共查询到20条相似文献,搜索用时 0 毫秒
1.
Carvalho V Castanheira P Madureira P Ferreira SA Costa C Teixeira JP Faro C Vilanova M Gama M 《Biotechnology and bioengineering》2011,108(8):1977-1986
Interleukin-10 (IL-10) is an anti-inflammatory cytokine, which active form is a non-covalent homodimer. Given the potential of IL-10 for application in various medical conditions, it is essential to develop systems for its effective delivery. In previous work, it has been shown that a dextrin nanogel effectively incorporated and stabilized rIL-10, enabling its release over time. In this work, the delivery system based on dextrin nanogels was further analyzed. The biocompatibility of the nanogel was comprehensively analyzed, through cytotoxicity (lactate dehydrogenase (LDH) release, MTS, Live, and Dead) and genotoxicity (comet) assays. The release profile of rIL-10 and its biological activity were evaluated in vivo, using C57BL/6 mice. Although able to maintain a stable concentration of IL-10 for at least 4 h in mice serum, the amount of protein released was rather low. Despite this, the amount of rIL-10 released from the complex was biologically active inhibiting TNF-α production, in vivo, by LPS-challenged mice. In spite of the significant stabilization achieved using the nanogel, rIL-10 still denatures rather quickly. An additional effort is thus necessary to develop an effective delivery system for this cytokine, able to release active protein over longer periods of time. Nevertheless, the good biocompatibility, the protein stabilization effect and the ability to perform as a carrier with controlled release suggest that self-assembled dextrin nanogels may be useful protein delivery systems. 相似文献
2.
Nakai T Hirakura T Sakurai Y Shimoboji T Ishigai M Akiyoshi K 《Macromolecular bioscience》2012,12(4):475-483
A hyaluronic acid-based anionic nanogel formed by self-assembly of cholesteryl-group-bearing HA is designed for protein delivery. The HA nanogel spontaneously binds various types of proteins without denaturation, such as recombinant human growth hormone, erythropoietin, exendin-4, and lysozyme. The HA nanogel shows unique colloidal properties, in particular that an injectable hydrogel is formed by salt-induced association of the HA nanogel. A pharmacokinetic study in rats shows that an in situ gel formulation, prepared by simply mixing rhGH and HA nanogel in phosphate buffer, maintains plasma rhGH levels within a narrow range over one week. Therefore, HA nanogels offer a simple method for easy formulation of therapeutic proteins and are effective for sustained protein release systems. 相似文献
3.
Development of a temperature-sensitive composite hydrogel for drug delivery applications 总被引:9,自引:0,他引:9
To develop materials with improved controllability and specificity, we have investigated composite hydrogels with temperature-sensitive properties using photo cross-linking. Specifically, our novel composite materials are composed of nanoparticles made of poly(N-isopropylacrylamide) (PNIPAAm), temperature-sensitive hydrogels, and a photo cross-linker, poly(ethylene glycol) diacrylate (PEGDA). PNIPAAm particles were synthesized by emulsion polymerization and by varying concentration of four main factors: monomers (N-isopropylacrylamide), cross-linkers (N,N'-methylenebisacrylamide), surfactants (sodium dodecyl sulfate, SDS), and initiators (potassium persulfate). We found that the surfactant, SDS, was the most important factor affecting the particle size using the factorial design analysis. Additionally, both nano- and micro-PNIPAAm particles had excellent loading efficiency (>80% of the incubated bovine serum albumin (BSA)), and their release kinetics expressed an initial burst effect followed by a sustained release over time. Furthermore, BSA-loaded PNIPAAm nanoparticles were used to form three-dimensional gel networks by means of a photocuring process using a photo cross-linker, PEGDA, and a photoinitiator, Irgacure-2959 (I-2959). Results from scanning electron microscopy and in vitro BSA release studies from these hydrogels demonstrated that PNIPAAm nanoparticles were embedded inside the PEG polymeric matrix and the composite material was able to release BSA in response to changes in temperature. These PNIPAAm nanoparticle hydrogel networks may have advantages in applications of controlled drug delivery systems because of their temperature sensitivity and their ability of in situ photopolymerization to localize at the specific region in the body. 相似文献
4.
Rafael Ischakov Lihi Adler-Abramovich Ludmila Buzhansky Talia Shekhter Ehud Gazit 《Bioorganic & medicinal chemistry》2013,21(12):3517-3522
Peptide-based hydrogel nanoparticles represent a promising alternative to current drug delivery approaches. We have previously demonstrated that the Fmoc-FF aromatic dipeptide building block can self-assemble in aqueous solutions to form nano-scaled ordered hydrogels of remarkable mechanical rigidity. Here, we present a scalable process for the assembly of this peptide into hydrogel nanoparticles (HNPs) aimed to be utilized as potential drug delivery carriers. Fmoc-FF based HNPs were formulated via modified inverse-emulsion method using vitamin E-TPGS as an emulsion stabilizer and high speed homogenization. The formed HNPs exhibited two distinguishable populations with an average size of 21.5 ± 1.3 and 225.9 ± 0.8 nm. Gold nanoparticles were encapsulated within the hydrogel nanoparticles as contrast agents to monitor the formation of the assemblies and their ultrastructural properties. Next, we demonstrated a robust experimental procedure developed and optimized for the formulation, purification, storage and handling procedures of HNPs. Encapsulation of doxorubicin (Dox) and 5-flourouracil (5-Fu) within the HNPs matrix showed release kinetics of the drugs depending on their chemical structure, molecular weight and hydrophobicity. The results clearly indicate that Fmoc-FF based hydrogel nanoparticles have the potential to be used as encapsulation and delivery system of various drugs and bioactive molecules. 相似文献
5.
A thermoreversible fibrillar hydrogel has been formed from an aqueous lysozyme solution in the presence of dithiothreitol (DTT). Its physical properties and potential as a tissue engineering scaffold have been explored. Hydrogels were prepared by dissolving 3 mM protein in a 20 mM DTT/water mixture, heating to 85 degrees C and cooling at room temperature. No gel was observed for the equivalent sample without DTT. The elastic nature of the gel formed was confirmed by rheology, and the storage modulus of our gel was found to be of the same order of magnitude as for other cross-linked biopolymers. Micro differential scanning calorimetry (microDSC) experiments confirmed that the hydrogel was thermally reversible and that gelation and melting occurs through a solid-liquid-like first-order transition. Infrared spectroscopy of the hydrogel and transmission electron microscopy studies of very dilute samples revealed the presence of beta-sheet-rich fibrils that were approximately 4-6 nm in diameter and 1 mum in length. These fibrils are thought to self-assemble along their long axes to form larger fibers that become physically entangled to form the three-dimensional network observed in both cryo-scanning electron microscopy (cryo-SEM) and small-angle neutron scattering (SANS) studies. The hydrogel was subsequently cultured with 3T3 fibroblasts and cells spread extensively after 7 days and stretched actin filaments formed that were roughly parallel to each other, indicating the development of organized actin filaments in the form of stress fibers in cells. 相似文献
6.
A biodegradable organo hydrogel hybrid material is presented, which is formed through the water uptake of a phosphoryl choline zwitterionomer (PC ionomer). The water uptake and subsequent swelling is induced by the phosphoryl choline (PC) end group functionality. The nonfunctional poly(trimethylene carbonate) is hydrophobic and as such does not absorb any water. Disks of the PC ionomer showed significant water uptake, typically above 90 wt % when fully swollen. This high water uptake triggered us to utilize the material for drug and protein loading and subsequent release. Fluorescein and fluorescein-labeled proteins were used as simple models for the loading and release characteristics of the material which was studied by fluorescence spectroscopy. The rate of release of the loaded molecules was compared, and it was shown that the release rate was similar for FITC and insulin but slightly slower for albumin. These results suggest that the PC ionomer may be used as a biodegradable and low elastic modulus material with an additional drug and/or protein release capacity. Such materials are of particular interest for use in a variety of applications in vivo, for example as drug eluting stents. 相似文献
7.
8.
Faraj JA Dorati R Schoubben A Worthen D Selmin F Capan Y Leung K DeLuca PP 《AAPS PharmSciTech》2007,8(1):E177-E185
The objective of this study was to characterize the stability of KSL-W, an antimicrobial decapeptide shown to inhibit the
growth of oral bacterial strains associated with caries development and plaque formation, and its potential as an antiplaque
agent in a chewing gum formulation. KSL-W formulations with or without the commercial antibacterial agent cetylpyridinium
chloride (CPC) were prepared. The release of KSL-W from the gums was assessed in vitro using a chewing gum apparatus and in
vivo by a chew-out method. A reverse-phase high-performance liquid chromatography method was developed for assaying KSL-W.
Raw material stability and temperature and pH effects on the stability of KSL-W solutions and interactions of KSL-W with tooth-like
material, hydroxyapatite discs, were investigated.
KSL-W was most stable in acidic aqueous solutions and underwent rapid hydrolysis in base. It was stable to enzymatic degradation
in human saliva for 1 hour but was degraded by pancreatic serine proteases. KSL-W readily adsorbed to hydroxyapatite, suggesting
that it will also adsorb to the teeth when delivered to the oral cavity. The inclusion of CPC caused a large increase in the
rate and extent of KSL-W released from the gums. The gum formulations displayed promising in vitro/ in vivo release profiles,
wherein as much as 90% of the KSL-W was released in a sustained manner within 30 minutes in vivo. These results suggest that
KSL-W possesses the stability, adsorption, and release characteristics necessary for local delivery to the oral cavity in
a chewing gum formulation, there-by serving as a novel antiplaque agent.
Published: March 30, 2007 相似文献
9.
Peptide hydrogels show immense promise as therapeutic materials. Here we present a rationally designed multidomain peptide that self-assembles into nanofibers approximately 8 nm wide, 2 nm high, and micrometers in length in the presence of Mg(2+). At a concentration of 1% by weight, the peptide forms an extensive nanofibers network that results in a physically cross-linked viscoelastic hydrogel. This hydrogel undergoes shear thinning and then quickly recovers nearly 100% of its elastic modulus when the shearing force is released, making it ideal for use as an injectable material. When placed in the presence of human embryonic stem cells (ESCs), the nanofibrous hydrogel acts like a sponge, soaking up the vast array of growth factors and cytokines released by the ESCs. The peptide hydrogel sponge can then be removed from the presence of the ESCs and placed in a therapeutic environment, where it can subsequently release these components. In vitro experiments demonstrate that release of stem cell secretome from these hydrogels in the presence of glomerular epithelial cells treated with high glucose significantly decreased protein permeability in a model of diabetes-induced kidney injury. Tracking experiments were then performed to determine the fate of the hydrogel upon injection in vivo. Hydrogels labeled with a Gd(3+) MRI contrast agent were injected into the abdominal cavity of mice and found to remain localized over 24 h. This implies that the hydrogel possesses sufficient rigidity to remain localized and release stem cell secretome over time rather than immediately dissolving in the abdominal cavity. Together, the shear thinning and recovery as observed by rheometry as well as secretome absorption and release in vivo demonstrate the potential of the nanofibrous multidomain peptide hydrogel as an injectable delivery agent. 相似文献
10.
Wang Hui Zhang Xin Qiu Jin Wang Kaikai Meng Kun Luo Huiying Su Xiaoyun Ma Rui Huang Huoqing Yao Bin 《Journal of industrial microbiology & biotechnology》2019,46(1):113-123
Journal of Industrial Microbiology & Biotechnology - Bacillus amyloliquefaciens K11 is a hyperproducer of extracellular neutral protease, which can produce recombinant homologous protein... 相似文献
11.
Stable carriers are required for delivering siRNA to cells. The use of polyethyleneimine (PEI) as gene carrier has been researched extensively; however, it does not provide sufficient protection from RNase degradation and is not suitable for targeted siRNA delivery to specific cells. In this study, two repeats of Fc binding domain of protein G (C2) were used to introduce a specific antibody to PEI-based carrier of siRNA. In addition, we used the double-stranded RNA binding domain (DRBD) that can bind to siRNA. The complex, consisting of PEI, siRNA and constructed fusion protein, TrxC2DRBD including C2 and DRBD domains, could protect siRNA from RNase degradation. Furthermore, cell specific siRNA delivery into HeLa cells could be performed by the complex fusion with specific antibodies via C2 domain. 相似文献
12.
13.
14.
Efficient target gene delivery into eukaryotic cells is important for biotechnological research and gene therapy. Gene delivery based on proteins, including histones, has recently emerged as a powerful non-viral DNA transfer technique. Here, we investigated the potential use of a recombinant mussel adhesive protein, hybrid fp-151, as a gene delivery material, in view of its similar basic amino acid composition to histone proteins, and cost-effective and high-level production in Escherichia coli. After confirming DNA binding affinity, we transfected mammalian cells (human 293T and mouse NIH/3T3) with foreign genes using hybrid fp-151 as the gene delivery carrier. Hybrid fp-151 displayed comparable transfection efficiency in both mammalian cell lines, compared to the widely used transfection agent, Lipofectamine 2000. Our results indicate that this mussel adhesive protein may be used as a potential protein-based gene-transfer mediator. 相似文献
15.
16.
Sorbi C Bergamin M Bosi S Dinon F Aroulmoji V Khan R Murano E Norbedo S 《Carbohydrate research》2009,344(1):91-2058
Selective halogenation of hyaluronan and partial halogen substitution by methotrexate led to 6-chloro-6-deoxy-6-O-methotrexylhyaluronan, a potential antitumor drug. The remaining halogen could be further substituted by a second organic carboxylate, leading to mixed esters. 6-O-Acetyl-6-O-methotrexylhyaluronan and 6-O-butyryl-6-O-methotrexylhyaluronan were thus synthesized and characterized by NMR spectroscopy. 相似文献
17.
18.
For improving effectiveness of conventional chemotherapy of subcutaneous tumor, we selected 2-methoxyestradiol (2-ME) as a model drug, local injectable PLGA-PEG-PLGA copolymer thermosensitive hydrogel loading 2-ME liposomes instead of free 2-ME as a novel two-phase drug delivery system was developed, which avoid rapid clearance of liposomes follwing systemic administration. This new transport system was characterized in vitro and in vivo including rheological behavior, thermo-sensitiveness, stability, released character and intratumoral delivery. The PLGA-PEG-PLGA copolymer solution exhibited still reversible thermosensitive property and better syringeability after incorporated 2-ME liposomes. The 2-ME liposomes were demonstrated stable in the hydrogel by five methods such as scanning electron microscopy (SEM), fluorescent labeling, opalescence, particle size and ultrafiltration methods. Results showed that intact liposomes could be released from the hydrogel and following zero-order model, and sustained release one–two months in vitro and in vivo. In vivo release data demonstrating that 2-ME liposomes could be transported to tumor site, improved therapeutic efficacy and bioavailability of 2-ME liposomes in subcutaneous tumor chemotherapy. 相似文献
19.
20.
The set of fuzzy connectives can be seen as an important combination tool, such as in combining the antecedent sets of the rules, in multi-criteria decision making and in combining the outputs of neural classifiers in a multi-neural system. This papers investigates the performance of some fuzzy combination schemes applied to a multi hybrid neural system which is composed of neural and fuzzy neural networks. An empirical evaluation in a handwritten numeral recognition task is used to investigate the performance of the presented fuzzy methods with some existing combination methods. 相似文献