首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aminopeptidase secreted from Streptomyces septatus TH-2 (SSAP) was identified as a heat stable enzyme, and the Ssap gene was cloned and sequenced. The primary structure of SSAP showed 71% identity with that of a Streptomyces griseus aminopeptidase (SGAP), however, it lacked a unique calcium binding site. The recombinant SSAP was overexpressed in the culture supernatant of Escherichia coli harboring pET-KmS2. A comparison of recombinant SSAP and SGAP showed that both enzymes are different in terms of modulation by calcium and substrate specificity. The activity of SSAP was not modulated by calcium, while SGAP is a calcium-activated enzyme. SSAP catalyzed the hydrolysis of L-Lys-pNA efficiently whereas the reaction rate for L-Lys-pNA hydrolysis of SGAP was significantly low. Furthermore, in SGAP, the presence of Ca2+ decreased the reaction rate of L-Lys-pNA hydrolysis. SSAP also had different pKas s of reaction from that of SGAP, although almost all the residues which compose the active site were conserved in both enzymes. This result indicates that SSAP has a different environment of substrate binding and active sites from those of SGAP.  相似文献   

2.
To investigate the role of Glu196 of leucine aminopeptidase from Streptomyces griseus (SGAP) in SGAP activation by calcium and substrate specificity, we constructed E196X SGAP by saturation mutagenesis. Most mutations led to the abrogation of SGAP activation by calcium, and substitution with Lys led to a marked increase in activity toward Asp-p-nitroanilide (pNA) and a decrease in that toward Lys-pNA. A similar result was obtained from the investigation using non-calcium-activated enzyme from Streptomyces septatus (SSAP). These results indicate that Glu196 of SGAP is associated with the environment around the substrate binding site besides its role in SGAP activation by calcium.  相似文献   

3.
Streptomyces griseus aminopeptidase (SGAP) is a double-zinc exopeptidase with a high preference toward large hydrophobic amino-terminus residues. It is a monomer of a relatively low molecular weight (30 kDa), it is heat stable, it displays a high and efficient catalytic turnover, and its activity is modulated by calcium ions. The small size, high activity, and heat stability make SGAP a very attractive enzyme for various biotechnological applications, among which is the processing of recombinant DNA proteins and fusion protein products. Several free amino acids, such as phenylalanine, leucine, and methionine, were found to act as weak inhibitors of SGAP and hence were chosen for structural studies. These inhibitors can potentially be regarded as product analogs because one of the products obtained in a normal enzymatic reaction is the cleaved amino terminal amino acid of the substrate. The current study includes the X-ray crystallographic analysis of the SGAP complexes with methionine (1.53 A resolution), leucine (1.70 A resolution), and phenylalanine (1.80 A resolution). These three high-resolution structures have been used to fully characterize the SGAP active site and to identify some of the functional groups of the enzyme that are involved in enzyme-substrate and enzyme-product interactions. A unique binding site for the terminal amine group of the substrate (including the side chains of Glu131 and Asp160, as well as the carbonyl group of Arg202) is indicated to play an important role in the binding and orientation of both the substrate and the product of the catalytic reaction. These studies also suggest that Glu131 and Tyr246 are directly involved in the catalytic mechanism of the enzyme. Both of these residues seem to be important for substrate binding and orientation, as well as the stabilization of the tetrahedral transition state of the enzyme-substrate complex. Glu131 is specifically suggested to function as a general base during catalysis by promoting the nucleophilic attack of the zinc-bound water/hydroxide on the substrate carbonyl carbon. The structures of the three SGAP complexes are compared with recent structures of three related aminopeptidases: Aeromonas proteolytica aminopeptidase (AAP), leucine aminopeptidase (LAP), and methionine aminopeptidase (MAP) and their complexes with corresponding inhibitors and analogs. These structural results have been used for the simulation of several species along the reaction coordinate and for the suggestion of a general scheme for the proteolytic reaction catalyzed by SGAP.  相似文献   

4.
Mannanase is an important enzyme involved in the degradation of mannan, production of bioactive oligosaccharides, and biobleaching of kraft pulp. Mannanase must be thermostable for use in industrial applications. In a previous study, we found that the thermal stability of mannanase from Streptomyces thermolilacinus (StMan) and Thermobifida fusca (TfMan) is enhanced by calcium. Here, we investigated the relationship between the three-dimensional structure and primary sequence to identify the putative calcium-binding site. The results of site-directed mutagenesis experiments indicated that Asp-285, Glu-286, and Asp-287 of StMan (StDEDAAAdC) and Asp-264, Glu-265, and Asp-266 of TfMan (TfDEDAAAdC) were the key residues for calcium binding affinity. Isothermal titration calorimetry revealed that the catalytic domain of StMan and TfMan (StMandC and TfMandC, respectively) bound calcium with a Ka of 3.02 × 104 M−1 and 1.52 × 104 M−1, respectively, both with stoichiometry consistent with one calcium-binding site per molecule of enzyme. Non-calcium-binding mutants (StDEDAAAdC and TfDEDAAAdC) did not show any calorimetric change. From the primary structure alignment of several mannanases, the calcium-binding site was found to be highly conserved in GH5 bacterial mannanases. This is the first study indicating enhanced thermal stability of GH5 bacterial mannanases by calcium binding.  相似文献   

5.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

6.
Waglerin-1 (Wtx-1) is a 22-amino acid peptide that competitively antagonizes muscle nicotinic acetylcholine receptors (nAChRs). Previous work demonstrated that Wtx-1 binds to mouse nAChRs with higher affinity than receptors from rats or humans, and distinguished residues in alpha and epsilon subunits that govern the species selectivity. These studies also showed that Wtx-1 binds selectively to the alpha-epsilon binding site with significantly higher affinity than to the alpha-delta binding site. Here we identify residues at equivalent positions in the epsilon, gamma, and delta subunits that govern Wtx-1 selectivity for one of the two binding sites on the nAChR pentamer. Using a series of chimeric and point mutant subunits, we show that residues Gly-57, Asp-59, Tyr-111, Tyr-115, and Asp-173 of the epsilon subunit account predominantly for the 3700-fold higher affinity of the alpha-epsilon site relative to that of the alpha-gamma site. Similarly, we find that residues Lys-34, Gly-57, Asp-59, and Asp-173 account predominantly for the high affinity of the alpha-epsilon site relative to that of the alpha-delta site. Analysis of combinations of point mutations reveals that Asp-173 in the epsilon subunit is required together with the remaining determinants in the epsilon subunit to achieve Wtx-1 selectivity. In particular, Lys-34 interacts with Asp-173 to confer high affinity, resulting in a DeltaDeltaG(INT) of -2.3 kcal/mol in the epsilon subunit and a DeltaDeltaG(INT) of -1.3 kcal/mol in the delta subunit. Asp-173 is part of a nonhomologous insertion not found in the acetylcholine binding protein structure. The key role of this insertion in Wtx-1 selectivity indicates that it is proximal to the ligand binding site. We use the binding and interaction energies for Wtx-1 to generate structural models of the alpha-epsilon, alpha-gamma, and alpha-delta binding sites containing the nonhomologous insertion.  相似文献   

7.
Aminopeptidase A is a zinc metalloenzyme involved in the formation of brain angiotensin III, which exerts a tonic stimulatory action on the central control of blood pressure. Thus, central inhibitors of aminopeptidase A constitute putative central antihypertensive agents. Mutagenic studies have been performed to investigate organization of the aminopeptidase A active site, with a view to designing such inhibitors. The structure of one monozinc aminopeptidase (leukotriene A(4) hydrolase) was recently resolved and used to construct a three-dimensional model of the aminopeptidase A ectodomain. This new model, highly consistent with the results of mutagenic studies, showed a critical structural interaction between two conserved residues, Arg-220 and Asp-227. Mutagenic replacement of either of these two residues disrupted maturation and subcellular localization and abolished the enzymatic activity of aminopeptidase A, confirming the critical structural role of these residues. In this study, we generated the first three-dimensional model of a strict aminopeptidase, aminopeptidase A. This model constitutes a new tool to probe further the active site of aminopeptidase A and to design new inhibitors of this enzyme.  相似文献   

8.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

9.
Recombinant Streptomyces griseus aminopeptidase (SGAP) was produced using Cangene's expression system, CANGENUS. This heat-stable aminopeptidase with an N-terminal Ala-Pro-Asp-Ile-Pro-Leu-Ala-Asn-Val-Lys-Ala sequence was purified from 16L of Streptomyces lividans fermentation supernatant with high purity and 19.5% recovery rate. This was achieved by the combination of hydrophobic-interaction and size-exclusion chromatographic procedures. The calcium-activated zinc metalloprotein demonstrated no loss of activity at -20 degrees C for at least 8 weeks in both liquid and freeze-dried formulations. The recombinant SGAP showed an apparent molecular mass of 31 kDa by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and 26.8 kDa by gel filtration. The simple, high-yield, inexpensive purification method with few intermediate steps provides a novel and practical procedure for large-scale production of active recombinant S. griseus aminopeptidase.  相似文献   

10.
We attempted to alter the substrate preference of aminopeptidase from Streptomyces septatus TH-2 (SSAP). Because Asp198 and Phe221 of SSAP are located in the substrate binding site, we screened 2,000 mutant enzymes with D198X/F221X mutations. By carrying out this examination, we obtained two enzymes; one specifically hydrolyzed an arginyl derivative, and the other specifically hydrolyzed a cystinyl derivative (65- and 12.5-fold higher k(cat) values for hydrolysis of p-nitroanilide derivatives than those of the wild type, respectively).  相似文献   

11.
To investigate the contribution of amino acid residues to the enzyme reaction of Streptomyces phospholipase D (PLD), we constructed a chimeric gene library between two highly homologous plds, which indicated different activity in transphosphatidylation, using RIBS (repeat-length independent and broad spectrum) in vivo DNA shuffling. By comparing the activities of chimeras, six candidate residues related to transphosphatidylation activity were shown. Based on the above result, we constructed several mutants to identify the key residues involved in the recognition of phospholipids. By kinetic analysis, we identified that Gly188 and Asp191 of PLD from Streptomyces septatus TH-2, which are not present in the highly conserved catalytic HXKXXXXD (HKD) motifs, are key amino acid residues related to the transphosphatidylation activity. To investigate the role of two residues in the recognition of phospholipids, the effects of these residues on binding to substrates were analyzed by surface plasmon spectroscopy. The result suggests that Gly188 and Asp191 are involved in the recognition of phospholipids in correlation with the N-terminal HKD motif. Furthermore, this study also provides experimental evidence that the N-terminal HKD motif contains the catalytic nucleophile, which attacks the phosphatidyl group of the substrate.  相似文献   

12.
The aminopeptidase from Streptomyces griseus (SGAP) has been cloned and expressed in Escherichia coli. By growing the cells in the presence of 1 M sorbitol at 18 degrees C, the protein was obtained in a soluble and active form. The amino acid sequence of the recombinant SGAP contained four amino acids differing from the previously published sequence. Re-sequencing of the native protein indicated that asparagines 70 and 184 are in fact aspartic acids as in the recombinant protein. Based on the crystal structure of SGAP, Glu131 and Tyr246 were proposed to be the catalytic residues. Replacements of Glu131 resulted in loss of activity of 4-5 orders of magnitude, consistent with Glu131 acting as the general base residue. Mutations in Tyr246 resulted in about 100-fold reduction of activity, suggesting that this residue is involved in the stabilization of the transition state intermediate.  相似文献   

13.
The Aeromonas proteolytica aminopeptidase (AMP), Pseudomonas sp. (RS-16) carboxypeptidase G2 (CPG2), and Streptomyces griseus aminopeptidase (SGAP) are zinc dependent proteolytic enzymes with cocatalytic zinc ion centers and a conserved aminopeptidase fold. A BLAST search with the sequence of the solved AMP structure indicated that a similar domain could be found in prostate-specific membrane antigen (PSMA) and the transferrin receptor (TfR). When the PSMA or TfR sequence was input into the THREADER program, the top structural matches were SGAP and AMP confirming that these are structurally conserved domains. Optimal sequence alignment of PSMA and TfR using the known three-dimensional structures of AMP, CPG2, and SGAP shows that the critical amino acids involved in forming the catalytic pocket are conserved in PSMA but absent in the TfR. The specificity pocket in AMP is formed from four aromatic side chains and the equivalent region in CPG2/PSMA has a changed sequence pattern. Since CPG2 and PSMA are folate hydrolases, the changed specificity pocket leaves space to accommodate the large pteroate moiety of folic acid. In contrast, no enzyme function has been ascribed to the TfR.  相似文献   

14.
To isolate thermostability-related amino acid residues of Streptomyces phospholipase D (PLD), we constructed a chimeral genes library between two highly homologous plds, which exhibited different thermostabilities, by an in vivo DNA shuffling method using Escherichia coli that has a mutation of a single-stranded DNA-binding protein gene. To confirm the location of the recombination site, we carried out the restriction mapping of 68 chimeral pld genes. The recombination sites were widely dispersed over the entire pld sequence. Moreover, we examined six chimeral PLDs by comparing their thermostabilities with those of parental PLDs. To identify a thermostability-related amino acid residue, we investigated the thermostability of chimera C that was the most thermolabile among the six chimeras. We identified the thermostability-related factor Gly-188, which is located in the alpha-7 helix of PLD from Streptomyces septatus TH-2 (TH-2PLD). TH-2PLD mutants, in which Gly-188 was substituted with Phe, Val or Trp, exhibited higher thermostabilities than that of the parental PLD. Gly-188 substituted with the Phe mutant, which was the most stable among the mutants, showed an enzyme activity almost the same as that of TH-2PLD as determine by kinetic analysis.  相似文献   

15.
Recently, we identified Ala426 and Lys438 of phospholipase D from Streptomyces septatus TH-2 (TH-2PLD) as important residues for activity, stability and selectivity in transphosphatidylation. These residues are located in a C-terminal flexible loop separate from two catalytic HxKxxxxD motifs. To study the role of these residues in substrate recognition, we evaluated the affinities of inactive mutants, in which these residues were substituted with Phe and His, toward several phospholipids by SPR analysis. By substituting Ala426 and Lys438 with Phe and His, respectively, the inactive mutant showed a much stronger interaction with phosphatidylcholine and a weaker interaction with phosphatidylglycerol than the inactive TH-2PLD mutant. We demonstrated that Ala426 and Lys438 of TH-2PLD play a role in sensing the head group of phospholipids.  相似文献   

16.
NAD+-dependent DNA ligase (LigA) is essential for bacterial growth and a potential target for antimicrobial drug discovery. Here we queried the role of 14 conserved amino acids of Escherichia coli LigA by alanine scanning and thereby identified five new residues within the nucleotidyltransferase domain as being essential for LigA function in vitro and in vivo. Structure activity relationships were determined by conservative mutagenesis for the Glu-173, Arg-200, Arg-208, and Arg-277 side chains, as well as four other essential side chains that had been identified previously (Lys-115, Asp-117, Asp-285, and Lys-314). In addition, we identified Lys-290 as important for LigA activity. Reference to the structure of Enterococcus faecalis LigA allowed us to discriminate three classes of essential/important side chains that: (i) contact NAD+ directly (Lys-115, Glu-173, Lys-290, and Lys-314); (ii) comprise the interface between the NMN-binding domain (domain Ia) and the nucleotidyltransferase domain or comprise part of a nick-binding site on the surface of the nucleotidyltransferase domain (Arg-200 and Arg-208); or (iii) stabilize the active site fold of the nucleotidyltransferase domain (Arg-277). Analysis of mutational effects on the isolated ligase adenylylation and phosphodiester formation reactions revealed different functions for essential side chains at different steps of the DNA ligase pathway, consistent with the proposal that the active site is serially remodeled as the reaction proceeds.  相似文献   

17.
We have recently shown that two flexible loops of Streptomyces phospholipase D (PLD) affect the catalytic reaction of the enzyme by a comparative study of chimeric PLDs. Gly188 and Asp191 of PLD from Streptomyces septatus TH-2 (TH-2PLD) were identified as the key amino acid residues involved in the recognition of phospholipids. In the present study, we further investigated the relationship between a C-terminal loop of TH-2PLD and PLD activities to elucidate the reaction mechanism and the recognition of the substrate. By analyzing chimeras and mutants in terms of hydrolytic and transphosphatidylation activities, Ala426 and Lys438 of TH-2PLD were identified as the residues associated with the activities. We found that Gly188 and Asp191 recognized substrate forms, whereas residues Ala426 and Lys438 enhanced transphosphatidylation and hydrolysis activities regardless of the substrate form. By substituting Ala426 and Lys438 with Phe and His, respectively, the mutant showed not only higher activities but also higher thermostability and tolerance against organic solvents. Furthermore, the mutant also improved the selectivity of the transphosphatidylation activity. The residues Ala426 and Lys438 were located in the C-terminal flexible loop of Streptomyces PLD separate from the highly conserved catalytic HxKxxxxD motifs. We demonstrated that this C-terminal loop, which formed the entrance of the active well, has multiple functional roles in Streptomyces PLD.  相似文献   

18.
The zinc hydrolase superfamily is a group of divergently related proteins that are predominantly enzymes with a zinc-based catalytic mechanism. The common structural scaffold of the superfamily consists of an eight-stranded beta-sheet flanked by six alpha-helices. Previous analyses, while acknowledging the likely divergent origins of leucine aminopeptidase, carboxypeptidase A and the co-catalytic enzymes of the metallopeptidase H clan based on their structural scaffolds, have failed to find any homology between the active sites in leucine aminopeptidase and the metallopeptidase H clan enzymes. Here we show that these two groups of co-catalytic enzymes have overlapping dizinc centers where one of the two zinc atoms is conserved in each group. Carboxypeptidase A and leucine aminopeptidase, on the other hand, no longer share any homologous zinc-binding sites. At least three catalytic zinc-binding sites have existed in the structural scaffold over the period of history defined by available structures. Comparison of enzyme-inhibitor complexes show that major remodeling of the substrate-binding site has occurred in association with each change in zinc ligation in the binding site. These changes involve re-registration and re-orientation of the substrate. Some residues important to the catalytic mechanism are not conserved amongst members. We discuss how molecules acting in trans may have facilitated the mutation of catalytically important residues in the active site in this group.  相似文献   

19.
20.
The amino acid sequence of the N-terminal cyanogen bromide fragment of bovine lens leucine aminopeptidase has been determined. This fragment contains a total of 171 amino acid residues and has a calculated molecular weight of 18,637. The sequence data presented here represent the first report of primary structure determination of a member of the class of aminopeptidases.The single cleavage site produced by limited tryptic digestion of native leucine aminopeptidase was determined to be between arginine-137 and lysine-138 of the total amino acid sequence. The possible existence of distinct structural domains in leucine aminopeptidase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号