首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a novel method for the implementation of hyperelastic finite strain, non-linear strain-energy functions for biological membranes in an explicit finite element environment. The technique is implemented in LS-DYNA but may also be implemented in any suitable non-linear explicit code. The constitutive equations are implemented on the foundation of a co-rotational uniformly reduced Hughes-Liu shell. This shell is based on an updated-Lagrangian formulation suitable for relating Cauchy stress to the rate-of-deformation, i.e. hypo-elasticity. To accommodate finite deformation hyper-elastic formulations, a co-rotational deformation gradient is assembled over time, resulting in a formulation suitable for pseudo-hyperelastic constitutive equations that are standard assumptions in biomechanics. Our method was validated by comparison with (1) an analytic solution to a spherically-symmetric dynamic membrane inflation problem, incorporating a Mooney-Rivlin hyperelastic equation and (2) with previously published finite element solutions to a non-linear transversely isotropic inflation problem. Finally, we implemented a transversely isotropic strain-energy function for mitral valve tissue. The method is simple and accurate and is believed to be generally useful for anyone who wishes to model biologic membranes with an experimentally driven strain-energy function.  相似文献   

2.
This paper presents a nonlinearly elastic anisotropic microplane formulation in 3D for computational constitutive modeling of arterial soft tissue in the passive regime. The constitutive modeling of arterial (and other biological) soft tissue is crucial for accurate finite element calculations, which in turn are essential for design of implants, surgical procedures, bioartificial tissue, as well as determination of effect of progressive diseases on tissues and implants. The model presented is defined at a lower scale (mesoscale) than the conventional macroscale and it incorporates the effect of all the (collagen) fibers which are anisotropic structural components distributed in all directions within the tissue material in addition to that of isotropic bulk tissue. It is shown that the proposed model not only reproduces Holzapfel's recent model but also improves on it by accounting for the actual three-dimensional distribution of fiber orientation in the arterial wall, which endows the model with advanced capabilities in simulation of remodeling of soft tissue. The formulation is flexible so that its parameters could be adjusted to represent the arterial wall either as a single material or a material composed of several layers in finite element analyses of arteries. Explicit algorithms for both the material subroutine and the explicit integration with dynamic relaxation of equations of motion using finite element method are given. To circumvent the slow convergence of the standard dynamic relaxation and small time steps dictated by the stability of the explicit integrator, an adaptive dynamic relaxation technique that ensures stability and fastest possible convergence rates is developed. Incompressibility is enforced using penalty method with an updated penalty parameter. The model is used to simulate experimental data from the literature demonstrating that the model response is in excellent agreement with the data. An experimental procedure to determine the distribution of fiber directions in 3D for biological soft tissue is suggested in accordance with the microplane concept. It is also argued that this microplane formulation could be modified or extended to model many other phenomena of interest in biomechanics.  相似文献   

3.
Hyperelastic material models have been incorporated in the rotation-free, large deformation, shell finite element (FE) formulation of (Stolarski et al., 2013) and applied to dynamic simulations of aortic heart valve. Two models used in the past in analysis of such problem i.e. the Saint-Venant and May-Newmann–Yin (MNY) material models have been considered and compared. Uniaxial tests for those constitutive equations were performed to verify the formulation and implementation of the models. The issue of leaflets interactions during the closing of the heart valve at the end of systole is considered. The critical role of using non-linear anisotropic model for proper dynamic response of the heart valve especially during the closing phase is demonstrated quantitatively. This work contributes an efficient FE framework for simulating biological tissues and paves the way for high-fidelity flow structure interaction simulations of native and bioprosthetic aortic heart valves.  相似文献   

4.
Abstract

Prestretch is observed in many soft biological tissues, directly influencing the mechanical behavior of the tissue in question. The development of this prestretch occurs through complex growth and remodeling phenomena, which yet remain to be elucidated. In the present study it was investigated whether local cell-mediated traction forces can explain the development of global anisotropic tissue prestretch in the mitral valve. Towards this end, a model predicting actin stress fiber-generated traction forces was implemented in a finite element framework of the mitral valve. The overall predicted magnitude of prestretch induced valvular contraction after release of in vivo boundary constraints was in good agreement with data reported on valvular retraction after excision from the heart. Next, by using a systematic variation of model parameters and structural properties, a more anisotropic prestretch development in the valve could be obtained, which was also similar to physiological values. In conclusion, this study shows that cell-generated traction forces could explain prestretch magnitude and anisotropy in the mitral valve.  相似文献   

5.
6.
Alterations in mitral valve mechanics are classical indicators of valvular heart disease, such as mitral valve prolapse, mitral regurgitation, and mitral stenosis. Computational modeling is a powerful technique to quantify these alterations, to explore mitral valve physiology and pathology, and to classify the impact of novel treatment strategies. The selection of the appropriate constitutive model and the choice of its material parameters are paramount to the success of these models. However, the in vivo parameters values for these models are unknown. Here, we identify the in vivo material parameters for three common hyperelastic models for mitral valve tissue, an isotropic one and two anisotropic ones, using an inverse finite element approach. We demonstrate that the two anisotropic models provide an excellent fit to the in vivo data, with local displacement errors in the sub-millimeter range. In a complementary sensitivity analysis, we show that the identified parameter values are highly sensitive to prestrain, with some parameters varying up to four orders of magnitude. For the coupled anisotropic model, the stiffness varied from 119,021 kPa at 0 % prestrain via 36 kPa at 30 % prestrain to 9 kPa at 60 % prestrain. These results may, at least in part, explain the discrepancy between previously reported ex vivo and in vivo measurements of mitral leaflet stiffness. We believe that our study provides valuable guidelines for modeling mitral valve mechanics, selecting appropriate constitutive models, and choosing physiologically meaningful parameter values. Future studies will be necessary to experimentally and computationally investigate prestrain, to verify its existence, to quantify its magnitude, and to clarify its role in mitral valve mechanics.  相似文献   

7.
This paper presents a shell finite element formulation appropriate for simulating the heart valve leaflet mechanics, including three-dimensional (3D) stress and strain effects. A 4-node mixed-interpolation shell is formulated in convected coordinates. This shell model is made capable of handling arbitrary 3D material models by use of an algorithm that satisfies the shell stress assumption at every element integration point. A method for tracking the fiber direction is incorporated. The resulting shell element operates under the same conditions as a standard 4-node shell element with 5 degrees of freedom per node, but extends the modeling capabilities to handle large-deformation and anisotropic behavior.  相似文献   

8.
BACKGROUND: Many diseases that affect the mitral valve are accompanied by the proliferation or degradation of tissue microstructure. The early acoustic detection of these changes may lead to the better management of mitral valve disease. In this study, we examine the nonstationary acoustic effects of perturbing material parameters that characterize mitral valve tissue in terms of its microstructural components. Specifically, we examine the influence of the volume fraction, stiffness and splay of collagen fibers as well as the stiffness of the nonlinear matrix in which they are embedded. METHODS AND RESULTS: To model the transient vibrations of the mitral valve apparatus bathed in a blood medium, we have constructed a dynamic nonlinear fluid-coupled finite element model of the valve leaflets and chordae tendinae. The material behavior for the leaflets is based on an experimentally derived structural constitutive equation. The gross movement and small-scale acoustic vibrations of the valvular structures result from the application of physiologic pressure loads. Material changes that preserved the anisotropy of the valve leaflets were found to preserve valvular function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valvular function. These changes were manifest in the acoustic signatures of the valve closure sounds. Abnormally, stiffened valves closed more slowly and were accompanied by lower peak frequencies. CONCLUSION: The relationship between stiffness and frequency, though never documented in a native mitral valve, has been an axiom of heart sounds research. We find that the relationship is more subtle and that increases in stiffness may lead to either increases or decreases in peak frequency depending on their relationship to valvular function.  相似文献   

9.
The present study addresses the effect of muscle activation contributions to mitral valve leaflet response during systole. State-of-art passive hyperelastic material modeling is employed in combination with a simple active stress part. Fiber families are assumed in the leaflets: one defined by the collagen and one defined by muscle activation. The active part is either assumed to be orthogonal to the collagen fibers or both orthogonal to and parallel with the collagen fibers (i.e. an orthotropic muscle fiber model). Based on data published in the literature and information herein on morphology, the size of the leaflet parts that contain muscle fibers is estimated. These parts have both active and passive materials, the remaining parts consist of passive material only. Several solid finite element analyses with different maximum activation levels are run. The simulation results are compared to corresponding echocardiography at peak systole for a porcine model. The physiologically correct flat shape of the closed valve is approached as the activation levels increase. The non-physiological bulging of the leaflet into the left atrium when using passive material models is reduced significantly. These results contribute to improved understanding of the physiology of the native mitral valve, and add evidence to the hypothesis that the mitral valve leaflets not are just passive elements moving as a result of hemodynamic pressure gradients in the left part of the heart.  相似文献   

10.
Estimation of regional tissue stresses in the functioning heart valve remains an important goal in our understanding of normal valve function and in developing novel engineered tissue strategies for valvular repair and replacement. Methods to accurately estimate regional tissue stresses are thus needed for this purpose, and in particular to develop accurate, statistically informed means to validate computational models of valve function. Moreover, there exists no currently accepted method to evaluate engineered heart valve tissues and replacement heart valve biomaterials undergoing valvular stresses in blood contact. While we have utilized mitral valve anterior leaflet valvuloplasty as an experimental approach to address this limitation, robust computational techniques to estimate implant stresses are required. In the present study, we developed a novel numerical analysis approach for estimation of the in-vivo stresses of the central region of the mitral valve anterior leaflet (MVAL) delimited by a sonocrystal transducer array. The in-vivo material properties of the MVAL were simulated using an inverse FE modeling approach based on three pseudo-hyperelastic constitutive models: the neo-Hookean, exponential-type isotropic, and full collagen–fiber mapped transversely isotropic models. A series of numerical replications with varying structural configurations were developed by incorporating measured statistical variations in MVAL local preferred fiber directions and fiber splay. These model replications were then used to investigate how known variations in the valve tissue microstructure influence the estimated ROI stresses and its variation at each time point during a cardiac cycle. Simulations were also able to include estimates of the variation in tissue stresses for an individual specimen dataset over the cardiac cycle. Of the three material models, the transversely anisotropic model produced the most accurate results, with ROI averaged stresses at the fully-loaded state of  432.6±46.5 kPa and 241.4±40.5 kPa in the radial and circumferential directions, respectively. We conclude that the present approach can provide robust instantaneous mean and variation estimates of tissue stresses of the central regions of the MVAL.  相似文献   

11.
Edge-to-edge technique is a surgical procedure for the correction of mitral valve leaflets prolapse by suturing the edge of the prolapsed leaflet to the free edge of the opposing one. Suture presence modifies valve mechanical behavior and orifice flow area in the diastolic phase, when the valve opens and blood flows into the ventricle. In the present work, in order to support identification of potentially critical conditions, a computational procedure is described to evaluate the effects of changing suture length and position in combination with valve size and shape. The procedure is based on finite element method analyses applied to a range of different mitral valves, investigating for each configuration the influence of repair on functional parameters, such as mitral valve orifice area and transvalvular pressure gradient, and on structural parameters, such as stress in the leaflets and stitch tension. This kind of prediction would ideally require a coupled fluid-structural analysis, where the interactions between blood flows and mitral apparatus deformation are simultaneously considered. In the present study, however, an alternative approach is proposed, in which results obtained by purely structural finite element analyses are elaborated and interpreted taking into account the Bernoulli type equations available in literature to describe blood flow through mitral orifice. In this way, the effects of each parameter in terms of orifice flow area, suture loads, and leaflets stresses can be expressed as functions of atrioventricular pressure gradient and then correlated to blood flow rate. Results obtained by using this procedure for different configurations are finally discussed.  相似文献   

12.
13.
Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechanochemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechanochemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http:∕∕mrl.sci.utah.edu∕software).  相似文献   

14.
This paper presents three different constitutive approaches to model thin rotation-free shells based on the Kirchhoff–Love hypothesis. One approach is based on numerical integration through the shell thickness while the other two approaches do not need any numerical integration and so they are computationally more efficient. The formulation is designed for large deformations and allows for geometrical and material nonlinearities, which makes it very suitable for the modeling of soft tissues. Furthermore, six different isotropic and anisotropic material models, which are commonly used to model soft biological materials, are examined for the three proposed constitutive approaches. Following an isogeometric approach, NURBS-based finite elements are used for the discretization of the shell surface. Several numerical examples are investigated to demonstrate the capabilities of the formulation. Those include the contact simulation during balloon angioplasty.  相似文献   

15.
The structural and functional effects of the “edge-to-edge” technique on the human mitral valve have been investigated, paying particular attention to the diastolic phase. An advanced finite element model of the valve has been developed, using a hyperelastic material schematization, suitable geometry and constraint conditions, and an effective fluidodynamic analysis. The edge-to-edge suture has been applied on this model and the diastolic phase has been simulated. The results of this calculation show that the operation increases the transvalvular pressure and the maximum stress in the leaflets, which reaches a level similar to that of the systolic phase. The influence of suture position and extension, and the mitral annulus dimension has also been investigated. The results indicate that a lateral location of the stitch is better than a central one, both regarding valve functionality (pressure level and mobility) and internal stresses level, that a longer suture worsens the valve functionality but reduces the stresses level, finally, that the dilatation of the mitral annulus does not affect the valve functionality but increases the stresses level.  相似文献   

16.
New computational techniques providing more accurate representation of human heart pathologies could help uncovering relevant physical phenomena and improve the outcome of medical therapies. In this framework, the present work describes an efficient computational model for the evaluation of the ventricular flow alteration in presence of mitral valve stenosis. The model is based on the direct numerical simulation of the Navier–Stokes equations two-way coupled with a structural solver for the left ventricle and mitral valve dynamics. The presence of mitral valve stenosis is mimicked by a single-parameter constraint acting on the kinematics of the mitral leaflets.Four different degrees of mitral valve stenosis are considered focusing on the hemodynamic alterations occurring in pathologic conditions. The mitral jet, generated during diastole, is seen to shrink and strengthen when the stenosis gets more severe. As a consequence, the kinetic energy of the flow, the tissues shear stresses, the transvalvular pressure drop and mitral regurgitation increase. It results that, as the stenosis severity level increases, the geometric and effective orifice areas decrease up to 50% with respect the normal case due to the reduced leaflets mobility and stronger blood acceleration during the diastolic phase. The modified intraventricular hemodynamics is also related to a stronger pressure gradient that, for severe stenosis, can be more than ten times larger than the healthy valve case. These computational results are fully consistent with the available clinical literature and open the way to the virtual assessment of surgical procedures and to the evaluation of prosthetic devices.  相似文献   

17.
In this paper we present a mixed finite element method for modeling the passive properties of the myocardium. The passive properties are described by a non-linear, transversely isotropic, hyperelastic material model, and the myocardium is assumed to be almost incompressible. Single-field, pure displacement-based formulations are known to cause numerical difficulties when applied to incompressible or slightly compressible material cases. This paper presents an alternative approach in the form of a mixed formulation, where a separately interpolated pressure field is introduced as a primary unknown in addition to the displacement field. Moreover, a constraint term is included in the formulation to enforce (almost) incompressibility. Numerical results presented in the paper demonstrate the difficulties related to employing a pure displacement-based method, applying a set of physically relevant material parameter values for the cardiac tissue. The same problems are not experienced for the proposed mixed method. We show that the mixed formulation provides reasonable numerical results for compressible as well as nearly incompressible cases, also in situations of large fiber stretches. There is good agreement between the numerical results and the underlying analytical models.  相似文献   

18.
In this paper we present a mixed finite element method for modeling the passive properties of the myocardium. The passive properties are described by a non-linear, transversely isotropic, hyperelastic material model, and the myocardium is assumed to be almost incompressible. Single-field, pure displacement-based formulations are known to cause numerical difficulties when applied to incompressible or slightly compressible material cases. This paper presents an alternative approach in the form of a mixed formulation, where a separately interpolated pressure field is introduced as a primary unknown in addition to the displacement field. Moreover, a constraint term is included in the formulation to enforce (almost) incompressibility. Numerical results presented in the paper demonstrate the difficulties related to employing a pure displacement-based method, applying a set of physically relevant material parameter values for the cardiac tissue. The same problems are not experienced for the proposed mixed method. We show that the mixed formulation provides reasonable numerical results for compressible as well as nearly incompressible cases, also in situations of large fiber stretches. There is good agreement between the numerical results and the underlying analytical models.  相似文献   

19.
20.
Computer aided stress analysis of long bones utilizing computed tomography   总被引:4,自引:0,他引:4  
A computer aided analysis method has been developed which utilizes computed tomography (CT) and a finite element (FE) computer program to determine the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the apparent density and the elastic properties for the three-dimensional FE model. A developed pre-processor generates the FE model of a human diaphyseal tibia section which is then analyzed by the SAP IV finite element program. The results obtained are sorted and displayed by a developed post-processor and compared with stresses and deformations from the literature. The model generation method was verified by applying it to a model of simple geometry and boundary conditions, then comparing the results with the analytical solution of the same problem. The convergence behavior of nodal displacements was tested as a function of mesh refinement. This method provides an automatic, versatile, non-invasive and accurate tool of long bone modeling for finite element stress analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号