首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lipolytic enzyme-producing thermophilic microorganism, recently isolated from a hot spring in Galicia (North Western Spain), has been investigated. First, the strain was genetically identified and tentatively named Bacillus thermoamylovorans CH6B. It produced significant levels (around 450 U/L) of extracellular lipolytic activity in shake flask cultures, and the most suitable conditions for this biological process were found at temperatures between 50 and 55 °C, and an initial pH value around 7.0. Next, a preliminary scaling up of the process was carried out in a 5-L stirred tank bioreactor, and it was concluded that operation at agitation and aeration rates of 300 rpm and 0.33 vvm, respectively, were advisable. In both type of cultures, the results were successfully fitted to logistic equations, and the relationship between lipase production and cell growth was investigated. Furthermore, some relevant properties of the crude lipolytic enzyme extracts were assessed. The crude biocatalyst preferentially hydrolysed p-nitrophenyl esters of medium and long-chain fatty acids. Thermal stability in aqueous solution of the produced enzyme was also promising, and the deactivation profiles were fitted to a series-type deactivation model.  相似文献   

2.
In this study, lipolytic enzyme production by Thermus thermophilus HB27 at bioreactor scale has been investigated. Cultivation was performed in a 5-L stirred tank bioreactor in discontinuous mode, at an agitation speed of 200 rpm. Different variables affecting intra- and extra-cellular lipolytic enzyme production such as culture temperature and aeration rate have been analysed. The bacterium was able to grow within the temperature range tested (from 60 to 70 °C) with an optimum value of 70 °C for intra- and extra-cellular lipolytic enzyme production.On the other hand, various aeration levels (from 0 to 2.5 L/min) were employed. A continuous supply of air was necessary, but no significant improvement in biomass or enzyme production was detected when air flow rates were increased above 1 L/min. Total lipolytic enzyme production reached a maximum of 167 U/L after 3 days, and a relatively high concentration of extra-cellular activity was detected (40% of the total amount). Enzyme yield was around 158 U/g cells. Moreover, it is noteworthy that the lipolytic activity obtained operating at optimal conditions (70 °C and air flow of 1 L/min) was about five-fold higher than that attained in shake flask cultures  相似文献   

3.
A new strain of the yeast Metschnikowia koreensis was grown in shake flasks and a stirred bioreactor for the production of carbonyl reductase. The optimal conditions in the bioreactor for maximizing the biomass specific activity of the enzyme were found to be: a medium composed of glucose (20 g/L), peptone (5 g/L), yeast extract (5 g/L) and zinc sulfate (0.3g/L); the pH controlled at 7; the temperature controlled at 25 °C; an agitation speed of 500 rpm; and an aeration rate of 0.25 vvm. In the bioreactor, a biomass specific enzyme activity of 115.6 U/gDCW was obtained and the maximum biomass concentration was 15.3 gDCW/L. The biomass specific enzyme activity obtained in the optimized bioreactor culture was 11-fold higher than the best result achieved in shake flasks. The bioreactor culture afforded a 2.7-fold higher biomass concentration than could be attained in shake flasks.  相似文献   

4.
Medium composition and culture conditions for the xylanases production by Bacillus mojavensis A21 were optimized using two statistical methods: Plackett-Burman design applied to find the key ingredients and conditions for the best yield of enzyme production and Box-Behnken design used to optimize the value of the four significant variables: barley bran, NaCl, agitation, and cultivation time. The optimal conditions for higher production of xylanases were barley bran 18.66g/l, NaCl 1.04g/l, speed of agitation 176rpm and cultivation time 34.08h. Under these conditions, the xylanase experimental yield (7.45U/ml) closely matched the yield predicted by the statistical model (7.23U/ml) with R(2)=0.98. The medium optimization resulted in a 6.83-fold increase in xylanase production compared to that of the initial medium. Best xylanase activity was observed at the temperature of 50°C and at pH 8.0. The enzyme retained more 96% of its activity after 24h at pH ranges from 7.0 to 90.0. The enzyme preserved more 80% of its initial activity after 60min of pre-incubation from 30°C to 60°C. The main hydrolysis products yielded from corncob extracted xylan were xylobiose and xylotriose, suggesting the good potential of strain A21 in xylooligosaccharides production.  相似文献   

5.
The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.  相似文献   

6.
Production of α-amylase in a laboratory-scale packed-bed bioreactor by Bacillus sp. KR-8104 under solid-state fermentation (SSF) with possibility of temperature control and monitoring was studied using wheat bran (WB) as a solid substrate. The simultaneous effects of aeration rate, initial substrate moisture, and incubation temperature on α-amylase production were evaluated using response surface methodology (RSM) based on a Box-Behnken design. The optimum conditions for attaining the maximum production of α-amylase were 37°C, 72% (w/w) initial substrate moisture, and 0.15 L/min aeration. The average enzyme activity obtained under the optimized conditions was 473.8 U/g dry fermented substrate. In addition, it was observed that the production of enzyme decreased from the bottom of the bioreactor to the top.  相似文献   

7.
Several studies in laboratory-scale bioreactors are undertaken in order to verify the beneficial effect of thermal spring water in the culture medium of Thermus thermophilus HB27. Two bioreactor configurations, stirred tank and airlift, are investigated to determine the most suitable one to develop a continuous process. Water mineral composition affects the lipolytic enzyme secretion and growth of T. thermophilus HB27 in both bioreactor configurations. Furthermore, the lipolytic activity is strongly enhanced when stirred tank bioreactor is used. Moreover, operation in a stirred tank at an agitation rate of 650 rpm leads to the highest total lipolytic activity (intra- and extracellular enzyme) around 280 U/L after 32 h. Continuous cultures operating in the optimised conditions determined in batch cultures are carried out. It is noticeable that the stirred tank bioreactor was able to operate in a continuous flow mode without operational problems. In addition, the lipolytic activity obtained is about 2-fold higher than that attained in batch cultures.  相似文献   

8.
A lipolytic activity was located in the chicken uropygial glands, from which a carboxylesterase (CUE) was purified. Pure CUE has an apparent molecular mass of 50 kDa. The purified esterase displayed its maximal activity (200 U/mg) on short-chain triacylglycerols (tributyrin) at a temperature of 50°C. No significant lipolytic activity was found when medium chain (trioctanoin) or long chain (olive oil) triacylglycerols were used as substrates. The enzyme retained 75% of its maximal activity when incubated during 2h at 50°C. The NH(2)-terminal amino acid sequence showed similarities with the esterase purified recently from turkey pharyngeal tissue. Esterase activity remains stable after its incubation during 30 min in presence of organic solvents such as hexane or butanol. CUE is a serine enzyme since it was inactivated by phenylmethanesulphonyl fluoride (PMSF), a serine-specific inhibitor. The purified enzyme, which tolerates the presence of some organic solvent and a high temperature, can be used in non-aqueous synthesis reactions. Hence, the uropygial esterase immobilised onto CaCO(3) was tested to produce the isoamyl and the butyl acetate (flavour esters). Reactions were performed at 50°C in presence of hexane. High synthesis yields of 91 and 67.8% were obtained for isoamyl and butyl acetate, respectively.  相似文献   

9.
The enzyme glucosyltransferase is an industrially important enzyme since it produces non-cariogenic isomaltulose (6-O-alpha-D-glucopyronosyl-1-6-D-fructofuranose) from sucrose by intramolecular transglucosylation. The experimental designs and response surface methodology (RSM) were applied for the optimisation of the nutrient concentrations in the culture medium for the production of glucosyltransferase by Erwinia sp. D12 in shaken flasks at 200 rpm and 30 degrees C. A statistical analysis of the results showed that, in the range studied, the factors had a significant effect (P < 0.05) on glucosyltransferase production and the highest enzyme activity (10.84 U/ml) was observed in culture medium containing sugar cane molasses (150 g l(-1)), corn steep liquor (20 g l(-1)), yeast extract Prodex Lac SD (15 g l(-1)) and K2HPO4 (0.5 g l(-1)) after 8 h at 30 degrees C. The production of cell biomass by the strain of Erwinia sp. D12 was carried out in a 6.6-l fermenter with a mixing rate of 200 rpm and an aeration rate of 1 vvm. Fermentation time, cellular growth, medium pH and glucosyltransferase production were observed. The greatest glucosyltransferase activity was 22.49 U/ml, obtained after 8 h of fermentation. The isomaltulose production from sucrose was performed using free Erwinia sp. D12 cells in a batch process using an orbital shaker. The influence of the parameters sucrose concentration, temperature, pH, and cell concentration on the conversion of sucrose into isomaltulose was studied. The free cells showed a high conversion rate of sucrose into isomaltulose using batch fermentation, obtaining an isomaltulose yield of 72.11% from sucrose solution 35% at 35 degrees C.  相似文献   

10.
Kluyveromyces marxianus was grown in submerged culture in a complex medium with several potential inducers of lipolytic activity (triacylglycerols, fatty acids). The highest extracellular lipolytic enzyme production (about 80 U ml–1 in 3 d) was obtained when the medium was supplemented with 2 g urea l–1 plus 5 g tributyrin l–1. Addition of surfactants (1 g l–1) did not improve production. The lipase had a high thermal stability in aqueous solution (73% residual activity after 9 d at 50 °C, 16 min half-life time at 100 °C). It was also stable at acidic pH and showed good tolerance to organic solvents (70% residual activity after 2 d in n-hexane of cyclohexane).  相似文献   

11.
After induction, seven strains ofBotrytis cinerea released into the culture broth considerable amounts of laccase in a brief production time. The set-up of a suitable production process was studied with a selected strain in a 10-L fermenter. The optimum fermentation conditions were a 3% inoculum with a high degree of sporulation, a simple medium containing 20 g L–1 of glucose and 2 g L–1 of yeast extract at pH 3.5, 2 g L–1 gallic acid as inducer, added after 2 days of growth, an agitation speed of 300 rpm, an aeration rate of 1.2 vvm and a temperature of 24°C. By optimizing the culture conditions, the enzyme activity reached 28 U ml–1 in 5 days with a specific activity of 560 U mg–1 protein. The best procedure to obtain a suitable crude enzyme preparation was concentration of the supernatant medium to 10% of the initial volume by ultrafiltration, followed by a fractional precipitation with ethanol. The optimum pH and temperature for laccase activity were 5.5 and 40°C, respectively, with syringaldazine as the substrate.  相似文献   

12.
Production of extracellular amylase was demonstrated under stress conditions of high temperature and high salinity in aerobically cultivated culture of a newly isolated moderately halophilic bacterium of spore-forming Halobacillus sp. strain MA-2 in medium containing starch, peptone, beef extract, and NaCl. The maximum amylase production was secreted in the presence of 15% (w/v) Na(2)SO(4) (3.2 U ml(-1)). The isolate was capable of producing amylase in the presence of NaCl, NaCH(3)COOH, or KCl, with the results NaCl>NaCH(3)COOH>KCl. Maximum amylase activity was exhibited in the medium containing 5% (w/v) NaCl (2.4 U ml(-1)). Various carbon sources induced enzyme production. The potential of different carbohydrates in the amylase production was in the order: dextrin>starch>maltose>lactose>glucose>sucrose. In the presence of sodium arsenate (100 mM), maximum production of the enzyme was observed at 3.0 U ml(-1). Copper sulfate (0.1 mM) decreased the amylase production considerately, while lead nitrate had no significant enhancement on amylase production (p<0.05). The pH, temperature, and aeration optima for enzyme production were 7.8, 30 degrees C, and 200 rpm, respectively, while the optimum pH and temperature for enzyme activity was 7.5-8.5 and 50 degrees C, respectively.  相似文献   

13.
In the present study, the optimization of production and reaction conditions of polygalacturonase produced by a fungus Byssochlamys fulva MTCC 505 was achieved. The production of polygalacturonase with a considerable activity of 1.28 IU/ml was found when the culture was shaken at 30°C for 5 days in 100 ml of medium containing (w/v) 10 g/l pectin, 2 g/l NaNO?, 1 g/l KH?PO?, 0.5 g/l KCl, 0.5 g/l MgSO?. 7H?O, 0.001 g/l FeSO?. 7H?O, 0.001 g/l CaCl?. The best carbon and nitrogen source for this enzyme were pectin (1%) and Ca(NO?)? (0.1%), respectively. The enzyme gave maximum activity at incubation time of 72 h, temperature of 30°C and pH 4.5. During the optimization of reaction conditions, the enzyme showed maximum activity in sodium citrate buffer (50 mM) of pH 5.5 at 50°C reaction temperature for 15 minutes of incubation. The enzyme showed greater affinity for polygalacturonic acid as substrate (0.5%). Km and Vmax values were 0.15 mg/ml and 4.58 μmol/ml/min. The effect of various phenolics, thiols, protein inhibitors and metal ions on the enzyme activity was investigated. The enzyme was quite stable at 4°C and 30°C. At 40°C the half life of the enzyme was 6 h and at 60°C it was 2 h.  相似文献   

14.
分支杆菌噬菌体D29 Lysin B的表达、纯化及酶学性质分析   总被引:1,自引:0,他引:1  
克隆表达噬菌体D29 LysinB(LysB)并对其酶学性质进行研究。以噬菌体D29基因组为模板,用PCR方法扩增lysB基因,与表达载体pET22b连接,将重组质粒转化至Escherichiacoli BL21(DE3)中表达,镍柱亲和层析(Ni-NTA)纯化可溶性表达产物,并对重组蛋白的活性进行分析检测。结果表明:成功构建了pET22b-lysB表达载体,并从1L的LB培养物中获得了33.2mg高纯度重组蛋白(His-LysB);His-LysB具有分解脂肪的能力,属于脂肪酶;生物化学特性分析表明:丁酸对硝基苯(pNPB)为水解底物,His-LysB热稳定性不佳,30℃以下比较稳定,随着温度的升高,稳定性逐渐降低;该蛋白具有较高的pH值适应性,pH5.0~9.5范围内稳定性较高;在23℃和pH7.5时酶活力最高,其比酶活为1.3U/mg;金属离子Zn2+、Cu2+、Mg2+、Mn2+和苯甲基磺酰氟(PMSF)抑制剂对酶活具有强烈的抑制作用。本研究为开发新的治疗结核药物提供了一个新的选择。  相似文献   

15.
Rao L  Xue Y  Zhou C  Tao J  Li G  Lu JR  Ma Y 《Biochimica et biophysica acta》2011,1814(12):1695-1702
An unidentified α/β hydrolase gene lipA3 from thermostable eubacterium species Thermoanaerobacter tengcongensis MB4 was cloned and heterologously expressed by Escherichia coli BL21(DE3)pLysS. The purified recombinant enzyme EstA3 turned out to be a monomeric thermostable esterase with optimal activity at 70°C and pH 9.5. The enzyme showed lipolytic activity towards a wide range of ester substrates including p-nitrophenyl esters and triacylglycerides, with the highest activity being observed for p-nitrophenyl caproate at 150 U/mg and for Triacetin at 126U/mg, respectively. Phylogenetic analysis revealed that EstA3 did not show homology to any identified bacterial lipolytic hydrolases. Sequence alignment showed that there was a common pentapeptide CHSMG with a cysteine replacing the first glycine in most esterase and lipase conserved motif GXSXG. The catalytic triad of EstA3 is Ser92, Asp269 and His292, which was confirmed by site directed mutagenesis. Based on the enzymatic properties and sequence alignment we concluded that the esterase EstA3 represented a novel bacterial lipolytic enzyme group and in chronological order this group was assigned as Family XIV.  相似文献   

16.
以假单胞菌(Pseudomonas sp.)为出发菌株,通过紫外诱变筛选得到一株γ-谷氨基甲酰胺合成酶高产菌株UV-19,其酶活提高32.54%。以突变株UV-19为供试菌株,对γ-谷氨基甲酰胺合成酶的发酵条件进行优化。首先利用Plackett-Burman设计筛选出影响较大的4个因素:葡萄糖、蛋白胨、起始pH值、装液量。在此基础上再利用CCD响应面分析法进行优化,得到最佳产酶培养条件为(g/L):葡萄糖15、蛋白胨12、NaCl 5.0、MgSO4.7H2O 0.2、K2HPO4.3H2O 0.5、甲胺盐酸盐1.0g/L、起始pH值6.5、装液量72mL/250mL。该优化条件下进行产酶培养,假单胞菌发酵产γ-谷氨基甲酰胺合成酶酶活力可达32.68U/mL。  相似文献   

17.
The endo-1,4-β-xylanase gene xyn11a from Fusarium oxysporum, member of the fungal glycosyl hydrolase (GH) family 11, was cloned and expressed in Pichia pastoris. The mature xylanase gene, which generates after the excision of one intron and the secreting signal peptide, was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPICZαC. The final construction was integrated into the genome of the methylotrophic yeast P. pastoris X33 and the ability to produce xylanase activity was evaluated in flask cultures. Recombinant P. pastoris efficiently secreted xylanase into the medium and produced high level of enzymatic activity (110 U/ml) after 216 hours of growth, under methanol induction. To achieve higher enzyme production, the influence of initial pH, methanol concentration, agitation and flask design was evaluated. Under optimum culture conditions, production of the recombinant xylanase increased by 50%, reaching a final yield of 170 U/ml, underpinning aeration as the most important factor in improving enzyme production.  相似文献   

18.
The production of biomass and beta-D-galactosidase by the lactose-utilizing yeast Candida pseudotropicalis NCYC 744 in whey medium was studied. Apparent optimization of growth conditions and medium was done in continuous culture. Optimaql pH and temperature were 2.6 and 36-38 degrees C, respectively, Limitations in Cu, Zn, and possbily Mn were detected in deproteinized whey medium. Additions of tryptophan estimulated growth of the yeast. Under optimal conditions in medium supplemented with excess tryptophan, Cu, Zn, and Mn the maximum values obtained: yeast concentration, 4.6 g/L; yeast productivity, 1.4 g/L h (at D = 0.35 h(-1)); enzyme volumetric productivity, 2100 U/L h (at D = 0.25 h(-1)); maintenance coefficient, 5-10 mg lactose/g cell h; saturation constant (K(s)) for lactose, 4.76mM; maximum specific growth rate, (mu(max)), 0.47 h(-1). No significant increase in specific enzyme activity (U/mg cell) was observed after medium optimiztion evidencing the importance of regulatory controls in enzyme synthesis.  相似文献   

19.
Solid-state fermentation (SSF) was carried out using coconut oil cake (COC) as substrate for the production of alpha-amylase using a fungal culture of Aspergillus oryzae. Raw COC supported the growth of the culture, resulting in the production of 1372 U/gds alpha-amylase in 24 h. Process optimization using a single parameter mode showed enhanced enzyme titre, which was maximum (1827 U/gds) when SSF was carried out at 30 degrees C for 72 h using a substrate with 68% initial moisture. Supplementation with glucose and starch further enhanced enzyme titre, which was maximum (1911 U/gds) with 0.5% starch. However, maltose inhibited the enzyme production. Studies on the effect of addition of external organic and inorganic nitrogenous compounds further showed a positive impact on enzyme synthesis by the culture. Increase of 1.7-fold in the enzyme activity (3388 U/gds) was obtained when peptone at 1% concentration was added to the fermentation medium. The enzyme production was growth-related, the activity being the maximum when the fungal biomass was at its peak at 72 h. Use of COC as raw material for enzyme synthesis could be of great commercial significance. To the best of our knowledge this is the first report on alpha-amylase production using COC in SSF.  相似文献   

20.
A strain of genetically modified Saccharomyces cerevisiae (S. cerevisiae) W303 181 was used to improve glucose-6-phosphate dehydrogenase (G6PDH) production in aerobic culture. Fed-batch cultures were carried out in a 5 L fermentor at variable values of the parameter K, namely, 0.2, 0.3, 0.5, 0.7, and 0.8 h(-)(1). The highest G6PDH production (1164 U/L) and specific activity (517 U/g(cell)) were obtained using the following conditions: glucose, 5.0 g/L; adenine, 8 microg/mL; histidine, 8 microg/mL; tryptophan, 8 microg/mL; temperature, 30 degrees C; inoculum, 1.28 g/L; pH, 5.7; agitation, 400 rpm; aeration, 2.2 vvm; and K, 0.2 h(-)(1). The exponential feeding pattern increased cell density (2.14 g/L), enzyme productivity (149.27), and biomass yield (0.18 g(glu)/g(cell)( )(mass)). The level of G6PDH in the genetically modified S. cerevisiae was approximately 4.1-fold higher than that found in a commercial strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号