首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
It has recently been shown that macrophage proliferation occurs during the progression of atherosclerotic lesions and that oxidized low density lipoprotein (LDL) stimulates macrophage growth. Possible mechanisms for this include the interaction of oxidized LDL with integral plasma membrane proteins coupled to signaling pathways, the release of growth factors and autocrine activation of growth factor receptors, or the potentiation of mitogenic signal transduction by a component of oxidized LDL after internalization. The present study was undertaken to further elucidate the mechanisms involved in the growth-stimulating effect of oxidized LDL in macrophages. Only extensively oxidized LDL caused significant growth stimulation, whereas mildly oxidized LDL, native LDL, and acetyl LDL were ineffective. LDL that had been methylated before oxidation (to block lysine derivatization by oxidation products and thereby prevent the formation of a scavenger receptor ligand) did not promote growth, even though extensive lipid peroxidation had occurred. The growth stimulation could not be attributed to lysophosphatidylcholine (lyso-PC) because incubation of oxidized LDL with fatty acid-free bovine serum albumin resulted in a 97% decrease in lyso-PC content but only a 20% decrease in mitogenic activity. Similarly, treatment of acetyl LDL with phospholipase A2 converted more than 90% of the initial content of phosphatidylcholine (PC) to lyso-PC, but the phospholipase A2-treated acetyl LDL was nearly 10-fold less potent than oxidized LDL at stimulating growth. Platelet-activating factor receptor antagonists partly inhibited growth stimulation by oxidized LDL, but platelet-activating factor itself did not induce growth. Digestion of oxidized LDL with phospholipase A2 resulted in the hydrolysis of PC and oxidized PC but did not attenuate growth induction. Native LDL, treated with autoxidized arachidonic acid under conditions that caused extensive modification of lysine residues by lipid peroxidation products but did not result in oxidation of LDL lipids, was equal to oxidized LDL in potency at stimulating macrophage growth. Albumin modified by arachidonic acid peroxidation products also stimulated growth, demonstrating that LDL lipids are not essential for this effect. These findings suggest that oxidatively modified apolipoprotein B is the main growth-stimulating component of oxidized LDL, but that oxidized phospholipids may play a secondary role.  相似文献   

2.
Oxidation of low density lipoprotein (LDL) in vivo is thought to play a critical role in the initiation of atherosclerosis. F(2)-isoprostanes are compounds resulting from non-enzymatic oxidation of arachidonic acid and elevated levels are present in human atherosclerotic plaque. However, little is known about the formation of F(2)-isoprostanes in plaque lesions or their distribution in lipid subclasses. Given that LDL and tissue lipid subfractions (such as phospholipids, cholesterol esters and triglycerides) all contain significant levels of arachidonic acid, the aim of this study was to examine the relative distribution of F(2)-isoprostanes in the different lipid fractions of LDL oxidised in vitro, and compare this to the distribution in atherosclerotic plaque. The results reveal that while the majority of F(2)-isoprostanes are present in the phospholipid or surface lipid fractions, the core lipids (cholesterol esters/triglycerides) contribute at least 10% of the total F(2)-isoprostanes in both LDL oxidised in vitro and human atherosclerotic plaque. The remarkably similar profiles between the oxidised LDL and advanced atherosclerotic plaque suggests oxidation in vivo, is predominantly via non-enzymatic processes directed towards the surface lipids.  相似文献   

3.
Macrophages are prominent components of human atherosclerotic lesions and they are believed to accelerate the progression and/or complications of both early and advanced atherosclerotic lesions. We and others have shown that oxidized low-density lipoprotein (oxLDL) induces growth and inhibits apoptosis in murine bone marrow-derived macrophages. In this study, we sought to characterize the oxidative modification of LDL that is responsible for this prosurvival effect. We found that both the modified lipid and the modified protein components of oxLDL can increase the viability of macrophages. The key modification appeared to involve derivatization of amino groups in apoB or in phosphatidylethanolamine by lipid peroxidation products. These reactive oxidation products were primarily unfragmented hydroperoxide- or endoperoxide-containing oxidation products of linoleic acid or arachidonic acid. LC-MS/MS studies showed that some of the arachidonic acid-derived lysine adducts were isolevuglandins that contain lactam and hydroxylactam rings. MS/MS analysis of linoleic acid autoxidation adducts was consistent with 5- or 6-membered nitrogen-containing heterocycles derived from unfragmented oxidation products. The amine modification by oxidation products generated a fluorescence pattern with an excitation maximum at 350nm and emission maximum at 430nm. This is very similar to the fluorescence spectrum of copper-oxidized LDL.  相似文献   

4.
The oxidation of low-density lipoprotein (LDL) is thought to contribute to atherogenesis, which is an inflammatory disease involving activation of phagocytic cells. Myeloperoxidase, an enzyme which is able to produce hypochlorous acid (HOCl), is released from these phagocytic cells, and has been found in an active form in atherosclerotic plaques. HOCl can oxidize both the lipid and protein moiety of LDL, and HOCl-modified LDL has been found to be pro-inflammatory, although it is not known which component is responsible for this effect. As HOCl can oxidize lipids to give chlorohydrins, we hypothesized that phospholipid chlorohydrins might have toxic and pro-inflammatory effects. We have formed chlorohydrins from fatty acids (oleic, linoleic and arachidonic acids) and from phospholipids (stearoyl-oleoyl phosphatidylcholine, stearoyl-linoleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine), and investigated various biological effects of these oxidation products. Fatty acid and phospholipid chlorohydrins were found to deplete ATP levels in U937 cells in a concentration-dependent manner, with significant effects observed at concentrations of 25 microM and above. Low concentrations (25 microM) of stearoyl-oleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine chlorohydrins were also found to increase caspase-3 activity. Finally, stearoyl-oleoyl phosphatidylcholine chlorohydrin increased leukocyte adhesion to artery segments isolated from C57Bl/6 mice. These results demonstrate potentially harmful effects of lipid chlorohydrins, and suggest that they may contribute to some of the pro-inflammatory effects that HOCl-modified low density lipoprotein has been found to induce.  相似文献   

5.
Oxidized low density lipoprotein (OxLDL) possesses several proatherogenic characteristics, among which a marked cytotoxicity. In vitro, cytotoxicity of OxLDL to endothelial cells is associated with an increase in the expression of the inducible form of heat shock protein 70 (hsp70), generally regarded as a cytoprotective protein. Oxidized derivatives of cholesterol which form upon LDL oxidation are cytotoxic. Moreover, most of the OxLDL cytotoxicity is due to its lipid moiety, in particular to oxysterols. In this report we demonstrate that although oxysterols identified in OxLDL are cytotoxic, they cannot trigger the increase in hsp70 expression observed with intact oxidized lipoproteins. We speculate therefore that oxysterols may represent the most toxic form of oxidized lipids in LDL because they cannot activate a rescue mechanism (i.e. the hsp response) and may contribute significantly to cell death within atherosclerotic plaques.  相似文献   

6.
15 lipoxygenase (15LO) is a lipid-oxidizing enzyme that is considered to contribute to the formation of oxidized lipids in atherosclerotic lesions. Monocyte-macrophages are the key cells that express 15LO in atherosclerotic lesions. In this review, we examine the evidence for 15LO involvement in atherogenesis and explore and evaluate the potential mechanisms whereby 15LO may contribute to the oxidation of LDL by monocyte-macrophages. We also describe several possible pro- versus anti-atherogenic functions that may be mediated by various products of 15LO lipid oxidation. Central pathways involved in regulating 15LO expression and activity that may serve as future targets for intervention and regulation of this enzyme are also reviewed.  相似文献   

7.
An important event in the formation of atherosclerotic lesions is the uptake of modified low density lipoprotein (LDL) by macrophages via scavenger receptors. Modification of LDL, which results in its recognition by these receptors, can be initiated by peroxidation of LDL lipids. The first step in this process is the formation of monohydroperoxy derivatives of fatty acids, which are subsequently degraded to the corresponding monohydroxy compounds, or to a variety of secondary oxidation products. In order to understand this process more completely, we have developed a mass spectrometric procedure to measure the amounts of specific hydroperoxy/hydroxy fatty acids formed by oxidation of the major unsaturated fatty acids in human LDL, oleic acid, linoleic acid, and arachidonic acid. Oxidation of human LDL in the presence of a relatively strong stimulus (20 microM CuSO4) resulted in very large increases in the amounts of the major monohydroxy derivatives of linoleic acid (9- and 13-hydroxy derivatives) and arachidonic acid (5-, 8-, 9-, 11-, 12-, and 15-hydroxy derivatives) in LDL lipids in the early stages of the reaction. After 20 h, the amounts of these products declined due to substrate depletion, but large amounts of monohydroxy derivatives of oleic acid (8-, 10-, and 11-hydroxy derivatives) were detected. Although thiobarbituric acid-reactive substances clearly increased under these conditions, the changes were not nearly so dramatic as those observed for monohydroxy fatty acids. Oxidation of LDL in the presence of endothelial cells, a much milder stimulus, resulted in 2.5- to 3-fold increases in the amounts of monohydroxy derivatives of linoleic and arachidonic acids, as well as thiobarbituric acid-reactive substances, with more modest increases in the amounts of hydroxylated derivatives of oleic acid. There was little positional specificity in the oxidation of the above fatty acids in the presence of either stimulus, suggesting that the formation of these products proceeds primarily by lipid peroxidation, rather than by catalysis by lipoxygenases. However, an important role for lipoxygenases in the initiation of these reactions cannot be excluded. In conclusion, oxidation of LDL in the presence of copper ions or endothelial cells results in the formation of a large number of monohydroxy derivatives of oleic, linoleic, and arachidonic acids. The relative amounts of products formed from each of these fatty acids depends on the strength of the stimulus as well as the incubation time.  相似文献   

8.
In the present report we have examined expression of the gene encoding the inflammatory monokine TNF-alpha in murine peritoneal macrophages treated with different forms of low density lipoprotein (LDL). LDL modified by oxidation in vitro is unable to stimulate inflammatory gene expression in peritoneal macrophages. However, treatment of macrophage cultures with oxidized LDL for 6 h or more resulted in a concentration and time-dependent suppression of TNF-alpha mRNA expression induced in response to stimulation with either LPS or maleylated BSA. This suppression was maximal after 12 h of exposure to oxidized LDL and at a concentration of 100 to 200 micrograms LDL cholesterol/ml of culture medium. The suppressive effect was restricted to oxidatively modified LDL as treatment with native LDL or acetylated LDL did not affect TNF-alpha mRNA expression, despite the fact that both acetylated and oxidized LDL lead to intracellular lipid accumulation. The expression of maleyl albumin-stimulated TNF-alpha mRNA expression could be reproduced by lipid extracts of oxidized LDL provided to macrophages at the same cholesterol concentration as from the intact lipoprotein particle. Extracts from native LDL were ineffective. These results suggest that oxidized lipid accumulation in monocytes infiltrating the arterial wall may lead to the suppression of certain inflammatory functions which, in turn, may influence the development of mature atherosclerotic lesions.  相似文献   

9.
10.
For more than two decades, there has been continuing evidence of lipid oxidation playing a central role in atherogenesis. The oxidation hypothesis of atherogenesis has evolved to focus on specific proinflammatory oxidized phospholipids that result from the oxidation of LDL phospholipids containing arachidonic acid and that are recognized by the innate immune system in animals and humans. These oxidized phospholipids are largely generated by potent oxidants produced by the lipoxygenase and myeloperoxidase pathways. The failure of antioxidant vitamins to influence clinical outcomes may have many explanations, including the inability of vitamin E to prevent the formation of these oxidized phospholipids and other lipid oxidation products of the myeloperoxidase pathway. Preliminary data suggest that the oxidation hypothesis of atherogenesis and the reverse cholesterol transport hypothesis of atherogenesis may have a common biological basis. The levels of specific oxidized lipids in plasma and lipoproteins, the levels of antibodies to these lipids, and the inflammatory/anti-inflammatory properties of HDL may be useful markers of susceptibility to atherogenesis. Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides may both promote a reduction in oxidized lipids and enhance reverse cholesterol transport and therefore may have therapeutic potential.  相似文献   

11.
Low density lipoproteins (LDL), isolated by ultracentrifugal flotation, were oxidized (LDLOXID) slowly during dialysis against 0.15 M NaCl and subsequent incubation in 96% air-4% CO2 at 37 degrees C. Butylated hydroxytoluene prevented LDL oxidation. LDL preparations from different sera were oxidized at different rates and the degree of lipid peroxidation was controlled by varying the incubation time. Mild oxidation did not alter the electrophoretic mobility of the LDLOXID preparations. LDLOXID contained lipid peroxides in neutral lipids, had increased amounts of lysophosphatidylcholine, and contained a number of complex oxidation products that were generated from the oxidation of free fatty acids. These oxidation products included large amounts of soluble material that cross-reacted with antibodies to PGE2 but not 6-keto-PGF1 alpha. The amount of cross-reacting material was proportional to the degree of lipid peroxidation. Cross-reacting material in LDLOXID preparations was evidently formed from the oxidation of free fatty acids released from LDL, since cross-reacting material was also formed when a synthetic fat emulsion was oxidized in the presence of free arachidonic acid.  相似文献   

12.
Oxidation of lipoproteins, particularly low-density lipoprotein, is thought to play a major role in the development of atherosclerosis. We set out to identify and quantitate the major fatty acid oxidation products in human atherosclerotic plaque obtained from individuals undergoing carotid endarterectomy. Oxidized lipids were extracted from plaque homogenate under conditions to prevent artifactual oxidation. Identification and quantitation was performed using HPLC and GC-MS. High levels of hydroxyoctadecanoic acids (0.51 +/- 0.17 ng/microg of linoleic acid), 15-hydroxyeicosatetranoic acid (HETE) (0.66 +/- 0.24 ng/microg of arachidonic acid), and 11-HETE (0.84 +/- 0.24 ng/microg of arachidonic acid) were detected in all atherosclerotic plaques (n = 10). Low levels of 9-oxo-octadecanoic acid (oxoODE) (0.04 +/- 0.01 ng/microg of linoleic acid), were present in all samples, while 13-oxoODE (0.01 +/- 0.008 ng/microg of linoleic acid) was present in only 4 of the 10 plaque samples. Of interest was the identification of two previously unidentified compounds in atherosclerotic plaque, 11-oxo-eicosatetranoic acid in 9 of the 10 samples and 5,6-dihydroxyeicosatetranoic acid in 3 samples. Chiral analysis revealed that all the major compounds identified in this study are of a nonenzymatic origin. This study is the first to provide a convenient HPLC method to quantify all the products of both linoleic acid and arachidonic acid oxidation in human atherosclerotic plaque. The quantitation of lipid peroxidation products in plaque may be important given the potential biological activity of these compounds and their possible relationship to plaque pathogenesis and instability.  相似文献   

13.
J W Heinecke 《FASEB journal》1999,13(10):1113-1120
Oxidatively damaged low density lipoprotein (LDL) may play an important role in atherogenesis, but the physiologically relevant pathways have proved difficult to identify. Mass spectrometric quantification of stable compounds that result from specific oxidation reactions represents a powerful approach for investigating such mechanisms. Analysis of protein oxidation products isolated from atherosclerotic lesions implicates tyrosyl radical, reactive nitrogen species, and hypochlorous acid in LDL oxidation in the human artery wall. These observations provide chemical evidence for the reaction pathways that promote LDL oxidation and lesion formation in vivo.--Heinecke, J. W. Mass spectrometric quantification of amino acid oxidation products in proteins: insights into pathways that promote LDL oxidation in the human artery wall.  相似文献   

14.
Endothelial Chlamydia pneumoniae infection promotes oxidation of LDL   总被引:4,自引:0,他引:4  
The bacterium Chlamydia pneumoniae chronically infects atheromatous lesions and is linked to atherosclerosis by modifying inflammation, proliferation, and the lipid metabolism of blood monocytes. As continuous LDL modification in the vascular intima is crucial for atherogenesis we investigated the impact of endothelial infection on LDL oxidation. HUVEC were infected with a vascular C. pneumoniae strain. Supernatants of infected cells but not cell lysates increased lipid peroxidation products (6.44 vs 6.14 nmol/ml, p<0.05) as determined by thiobarbituric acid reacting substances assay. Moreover, supernatants rendered human LDL more susceptible to oxidation as shown in a copper-ion catalysed LDL oxidation assay by a 16% reduction of LDL resistance against pro-oxidative stimuli (p<0.05). Chlamydial infection of vascular endothelial cells releases acellular components that convert LDL to its proatherogenic form and reduce its resistance against oxidation. Foci of chronic endothelial chlamydial infection may thus continuously contribute to the dysregulated lipid metabolism that promotes atherogenesis.  相似文献   

15.
Cultured cells are able to oxidize low-density lipoproteins (LDL) and oxidized LDL (oxLDL), which are present in atherosclerosis areas, exhibit a variety of biological properties potentially involved in atherogenesis. This review is focused on the toxicity of oxLDL, more precisely on the toxic compounds generated during LDL oxidation, the features and the mechanisms of cell death (apoptosis or necrosis) induced by oxLDL. After internalization, toxic oxidized lipids, namely lipid peroxides, oxysterols and aldehydes, induce modifications of cell proteins, elicit oxidative stress, lipid peroxidation and alter various signaling pathways and gene expression. These events may participate in the toxic effect, and converge to trigger an intense, delayed and sustained calcium peak which elicits either apoptosis or necrosis processes. OxLDL-induced apoptosis involves both mitochondrial and death-receptor (Fas/FasL) apoptotic pathways, thereby activating the classical caspase cascade and subsequent biochemical and morphological apoptotic features. When apoptosis is blocked by overexpression of Bcl-2, oxLDL trigger necrosis through a calcium-dependent pathway. Apoptosis occurring in atherosclerotic areas is potentially involved in endothelial cell lining defects, necrotic core formation and plaque rupture or erosion which may trigger atherothrombotic events. However, the precise role of oxLDL in apoptosis/necrosis occurring in vivo in atherosclerotic plaques remains to be clarified.  相似文献   

16.
Within the broad variety of compounds generated via oxidative reactions in low density lipoproteins (LDL) and subsequently found in the atherosclerotic plaque, are aldehydes still esterified to the parent lipid and termed core-aldehydes. The most represented cholesterol core-aldehyde in LDL is 9-oxononanoyl cholesterol (9-ONC), an oxidation product of cholesteryl linoleate. Here we report that 9-ONC, at concentration actually detectable in biological material, significantly up-regulates the expression and the synthesis of the pro-fibrogenic cytokine transforming growth factor beta1 (TGFbeta1) by cultured macrophages. As previously demonstrated for other lipid oxidation products present in LDL, namely a biologically representative mixture of oxysterols and the unesterified aldehyde 4-hydroxynonenal, these effects on TGFbeta1 by 9-ONC further points to LDL lipid oxidation as a powerful source of pro-fibrogenic stimuli.  相似文献   

17.
The oxidation of lipids is important in many pathological conditions and lipid peroxidation products such as 4-hydroxynonenal (HNE) and other aldehydes are commonly measured as biomarkers of oxidative stress. However, it is often useful to complement this with analysis of the original oxidized phospholipid. Electrospray mass spectrometry (ESMS) provides an informative method for detecting oxidative alterations to phospholipids, and has been used to investigate oxidative damage to cells, and low-density lipoprotein, as well as for the analysis of oxidized phosphatidylcholines present in atherosclerotic plaque material. There is increasing evidence that intact oxidized phospholipids have biological effects; in particular, oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerophosphocholine (PAPC) have been found to cause inflammatory responses, which could be potentially important in the progression of atherosclerosis. The effects of chlorohydrin derivatives of lipids have been much less studied, but it is clear that free fatty acid chlorohydrins and phosphatidylcholine chlorohydrins are toxic to cells at concentrations above 10 micromolar, a range comparable to that of HNE and oxidized PAPC. There is some evidence that chlorohydrins have biological effects that may be relevant to atherosclerosis, but further work is needed to elucidate their pro-inflammatory properties, and to understand the mechanisms and balance of biological effects that could result from oxidation of complex mixtures of lipids in a pathophysiological situation.  相似文献   

18.
Oxidized LDLs influence thrombotic response and cyclooxygenase 2   总被引:5,自引:0,他引:5  
Oxidative modification of low-density lipoproteins (LDLs) plays a key role in the development of atherosclerosis and the onset of coronary artery disease. LDL oxidation alters the antithrombotic balance of human endothelial cells inducing surface tissue factor (TF) pathway activity, which results in enhanced fibrin deposition. Fibrinolysis, which is strictly regulated by plasminogen activator inhibitor-1 (PAL-1) and tissue-type plasminogen activator (tPA). Is also dysregulated by LDL oxidation with a net increase in the inhibitory rate. Oxidized LDLs (oxLDLs) also affect many aspects of macrophage function linked to the inflammatory response of these cells, In particular, oxLDLs downregulate inducible cyclooxigenase (Cox-2) in human monocyte-derived macrophages exposed to bacterial lipopolysaccharide. This observation may support the hypothesis that, within atheromata, the transformation macrophages into foam cells results in the attenuation of the inflammatory response, thus contributing to the progression of athrogenesis. Among lipid constituents of oxLDLs, Ox-PAPC, a mixture of oxidized arachidonic acid-containing phospholipids, prevents Cox-2 expression, suggesting that it could be considered responsible for the biological activity of oxLDLs.  相似文献   

19.
PURPOSE OF REVIEW: This review will summarize recent evidence demonstrating that biologically active phospholipid oxidation products modulate inflammatory reactions. RECENT FINDINGS: Structural identification of new biologically active oxidized phospholipids and the finding that they can also be formed at inflammatory sites other than the atherosclerotic lesion have expanded the potential role of these compounds in inflammation beyond atherogenesis. Various signaling pathways are induced by oxidized phospholipids, leading to the expression of inflammatory genes by mechanisms that differ from those mediated by the classic inflammatory agonists tumor necrosis factor or lipopolysaccharide. Furthermore, oxidized phospholipids can bind to pattern recognition molecules and thus potently influence inflammation and immune responses during host defense. SUMMARY: During inflammatory processes biologically active lipid oxidation products accumulate that modulate the inflammatory process and may determine the fate and outcome of the body's reaction in acute inflammation during host defense. Oxidized phospholipids may induce and propagate chronic inflammatory processes; however, evidence is accumulating that cells and tissues respond towards these oxidatively formed stress signals also by activation of anti-inflammatory, cytoprotective reactions.  相似文献   

20.
Intracellular generation of MDA-LYS epitope in foam cells.   总被引:6,自引:0,他引:6  
Oxidative stress plays a central role in atherogenesis. Antioxidants, such as probucol, inhibit oxidation of LDL, retard secretion of interleukin-1, growth factors and chemoattractants, and thus inhibit progression of atherosclerosis. Other antioxidants with an ability to inhibit LDL oxidation, however, could not prevent progression of atherosclerosis. The inconsistency between antioxidant potencies indicated oxidative events might have occurred at locations other than LDL. MDA-lysine epitope (MDA-lys) is closely associated with atherogenesis and was recognized as marker for oxidation. We traced formation of MDA-lys during oxidation of LDL and formation of foam cells. The results indicated that thiobarbituric acid reactive substance (TBARS) was primarily present in lipid fraction of ox-LDL not associated with protein fraction after Cu2+ oxidation in vitro. Oxidized LDL did not increase significant immunoreactivity of MDA-lys epitope under our experimental conditions. Foam cells, however, showed the presence of MDA-lys epitope suggesting that intracellular oxidation events occurred to internalized lipids. The uptake of non-oxidatively modified LDL (acetylated LDL) was sufficient to generate MDA-lys epitope in foam cells, consistent with the hypothesis that atherosclerosis is associated with oxidative events in addition to LDL oxidation. We hypothesized that MDA-lys may be generated through intracellular lipid metabolism during the formation of foam cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号