首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368. Biochemical characterization of site directed mutants followed by equilibrium unfolding studies permits elucidation of the role of interface cysteines and positively charged interface in dimer stability. Mutation of interface cysteines, Cys328 and Cys368 to serine, perturbed the monomer-dimer equilibrium in the protein with a small population of monomer being evident in the double mutant. Introduction of negative charge in the form of C328D mutation resulted in stabilization of protein dimer as evident by size exclusion chromatography at high ionic strength buffer and equilibrium unfolding in the presence of urea. These observations suggest that cysteines at the dimer interface of PfAdSS may indeed be charged and exist as thiolate anion.  相似文献   

2.
Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface. We examined by liquid chromatography-mass spectrometry the commercially purchased hSOD1 isolated from erythrocytes as well as hSOD1s isolated from human erythrocytes, brain, and hSOD1 expressed in Sf9, yeast, and E. coli. Our goal was to ascertain whether the Cys111 modification occurred naturally in vivo. Only the Sigma erythrocyte hSOD1 appeared to contain a trisulfide crosslink between the Cys111 residues. Thus it failed to react with N-ethylmaleimide, showed absorbtion at 325 nm that was eliminated by 2-mercaptoethanol, and had a mass 30 units more than expected for the native dimer. We examined the possibility that different purification methods might cause this modification in erythrocyte hSOD1. None of the procedures examined for hSOD1 purification produced such a trisulfide. In disagreement with Liu et al. [Biochemistry, 2000, 39, 8125-8132], complete derivitization of both Cys111s of hSOD1 from Sf9 cells with N-ethylmaleimide, 4-vinylpyridine, and by 5,5′-dithiobis(2-nitrobenzoic acid) were readily achieved; indicating that steric hindrance was not a problem.  相似文献   

3.
Using cysteine cross-linking, we demonstrated previously that the dopamine transporter (DAT) is at least a homodimer, with the extracellular end of transmembrane segment (TM) 6 at a symmetrical dimer interface. We have now explored the possibility that DAT exists as a higher order oligomer in the plasma membrane. Cysteine cross-linking of wild type DAT resulted in bands on SDS-PAGE consistent with dimer, trimer, and tetramer, suggesting that DAT forms a tetramer in the plasma membrane. A cysteine-depleted DAT (CD-DAT) into which only Cys243 or Cys306 was reintroduced was cross-linked to dimer, suggesting that these endogenous cysteines in TM4 and TM6, respectively, were cross-linked at a symmetrical dimer interface. Reintroduction of both Cys243 and Cys306 into CD-DAT led to a pattern of cross-linking indistinguishable from that of wild type, with dimer, trimer, and tetramer bands. This indicated that the TM4 interface and the TM6 interface are distinct and further suggested that DAT may exist in the plasma membrane as a dimer of dimers, with two symmetrical homodimer interfaces. The cocaine analog MFZ 2-12 and other DAT inhibitors, including benztropine and mazindol, protected Cys243 against cross-linking. In contrast, two substrates of DAT, dopamine and tyramine, did not significantly impact cross-linking. We propose that the impairment of cross-linking produced by the inhibitors results from a conformational change at the TM4 interface, further demonstrating that these compounds are not neutral blockers but by themselves have effects on the structure of the transporter.  相似文献   

4.
A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.  相似文献   

5.
In the absence of the de novo purine nucleotide biosynthetic pathway in parasitic protozoa, purine salvage is of primary importance for parasite survival. Enzymes of the salvage pathway are, therefore, good targets for anti-parasitic drugs. Adenylosuccinate synthetase (AdSS), catalysing the first committed step in the synthesis of AMP from IMP, is a potential target for anti-protozoal chemotherapy. We report here the crystal structure of adenylosuccinate synthetase from the malaria parasite, Plasmodium falciparum, complexed to 6-phosphoryl IMP, GDP, Mg2+ and the aspartate analogue, hadacidin at 2 A resolution. The overall architecture of P. falciparum AdSS (PfAdSS) is similar to the known structures from Escherichia coli, mouse and plants. Differences in substrate interactions seen in this structure provide a plausible explanation for the kinetic differences between PfAdSS and the enzyme from other species. Additional hydrogen bonding interactions of the protein with GDP may account for the ordered binding of substrates to the enzyme. The dimer interface of PfAdSS is also different, with a pronounced excess of positively charged residues. Differences highlighted here provide a basis for the design of species-specific inhibitors of the enzyme.  相似文献   

6.
Part of the dimer and B/C domain interface of the Escherichia coli mannitol permease (EII(mtl)) has been identified by the generation of disulfide bridges in a single-cysteine EII(mtl), with only the activity linked Cys(384) in the B domain, and in a double-cysteine EII(mtl) with cysteines at positions 384 and 124 in the first cytoplasmic loop of the C domain. The disulfide bridges were formed in the enzyme in inside-out membrane vesicles and in the purified enzyme by oxidation with Cu(II)-(1,10-phenanthroline)(3), and they were visualized by SDS-polyacrylamide gel electrophoresis. Discrimination between possible disulfide bridges in the dimeric double-cysteine EII(mtl) was done by partial digestion of the protein and the formation of heterodimers, in which the cysteines were located either on different subunits or on one subunit. The disulfide bridges that were identified are an intersubunit Cys(384)-Cys(384), an intersubunit Cys(124)-Cys(124), an intersubunit Cys(384)-Cys(124), and an intrasubunit Cys(384)-Cys(124). The disulfide bridges between the B and C domain were observed with purified enzyme and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mannitol did not influence the formation of the disulfide between Cys(384) and Cys(124). The close proximity of the two cysteines 124 was further confirmed with a separate C domain by oxidation with Cu(II)-(1,10-phenanthroline)(3) or by reactions with dimaleimides of different length. The data in combination with other work show that the first cytoplasmic loop around residue 124 is located at the dimer interface and involved in the interaction between the B and C domain.  相似文献   

7.
Loss of protein thiols is a key feature associated with the onset of age-related nuclear cataract (ARNC), however, little is known about the specific sites of oxidation of the crystallins. We investigated cysteine residues in ARNC lenses and compared them with age-matched normal lenses. Proteomic analysis of tryptic digests revealed ten cysteine residues in older normal lenses that showed no significant oxidation compared to foetal counterparts (Cys 170 in betaA1/3-crystallin, Cys 32 in betaA4-crystallin, Cys 79 in betaB1-crystallin, Cys 22, Cys 78/79, C153 in gammaC-crystallin and Cys 22, Cys 24 and Cys 26 in gammaS-crystallin). Although these thiols were not oxidised in normal lenses past the 6th decade, they were present largely as disulphides in the ARNC lenses. By contrast, two cysteine residues, Cys 41 in gammaC-crystallin and Cys 18 in gammaD-crystallin, were not oxidised, even in advanced ARNC lenses. These cysteines are buried deep within the protein and any unfolding associated with cataract must be insufficient to expose them to the oxidative environment present in the centre of advanced ARNC lenses. The vast majority of the loss of protein thiol observed in such lenses is due to disulphide bond formation.  相似文献   

8.
The folding and thermodynamic properties of metal free (apo) superoxide dismutases (SODs) are systematically analyzed using equilibrium guanidinium chloride (GdmCl) curves and differential scanning calorimetry (DSC). Chemically and structurally diverse amyotrophic lateral sclerosis (ALS)-associated mutations (G85R, G93R, E100G, I113T) are introduced into a pseudo-wild-type background that has no free cysteines, resulting in highly reversible unfolding. Analysis of the protein concentration dependence of GdmCl curves reveals formation of a monomer intermediate in equilibrium with native dimer and unfolded monomer. Global fitting of the data enables quantitative measurement of free energy changes for both dimer dissociation and monomer intermediate stability. All the mutations decrease protein stability, mainly by destabilizing the monomer intermediate, but also by tending to weaken dimerization, even for mutations far from the dimer interface. Thus, the effects of mutations seem to propagate through the apo protein, and result in increased population of both intermediate and unfolded monomers. This may underlie increased formation of toxic aggregates by mutants in ALS. Analysis of DSC data for apo SODs is consistent with stability measurements from GdmCl curves and provides further evidence for increased aggregation by mutant proteins through increased ratios of van't Hoff to calorimetric enthalpies of unfolding.  相似文献   

9.
Evidence that proteins may unfold utilizing complex competing pathways comes from a new pulse-labeling protocol in which the change in reactivity of a single cysteine residue in a protein during unfolding is measured, making use of its easily monitored reaction with the Ellman reagent, dithionitrobenzoic acid. The kinetics of unfolding of two single cysteine-containing mutant forms of the small protein barstar, C82A, which contains only Cys40, and C40A, which contains only Cys82, have been studied. The data suggest that unfolding occurs via two parallel pathways, each forming competing intermediates. In one of these early intermediates, Cys40 and Cys82 are already as reactive as they are in the fully unfolded protein, while in the other intermediate, the Cys thiol groups are unreactive. One more long-lived intermediate also needs to be included on the pathway defined by the early intermediate with unreactive Cys thiol groups to account for the difference in the rates of fluorescence change and of change in Cys40 reactivity. The demonstration of multiple intermediates and pathways for unfolding indicates that protein unfolding reactions can be as complex as protein folding reactions.  相似文献   

10.
The amino acid sequence of Leishmania mexicana triose phosphate isomerase is unique in having at position 65 a glutamic acid instead of a glutamine. The stability properties of LmTIM and the E65Q mutant were investigated by pH and guanidinium chloride-induced unfolding. The crystal structure of E65Q was determined. Three important observations were made: (a) there are no structural rearrangements as the result of the substitution; (b) the mutant is more stable than the wild-type; and (c) the stability of the wild-type enzyme shows strong pH dependence, which can be attributed to the ionization of Glu65. Burying of the Glu65 side chain in the uncharged environment of the dimer interface results in a shift in pKa of more than 3 units. The pH-dependent decrease in overall stability is due to weakening of the monomer-monomer interactions (in the dimer). The E65Q substitution causes an increase in stability as the result of the formation of an additional hydrogen bond in each subunit (DeltaDeltaG degrees of 2 kcal.mol-1 per monomer) and the elimination of a charged group in the dimer interface (DeltaDeltaG degrees of at least 9 kcal.mol-1 per dimer). The computated shift in pKa and the stability of the dimer calculated from the charge distribution in the protein structure agree closely with the experimental results. The guanidinium chloride dependence of the unfolding constant was smaller than expected from studies involving monomeric model proteins. No intermediates could be identified in the unfolding equilibrium by combining fluorescence and CD measurements. Study of a stable monomeric triose phosphate isomerase variant confirmed that the phenomenon persists in the monomer.  相似文献   

11.
12.
The structural-functional roles of 23 cysteines present in the sheep (Na,K)-ATPase alpha1 subunit were studied using site directed mutagenesis, expression, and kinetics analysis. Twenty of these cysteines were individually substituted by alanine or serine. Cys452, Cys455 and Cys456 were simultaneously replaced by serine. These substitutions were introduced into an ouabain resistant alpha1 sheep isoform and expressed in HeLa cells under ouabain selective pressure. HeLa cells transfected with a cDNA encoding for replacements of Cys242 did not survive ouabain selective pressure. Single substitutions of the remaining cysteines yielded functional enzymes, although some had reduced turnover rates. Only minor variations were observed in the enzyme Na(+) and K(+) dependence as a result of these replacements. Some substitutions apparently affect the E1<-->E2 equilibrium as suggested by changes in the K(m) of ATP acting at its low affinity binding site. These results indicate that individual cysteines, with the exception of Cys242, are not essential for enzyme function. Furthermore, this suggests that the presence of putative disulfide bridges is not required for alpha1 subunit folding and subsequent activity. A (Na,K)-ATPase lacking cysteine residues in the transmembrane region was constructed (Cys104, 138, 336, 802, 911, 930, 964, 983Xxx). No alteration in the K(1/2) of Na(+) or K(+) for (Na,K)-ATPase activation was observed in the resulting enzyme, although it showed a 50% reduction in turnover rate. ATP binding at the high affinity site was not affected. However, a displacement in the E1<-->E2 equilibrium toward the E1 form was indicated by a small decrease in the K(m) of ATP at the low affinity site accompanied by an increase in IC(50) for vanadate inhibition. Thus, the transmembrane cysteine-deficient (Na,K)-ATPase appears functional with no critical alteration in its interactions with physiological ligands.  相似文献   

13.
Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae is a dimer made up of identical subunits (Mr 63,000) each of these containing three cysteines (residues 255, 512 and 519 in the amino acid sequence). Thiol-specific probes were used to label these cysteines and study the resulting effect of the modification on the kinetic parameters of both the ATP/PPi exchange and tRNA aminoacylation reactions. Using the classical techniques of protein chemistry it was shown that none of the three cysteines was labelled with iodoacetic acid, whilst N-ethylmaleimide and 5,5'-dithiobis(2-nitrobenzoate) reacted with Cys512 and Cys255, respectively. Only the latter modification was accompanied by a decrease in the rates of both enzyme activities whilst the Km values for the various substrates remained unaffected. Site-directed mutagenesis was also used to replace each of the three cysteines by other residues, either individually or simultaneously. For these experiments the enzyme was expressed in Escherichia coli using an expression vector bearing the structural gene in which the first 13 codons were replaced by the first 14 of the CII lambda gene. The resulting substitution in the amino-terminal part of the expressed enzyme had no effect on the kinetic parameters, compared to those of the enzyme purified from S. cerevisiae. Taking into account the consequences of such substitutions, as well as those of chemical modifications on the two reactions catalysed by the enzyme. ATP/PPi exchange and tRNA aminoacylation, it could be concluded that none of these three cysteines plays any essential role in either substrate binding or catalysis.  相似文献   

14.
S-nitrosylation, or the replacement of the hydrogen atom in the thiol group of cysteine residues by a -NO moiety, is a physiologically important posttranslational modification. In our previous work we have shown that S-nitrosylation is involved in the disruption of the endothelial nitric oxide synthase (eNOS) dimer and that this involves the disruption of the zinc (Zn) tetrathiolate cluster due to the S-nitrosylation of Cysteine 98. However, human eNOS contains 28 other cysteine residues whose potential to undergo S-nitrosylation has not been determined. Thus, the goal of this study was to identify the cysteine residues within eNOS that are susceptible to S-nitrosylation in vitro. To accomplish this, we utilized a modified biotin switch assay. Our modification included the tryptic digestion of the S-nitrosylated eNOS protein to allow the isolation of S-nitrosylated peptides for further identification by mass spectrometry. Our data indicate that multiple cysteine residues are capable of undergoing S-nitrosylation in the presence of an excess of a nitrosylating agent. All these cysteine residues identified were found to be located on the surface of the protein according to the available X-ray structure of the oxygenase domain of eNOS. Among those identified were Cys 93 and 98, the residues involved in the formation of the eNOS dimer through a Zn tetrathiolate cluster. In addition, cysteine residues within the reductase domain were identified as undergoing S-nitrosylation. We identified cysteines 660, 801, and 1113 as capable of undergoing S-nitrosylation. These cysteines are located within regions known to bind flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicotinamide adenine dinucleotide (NADPH) although from our studies their functional significance is unclear. Finally we identified cysteines 852, 975/990, and 1047/1049 as being susceptible to S-nitrosylation. These cysteines are located in regions of eNOS that have not been implicated in any known biochemical functions and the significance of their S-nitrosylation is not clear from this study. Thus, our data indicate that the eNOS protein can be S-nitrosylated at multiple sites other than within the Zn tetrathiolate cluster, suggesting that S-nitrosylation may regulate eNOS function in ways other than simply by inducing dimer collapse.  相似文献   

15.
Betaine aldehyde dehydrogenase (BADH) from the human pathogen Pseudomonas aeruginosa is a tetrameric enzyme that contains a catalytic Cys286 and three additional cysteine residues, Cys353, 377, and 439, per subunit. In the present study, we have investigated the role of the three non-essentials in enzyme activity and stability by homology modeling and site-directed mutagenesis. Cys353 and Cys377 are located at the protein surface with their sulfur atoms buried, while Cys439 is at the subunit interface between the monomers forming a dimeric pair. All three residues were individually mutated to alanine and Cys439 also to serine and valine. The five mutant proteins were expressed in Escherichia coli and purified to homogeneity. Their steady-state kinetics was not significantly affected, neither was their structure as indicated by circular dicroism spectropolarimetry, protein intrinsic fluorescence, and size-exclusion chromatography. However, stability was severely reduced in the Cys439 mutants particularly in C439S and C439V, which were inactive when expressed at 37 degrees C. They also exhibited higher sensitivity to thermal and chemical inactivation, and higher propensity to dissociation by dilution or exposure to low ionic strength than the wild-type enzyme. Size-exclusion chromatography indicates that substitution of Cys439 lead to unstable dimers or to stable dimeric conformations not compatible with a stable tetrameric structure. To the best of our knowledge, this is the first study of an aldehyde dehydrogenase revealing a residue at the dimer interface involved in holding the dimer, and consequently the tetramer, together.  相似文献   

16.
Dissimilatory oxidation of thiosulfate in the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum is carried out by the ubiquitous sulfur-oxidizing (Sox) multi-enzyme system. In this system, SoxY plays a key role, functioning as the sulfur substrate-binding protein that offers its sulfur substrate, which is covalently bound to a conserved C-terminal cysteine, to another oxidizing Sox enzyme. Here, we report the crystal structures of a stand-alone SoxY protein of C. limicola f. thiosulfatophilum, solved at 2.15 A and 2.40 A resolution using X-ray diffraction data collected at 100 K and room temperature, respectively. The structure reveals a monomeric Ig-like protein, with an N-terminal alpha-helix, that oligomerizes into a tetramer via conserved contact regions between the monomers. The tetramer can be described as a dimer of dimers that exhibits one large hydrophobic contact region in each dimer and two small hydrophilic interface patches in the tetramer. At the tetramer interface patch, two conserved redox-active C-terminal cysteines form an intersubunit disulfide bridge. Intriguingly, SoxY exhibits a dimer/tetramer equilibrium that is dependent on the redox state of the cysteines and on the type of sulfur substrate component bound to them. Taken together, the dimer/tetramer equilibrium, the specific interactions between the subunits in the tetramer, and the significant conservation level of the interfaces strongly indicate that these SoxY oligomers are biologically relevant.  相似文献   

17.
The amino acid sequences and X-ray structures of homodimeric triosephosphate isomerase from the pathogenic parasites Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM) are markedly similar. In the two TIMs, the side chain of the only interface cysteine (Cys14) of one subunit docks into loop 3 of the other subunit. This portion of the interface is also markedly similar in the two enzymes. Nonetheless, Cys14 of TcTIM is nearly 2 orders of magnitude more susceptible to the thiol reagent methylmethane thiosulfonate (MMTS) than Cys14 of TbTIM. The causes of this difference were explored by measuring the second-order rate constant of inactivation by MMTS (k(2)) under various conditions. At pH 7.4, k(2) in TcTIM is 70 times higher than in TbTIM. The difference decreases to 30 when the amino acid sequence of loop 3 and adjoining residues of TbTIM are conferred to TcTIM (triple mutant). The pK(a) values of the thiol group of the interface cysteine of TcTIM and the triple mutant were 0.7 pH unit lower than in TbTIM. Because this difference could account for the different sensitivity of the enzymes to thiol reagents, we determined the k(2) of inactivation at equal levels of ionization of their interface cysteines. Under these conditions, the difference in k(2) between TcTIM and TbTIM became 8-fold, whereas that of the triple mutant to TbTIM was 1.5 times. The substrate analogue phosphoglycolate did not modify the pK(a) of the thiol group of the interface, albeit it diminished the rate of its derivatization by MMTS. In the presence of phosphoglycolate, under conditions in which the interface cysteines of the enzymes had equal levels of protonation, the difference in k(2) of TcTIM and TbTIM became smaller, whereas k(2) of the triple mutant was almost equal to that of TbTIM. Thus, from measurements of the reactivity of the interface cysteine in various conditions, it was possible to obtain information on the factors that control the dynamics of a portion of the dimer interface.  相似文献   

18.
The mature form of the secretory core protein (HBe protein) of human hepatitis B virus contains four cysteines which are located at amino acid positions -7, 48, 61, and 107 relative to the HBc start methionine. In addition, there is a cysteine, Cys-183, located in the C-terminal domain of the HBe precursor, which is cleaved during HBe maturation. Here, the significance of these cysteines for biosynthesis and antigenicity of the HBe protein was examined. The cysteines at positions -7 and 61 were found to be crucial for HBe biosynthesis. As has already been described, if the Cys at position -7 is mutated, disulfide-linked HBe homodimers which have both HBe antigenicity and HBc antigenicity are expressed. Here we show that these dimers are due to Cys-61-Cys-61 disulfide bridges which are formed only if the Cys at position -7 is not present. In the wild-type protein, this dimerization appears to be inhibited by formation of intramolecular disulfide bridges between the Cys at -7 and one of the internal cysteines. Moreover, Cys-61 is important for HBe biosynthesis in general since mutation of this amino acid results in production of HBe proteins which are either only poorly secreted or possess a different antigenicity.  相似文献   

19.
Cysteine-to-serine mutations were constructed to test the functional and structural significance of the three non-extracellular cysteine residues in ecto-nucleoside-triphosphate diphosphohydrolase 3 (eNTPDase3). None of these cysteines were found to be essential for enzyme activity. However, Cys(10), located on the short N-terminal cytoplasmic tail, was found to be responsible for dimer formation occurring via oxidation during membrane preparation as well as for dimer cross-linking resulting from exogenously added sulfhydryl-specific cross-linking agents. The resistance to further cross-linking of these dimers into higher order oligomers by lysine-specific cross-linkers suggests that this enzyme may form its native tetrameric structure as a "dimer of dimers" with nonequivalent interactions between subunits. Cys(501), located in the hydrophobic C-terminal membrane-spanning domain of eNTPDase3, was found to be the site of chemical modification by a sulfhydryl-specific reagent, p-chloromercuriphenylsulfonic acid (pCMPS), leading to inhibition of enzyme activity. The effect of pCMPS was negligible after dissociation of the enzyme into monomers by Triton X-100, suggesting that the mechanism of inhibition is dependent on the oligomeric structure. Because Cys(501) is accessible for modification by the membrane-impermeant reagent pCMPS, we hypothesize that eNTPDase3 (and possibly other eNTPDases) contains a water-filled crevice allowing access of water and hydrophilic compounds to at least part of the protein's C-terminal membrane-spanning helix.  相似文献   

20.
Kinetically stable homodimeric serine protease milin reveals high conformational stability against temperature, pH and chaotrope [urea, guanidine hydrochloride (GuHCl) and guanidine isothiocynate (GuSCN)] denaturation as probed by circular dichroism, fluorescence, differential scanning calorimetry and activity measurements. GuSCN induces complete unfolding in milin, whereas temperature, urea and GuHCl induce only partial unfolding even at low pH, through several intermediates with distinct characteristics. Some of these intermediates are partially active (viz. in urea and 2 M GuHCl at pH 7.0), and some exhibited strong ANS binding as well. All three tryptophans in the protein seem to be buried in a rigid, compact core as evident from intrinsic fluorescence measurements coupled to equilibrium unfolding experiments. The protein unfolds as a dimer, where the unfolding event precedes dimer dissociation as confirmed by hydrodynamic studies. The solution studies performed here along with previous biochemical characterization indicate that the protein has α-helix and β-sheet rich regions or structural domains that unfold independently, and the monomer association is isologous. The complex unfolding pathway of milin and the intermediates has been characterized. The physical, physiological and probable therapeutic importance of the results has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号