首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration.  相似文献   

2.
在特定环境和神经元自身生长能力激活的条件下,受损的外周神经能自我再生,而中枢神经系统却无法实现。受损的外周神经元生长能力的激活受多种因素调节,包括内在因素(如胞浆环磷酸腺苷(cAMP)水平)和外在因素(如细胞外基质、神经营养因子和细胞因子等)。该文主要对现阶段外周神经再生的内在及外在因素的分子机制进行综述。  相似文献   

3.
4.
Nogo-A, a member of the reticulon family, is present in neurons and oligodendrocytes. Nogo-A in central nervous system (CNS) myelin prevents axonal regeneration through interaction with Nogo receptor 1, but the function of Nogo-A in neurons is less known. We found that after axonal injury, Nogo-A is increased in dorsal root ganglion (DRG) neurons unable to regenerate following a dorsal root injury or a sciatic nerve ligation-cut injury and that exposure in vitro to CNS myelin dramatically enhanced neuronal Nogo-A mRNA and protein through activation of RhoA while inhibiting neurite growth. Knocking down neuronal Nogo-A by small interfering RNA results in a marked increase of neurite outgrowth. We constructed a nonreplicating herpes simplex virus vector (QHNgSR) to express a truncated soluble fragment of Nogo receptor 1 (NgSR). NgSR released from QHNgSR prevented myelin inhibition of neurite extension by hippocampal and DRG neurons in vitro. NgSR prevents RhoA activation by myelin and decreases neuronal Nogo-A. Subcutaneous inoculation of QHNgSR to transduce DRG neurons resulted in improved regeneration of myelinated fibers in both the dorsal root and the spinal dorsal root entry zone, with concomitant improvement in sensory behavior. The results indicate that neuronal Nogo-A is an important intermediate in neurite growth dynamics and its expression is regulated by signals related to axonal injury and regeneration, that CNS myelin appears to activate signaling events that mimic axonal injury, and that NgSR released from QHNgSR may be used to improve recovery after injury.  相似文献   

5.
6.
肌卫星细胞激活和补给的分子调控与肌肉疾病   总被引:3,自引:0,他引:3  
肌卫星细胞(muscle satellite cell,SC)作为生肌干细胞,参与司控生后骨骼肌的生长、修复和维持等重要过程.综述了NO-HGF,Myostatin,Notch等重要信号分子及卫星细胞自身的特殊微环境对SC激活和补给的分子调控机制,希冀将来可以从这两方面入手克服目前临床中肌卫星细胞移植治疗各种骨骼肌疾病的瓶颈.  相似文献   

7.
The ability of injured peripheral nerves to regenerate and reinnervate their original targets is a characteristic feature of the peripheral nervous system (PNS). On the other hand, neurons of the central nervous system (CNS), including retinal ganglion cell (RGC) axons, are incapable of spontaneous regeneration. In the adult PNS, axonal regeneration after injury depends on well-orchestrated cellular and molecular processes that comprise a highly reproducible series of degenerative reactions distal to the site of injury. During this fine-tuned process, named Wallerian degeneration, a remodeling of the distal nerve fragment prepares a permissive microenvironment that permits successful axonal regrowth originating from the proximal nerve fragment. Therefore, a multitude of adjusted intrinsic and extrinsic factors are important for surviving neurons, Schwann cells, macrophages and fibroblasts as well as endothelial cells in order to achieve successful regeneration. The aim of this review is to summarize relevant extrinsic cellular and molecular determinants of successful axonal regeneration in rodents that contribute to the regenerative microenvironment of the PNS.  相似文献   

8.
During chronic injury a population of bipotent hepatic progenitor cells (HPCs) become activated to regenerate both cholangiocytes and hepatocytes. Here we show in human diseased liver and mouse models of the ductular reaction that Notch and Wnt signaling direct specification of HPCs via their interactions with activated myofibroblasts or macrophages. In particular, we found that during biliary regeneration, expression of Jagged 1 (a Notch ligand) by myofibroblasts promoted Notch signaling in HPCs and thus their biliary specification to cholangiocytes. Alternatively, during hepatocyte regeneration, macrophage engulfment of hepatocyte debris induced Wnt3a expression. This resulted in canonical Wnt signaling in nearby HPCs, thus maintaining expression of Numb (a cell fate determinant) within these cells and the promotion of their specification to hepatocytes. By these two pathways adult parenchymal regeneration during chronic liver injury is promoted.  相似文献   

9.
Notch signaling in the nervous system is often regarded as a developmental pathway. However, recent studies have suggested that Notch is associated with neuronal discharges. Here, focusing on temporal lobe epilepsy, we found that Notch signaling was activated in the kainic acid (KA)-induced epilepsy model and in human epileptogenic tissues. Using an acute model of seizures, we showed that DAPT, an inhibitor of Notch, inhibited ictal activity. In contrast, pretreatment with exogenous Jagged1 to elevate Notch signaling before KA application had proconvulsant effects. In vivo, we demonstrated that the impacts of activated Notch signaling on seizures can in part be attributed to the regulatory role of Notch signaling on excitatory synaptic activity in CA1 pyramidal neurons. In vitro, we found that DAPT treatment impaired synaptic vesicle endocytosis in cultured hippocampal neurons. Taken together, our findings suggest a correlation between aberrant Notch signaling and epileptic seizures. Notch signaling is up-regulated in response to seizure activity, and its activation further promotes neuronal excitation of CA1 pyramidal neurons in acute seizures.  相似文献   

10.
Notch signaling in the nervous system has been most studied in the context of cell fate specification. However, numerous studies have suggested that Notch also regulates neuronal morphology, synaptic plasticity, learning, and memory. Here we show that Notch1 and its ligand Jagged1 are present at the synapse, and that Notch signaling in neurons occurs in response to synaptic activity. In addition, neuronal Notch signaling is positively regulated by Arc/Arg3.1, an activity-induced gene required for synaptic plasticity. In Arc/Arg3.1 mutant neurons, the proteolytic activation of Notch1 is disrupted both in vivo and in vitro. Conditional deletion of Notch1 in the postnatal hippocampus disrupted both long-term potentiation (LTP) and long-term depression (LTD), and led to deficits in learning and short-term memory. Thus, Notch signaling is dynamically regulated in response to neuronal activity, Arc/Arg3.1 is a context-dependent Notch regulator, and Notch1 is required for the synaptic plasticity that contributes to memory formation.  相似文献   

11.
It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS1,2. In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries3. Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved4. Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth5-7.Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection6,8. By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred, making the loss-of-function studies less effective. To solve this problem, the method described here includes a re-suspension and re-plating step after transfection, which allows axons to re-grow from neurons in the absence of the targeted protein. Finally, we provide an example of using this in vitro model to study the role of an axon regeneration-associated gene, c-Jun, in mediating axon growth from adult DRG neurons9.  相似文献   

12.
13.
In contrast to the adult mammalian central nervous system (CNS), the neurons in the peripheral nervous system (PNS) can regenerate their axons. However, the underlying mechanism dictating the regeneration program after PNS injuries remains poorly understood. Combining chemical inhibitor screening with gain- and loss-of-function analyses, we identified p90 ribosomal S6 kinase 1 (RSK1) as a crucial regulator of axon regeneration in dorsal root ganglion (DRG) neurons after sciatic nerve injury (SNI). Mechanistically, RSK1 was found to preferentially regulate the synthesis of regeneration-related proteins using ribosomal profiling. Interestingly, RSK1 expression was up-regulated in injured DRG neurons, but not retinal ganglion cells (RGCs). Additionally, RSK1 overexpression enhanced phosphatase and tensin homolog (PTEN) deletion-induced axon regeneration in RGCs in the adult CNS. Our findings reveal a critical mechanism in inducing protein synthesis that promotes axon regeneration and further suggest RSK1 as a possible therapeutic target for neuronal injury repair.

This study shows that p90 ribosomal S6 kinase 1 (RSK1) responds differentially to nerve injury in the peripheral and central nervous systems, and identifies it as a crucial regulator of axonal regeneration; mechanistically, RSK1 preferentially induces the synthesis of regeneration-related proteins via the RSK1-eEF2K-eEF2 axis.  相似文献   

14.
15.
Therapeutic potential of neurotrophins for treatment of hearing loss   总被引:3,自引:0,他引:3  
Degeneration of spiral ganglion neurons (SGNs) and hair cells in the cochlea induced by aging, injury, ototoxic drugs, acoustic trauma, and various diseases is the major cause of hearing loss. Discovery of growth factors that can either prevent SGN and hair-cell death or stimulate hair-cell regeneration would be of great interest. Studies over the past several years have provided evidence that specific neurotrophins are potent survival factors for SGNs and protect these neurons from ototoxic drugs in vitro and in vivo. Current research focuses more on understanding the mechanism of hair-cell regeneration/differentiation and identification of growth factors that can stimulate hair-cell regeneration. SGNs are required to relay the signal to the central nervous system even when a cochlear implant is used to replace hair-cell function or in the case that cochlear sensory epithelium can be stimulated to regenerate new hair cells successfully. Therefore, neurotrophins may have their therapeutic value in prevention and treatment of hearing impairment.  相似文献   

16.
Although neurons within the peripheral nervous system (PNS) have a remarkable ability to repair themselves after injury, neurons within the central nervous system (CNS) do not spontaneously regenerate. This problem has remained recalcitrant despite a century of research on the reaction of axons to injury. The balance between inhibitory cues present in the environment and the intrinsic growth capacity of the injured neuron determines the extent of axonal regeneration following injury. The cell body of an injured neuron must receive accurate and timely information about the site and extent of axonal damage in order to increase its intrinsic growth capacity and successfully regenerate. One of the mechanisms contributing to this process is retrograde transport of injury signals. For example, molecules activated at the injury site convey information to the cell body leading to the expression of regeneration-associated genes and increased growth capacity of the neuron. Here we discuss recent studies that have begun to dissect the injury-signaling pathways involved in stimulating the intrinsic growth capacity of injured neurons.  相似文献   

17.
P Liesi 《The EMBO journal》1985,4(10):2505-2511
Most regions of the adult mammalian central nervous system (CNS) do not support axonal growth and regeneration. Laminin, expressed by cultured astrocytes and known to promote neurite outgrowth of cultured neurons, is normally present in brain basement membranes, and only transiently induced in adult brain astrocytes by injury. Here I provide three lines of evidence which suggest that the continued expression of laminin by astrocytes may be a prerequisite for axonal growth and regeneration in adult CNS. Firstly, laminin is continuously present in astrocytes of adult rat olfactory bulb apparently in close association with the olfactory nerve axons. Secondly, laminin is continuously expressed by astrocytes in adult frog brain, and sectioning of the optic tract further increases laminin immunoreactivity in astrocytes of the optic tectum during the period of axonal regeneration. Lastly, laminin appears normally in astrocytes of the frog and goldfish optic nerves which regenerate, but not in astrocytes of the rat or chick optic nerves which do not regenerate. The selective association of laminin with axons that undergo growth and regeneration in vivo is consistent with the possibility that astrocytic laminin provides these central nervous systems with their regenerative potential.  相似文献   

18.
Fu  Haitao  Han  Gonghai  Li  Haojiang  Liang  Xuezhen  Hu  Die  Zhang  Licheng  Tang  Peifu 《Neurochemical research》2019,44(9):2057-2067

In the adult central nervous system (CNS), axon regeneration is a major hurdle for functional recovery after trauma. The intrinsic growth potential of an injured axon varies widely between neurons. The underlying molecular mechanisms of such heterogeneity are largely unclear. In the present study, the adult zebrafish dataset GSE56842 were downloaded. Differentially expressed genes (DEGs) were sorted and deeply analyzed by bioinformatics methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed with the DAVID. A DEGs-associated protein–protein interaction network was constructed from the STRING database and visualized with Cytoscape software. In total, 621 DEGs were identified. GO analysis showed that the biological processes of DEGs focused mainly on the Notch signaling pathway, cell differentiation and positive regulation of neuron differentiation. The molecular functions mainly included calcium-transporting ATPase activity and calcium ion binding and structural constituents of the cytoskeleton. The cellular components included the plasma membrane, spectrin, and cytoplasmic and membrane-bound vesicles. KEGG pathway analysis showed that these DEGs were mainly involved in the metabolic pathway and Notch signaling pathway, and subnetworks revealed that genes within modules were involved in the metabolic pathway, Wnt signaling pathway, and calcium signaling pathway. This study identified DEG candidate genes and pathways involved in the heterogeneity of the intrinsic growth ability between neurons after spinal cord injury in adult zebrafish, which could facilitate our understanding of the molecular mechanisms underlying axon regeneration, and these candidate genes and pathways could be therapeutic targets for the treatment of CNS injury.

  相似文献   

19.
The inflammatory response mediated by microglia in the central nervous system is closely related to epilepsy. Notch signaling plays an important role in the microglial activation during hypoxia. This study aimed to investigate whether Notch signaling is involved in microglial activation and subsequent inflammation-related neuronal injury during the process of epileptogenesis in a rat model of temporal lobe epilepsy. By using western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence labeling, we found that the expression of Notch signaling increased after status epilepticus and that a γ-secretase inhibitor could significantly inhibit the upregulation of Notch signaling, the activation of microglia, and the release of proinflammatory cytokines. Likewise, the neuronal apoptosis and loss in the hippocampus after SE were attenuated by the γ-secretase inhibitor. These results suggest that Notch signaling plays a key role in neuroinflammation and inflammation-related neuronal damage in epilepsy, and γ-secretase inhibitors may become a novel prospective therapeutic agent for epilepsy.  相似文献   

20.
Scar formation inhibits tissue repair and regeneration in the liver and central nervous system. Activation of hepatic stellate cells (HSCs) after liver injury or of astrocytes after nervous system damage is considered to drive scar formation. HSCs are the fibrotic cells of the liver, as they undergo activation and acquire fibrogenic properties after liver injury. HSC activation has been compared to reactive gliosis of astrocytes, which acquire a reactive phenotype and contribute to scar formation after nervous system injury, much like HSCs after liver injury. It is intriguing that a wide range of neuroglia-related molecules are expressed by HSCs. We identified an unexpected role for the p75 neurotrophin receptor in regulating HSC activation and liver repair. Here we discuss the molecular mechanisms that regulate HSC activation and reactive gliosis and their contributions to scar formation and tissue repair. Juxtaposing key mechanistic and functional similarities in HSC and astrocyte activation might provide novel insight into liver regeneration and nervous system repair.Key words: p75 neurotrophin receptor, transforming growth factor-β, neurotrophins, epidermal growth factor, extracellular matrix, collagen, chondroitin sulfate proteoglycans, matrix metalloproteinases, scar, neurons, hepatocytes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号