), and Epstein-Barr virus (EBV), carrying EBV sequences for plasmid episomal maintenance and HSV-1 sequences for amplification and packaging in multimeric form into HSV-1 capsids in the presence of a helper virus and helper cell line. A reporter gene, the bacterial lacZ gene, which expressed beta-galactosidase, was inserted into the multiple cloning site of pH300 to make pH300-lac. The packaged pH300-lac DNA was very efficient in infecting human cells in tissue culture. The pH300-lac miniviral stock was used to infect in vitro various human cell types derived from breast cancer, lung cancer, and liver cancer. Up to 95% of cells were infected and expressed beta-galactosidase activity after exposure to viral stock at a multiplicity of infection of 3. There was essentially no apparent cytotoxicity after infection of cultured cells in vitro. To test in vivo gene delivery, human liver tumor cells preimplanted subcutaneously in nude mice and injected in situ with pH300-lac showed high efficiency of ectopic gene expression. The pH300 miniviral vector is a simple and effective gene transfer system which shows potential for gene therapy of cancer and inherited diseases.  相似文献   

12.
Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize antitumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell antitumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.  相似文献   

13.
The thrombospondins (TSPs) are a family of proteins that regulate tissue genesis and remodeling. In many tumors, down-regulation of TSPs accompanies activation of oncogenes or inactivation of tumor suppresser genes and appears to be a prerequisite for the aquisition of a pro-angiogenic phenotype. The normal suppression of angiogenesis by TSP-1 and -2 involves multiple mechanisms including direct interaction with vascular endothelial cell growth factor (VEGF), inhibition of matrix metalloproteinase 9 (MMP9) activation, inhibition of endothelial cell migration and induction of endothelial cell apoptosis. The importance of down-regulation of TSPs for tumor progression is further established by the fact that several different approaches that are designed to increase the levels of TSP-1 or -2 in tumor tissue inhibit tumor growth. These approaches include cell-based gene therapy, low dose chemotherapeutics and systemic delivery of recombinant proteins or synthetic peptides that include type 1 repeat (TSR) sequences. Initial studies indicate that these reagents, in combination with established approaches for the treatment of cancer, will offer more efficacious therapies.  相似文献   

14.
More than 32,000 patients are diagnosed with pancreatic cancer in the United States per year and the disease is associated with very high mortality (1). Urgent need exists to develop novel clinically-translatable therapeutic strategies that can improve on the dismal survival statistics of pancreatic cancer patients. Although gene therapy in cancer has shown a tremendous promise, the major challenge is in the development of safe and effective delivery system, which can lead to sustained transgene expression. Gelatin is one of the most versatile natural biopolymer, widely used in food and pharmaceutical products. Previous studies from our laboratory have shown that type B gelatin could physical encapsulate DNA, which preserved the supercoiled structure of the plasmid and improved transfection efficiency upon intracellular delivery. By thiolation of gelatin, the sulfhydryl groups could be introduced into the polymer and would form disulfide bond within nanoparticles, which stabilizes the whole complex and once disulfide bond is broken due to the presence of glutathione in cytosol, payload would be released (2-5). Poly(ethylene glycol) (PEG)-modified GENS, when administered into the systemic circulation, provides long-circulation times and preferentially targets to the tumor mass due to the hyper-permeability of the neovasculature by the enhanced permeability and retention effect (6). Studies have shown over-expression of the epidermal growth factor receptor (EGFR) on Panc-1 human pancreatic adenocarcinoma cells (7). In order to actively target pancreatic cancer cell line, EGFR specific peptide was conjugated on the particle surface through a PEG spacer.(8) Most anti-tumor gene therapies are focused on administration of the tumor suppressor genes, such as wild-type p53 (wt-p53), to restore the pro-apoptotic function in the cells (9). The p53 mechanism functions as a critical signaling pathway in cell growth, which regulates apoptosis, cell cycle arrest, metabolism and other processes (10). In pancreatic cancer, most cells have mutations in p53 protein, causing the loss of apoptotic activity. With the introduction of wt-p53, the apoptosis could be repaired and further triggers cell death in cancer cells (11). Based on the above rationale, we have designed EGFR targeting peptide-modified thiolated gelatin nanoparticles for wt-p53 gene delivery and evaluated delivery efficiency and transfection in Panc-1 cells.  相似文献   

15.

Background

The production of cell-based cancer vaccines by gene vectors encoding proteins that stimulate the immune system has advanced rapidly in model systems. We sought to develop non-viral transfection methods that could transform patient tumor cells into cancer vaccines, paving the way for rapid production of autologous cell-based vaccines.

Methods

As the extended culture and expansion of most patient tumor cells is not possible, we sought to first evaluate a new technology that combines electroporation and chemical transfection in order to determine if plasmid-based gene vectors could be instantaneously delivered to the nucleus, and to determine if gene expression was possible in a cell-cycle independent manner. We tested cultured cell lines, a primary murine tumor, and primary human leukemia cells from diagnostic work-up for transgene expression, using both RFP and CD137L expression vectors.

Results

Combined electroporation-transfection directly delivered plasmid DNA to the nucleus of transfected cells, as demonstrated by confocal microscopy and real-time PCR analysis of isolated nuclei. Expression of protein from plasmid vectors could be detected as early as two hours post transfection. However, the kinetics of gene expression from plasmid-based vectors in tumor cell lines indicated that optimal gene expression was still dependent on cell division. We then tested to see if pediatric acute lymphocytic leukemia (ALL) would also display the rapid gene expression kinetics of tumor cells lines, determining gene expression 24 hours after transfection. Six of 12 specimens showed greater than 17% transgene expression, and all samples showed at least some transgene expression.

Conclusion

Given that transgene expression could be detected in a majority of primary tumor samples analyzed within hours, direct electroporation-based transfection of primary leukemia holds the potential to generate patient-specific cancer vaccines. Plasmid-based gene therapy represents a simple means to generate cell-based cancer vaccines and does not require the extensive infrastructure of a virus-based vector system.  相似文献   

16.
Adoptive cell transfer (ACT), a form of cell-based immunotherapy that eliminates cancer by restoring and strengthening the body’s immune system, has revolutionized cancer treatment. ACT entails intravenous transfer of either tumor-resident or peripheral blood-modified immune cells into cancer patients to mediate anti-tumor response. Although these immune cells control and eradicate cancer via enhanced cytotoxicity against specific tumor antigens, several side effects have been frequently reported in clinical trials. Recently, exosomes, potential cell-free therapeutics, have emerged as an alternative to cell-based immunotherapies, due to their higher stability under same storage condition, lower risk of GvHD and CRS, and higher resistance to immunosuppressive tumor microenvironment. Exosomes, which are nano-sized lipid vesicles, are secreted by living cells, including immune cells. Exosomes contain proteins, lipids, and nucleic acids, and the functional role of each exosome is determined by the specific cargo derived from parental cells. Exosomes derived from cytotoxic effectors including T cells and NK cells exert anti-tumor effects via proteins such as granzyme B and FasL. In this mini-review, we describe the current understanding of the ACT and immune cell-derived exosomes and discuss the limitations of ACT and the opportunities for immune cell-derived exosomes as immune therapies.  相似文献   

17.
Monocytes are the major inflammatory cells that infiltrate most solid tumors in humans. The interaction of tumor cells with infiltrating monocytes and their adhesion to these monocytes play a significant role in altering the tumor to become more aggressive. Recently, exposure to lipopolysaccharide (LPS) was suggested to promote cancer cell adhesion to monocytes; however, little is known about the details of the signaling mechanism involved in this process. In this study, we found that LPS up-regulates ICAM-1 expression in MDA-MB-231 breast cancer cells, which facilitates their adhesion to THP-1 monocytes. In addition, we analyzed the signaling mechanism underlying the up-regulation of ICAM-1 and found that the siRNA-mediated depletion of BLT2 markedly suppressed the LPS-induced expression of ICAM-1 in MDA-MB-231 cells and the subsequent adhesion of these cells to THP-1 monocytes. Moreover, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies downstream of LPS/TLR4 and upstream of BLT2 and that this ‘MyD88-BLT2’ cascade mediates ERK activation and subsequent ICAM-1 expression, which is critical for the adhesion of MDA-MB-231 cells to THP-1 monocytes. Taken together, our results demonstrate for the first time that LPS up-regulates ICAM-1 expression in breast cancer cells via a MyD88-BLT2-ERK-linked signaling cascade, leading to the increased adhesion of breast cancer cells to monocytes.  相似文献   

18.
Lung disease is a leading cause of death and likely to become an epidemic given increases in pollution and smoking worldwide. Advances in stem cell therapy may alleviate many of the symptoms associated with lung disease and induce alveolar repair in adults. Concurrent with the ongoing search for stem cells applicable for human treatment, precise delivery and homing (to the site of disease) must be reassured for successful therapy. Here, I report that stem cells can safely be instilled via the trachea opening a non-stop route to the lung. This method involves a skin incision, caudal insertion of a cannula into and along the tracheal lumen, and injection of a stem cell vehicle mixture into airways of the lung. A broad range of media solutions and stabilizers can be instilled via tracheotomy, resulting in the ability to deliver a wider range of cell types. With alveolar epithelium confining these cells to the lumen, lung expansion and negative pressure during inhalation may also assist in stem cell integration. Tracheal delivery of stem cells, with a quick uptake and the ability to handle a large range of treatments, could accelerate the development of cell-based therapies, opening new avenues for treatment of lung disease.  相似文献   

19.
Mechanisms of unassisted delivery of RNA therapeutics, including inhibitors of microRNAs, remain poorly understood. We observed that the hepatocellular carcinoma cell line SKHEP1 retains productive free uptake of a miR-21 inhibitor (anti-miR-21). Uptake of anti-miR-21, but not a mismatch (MM) control, induces expression of known miR-21 targets (DDAH1, ANKRD46) and leads to dose-dependent inhibition of cell growth. To elucidate mechanisms of SKHEP1 sensitivity to anti-miR-21, we conducted an unbiased shRNA screen that revealed tumor susceptibility gene 101 (TSG101), a component of the endosomal sorting complex required for transport (ESCRT-I), as an important determinant of anti-proliferative effects of anti-miR-21. RNA interference-mediated knockdown of TSG101 and another ESCRT-I protein, VPS28, improved uptake of anti-miR-21 in parental SKHEP1 cells and restored productive uptake to SKHEP1 clones with acquired resistance to anti-miR-21. Depletion of ESCRT-I in several additional cancer cell lines with inherently poor uptake resulted in improved activity of anti-miR-21. Finally, knockdown of TSG101 increased uptake of anti-miR-21 by cancer cells in vivo following systemic delivery. Collectively, these data support an important role for the ESCRT-I complex in the regulation of productive free uptake of anti-miRs and reveal potential avenues for improving oligonucleotide free uptake by cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号