首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramuscular and surface electromyogram changes during muscle fatigue   总被引:9,自引:0,他引:9  
Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.  相似文献   

2.
Six men were studied to determine the interrelationships among blood supply, motor unit (MU) activity and lactate concentrations during intermittent isometric contractions of the hand grip muscles. The subjects performed repeated contractions at 20% of maximal voluntary contraction (MVC) for 2 s followed by 2-s rest for 4 min with either unhindered blood circulation or arterial occlusion given between the 1st and 2nd min. The simultaneously recorded intramuscular MU spikes and surface electromyogram (EMG) data indicated that mean MU spike amplitude, firing frequency and the parameters of surface EMG power spectra (mean power frequency and root mean square amplitude) remained constant during the experiment with unhindered circulation, providing no electrophysiological signs of muscle fatigue. Significant increases in mean MU spike amplitude and frequency were, however, evident during the contractions with arterial occlusion. Similar patterns of significant changes in the surface EMG spectra parameters and venous lactate concentration were also observed, while the integrated force-time curves remained constant. These data would suggest that the metabolic state of the active muscles may have played an important role in the regulation of MU recruitment and rate coding patterns during exercise.  相似文献   

3.
The aim of the study was to investigate amplitude and frequency content of single motor unit (MU) electromyographic (EMG) and mechanomyographic (MMG) responses. Multi-channel surface EMG and MMG signals were detected from the dominant biceps brachii muscle of 10 volunteers during isometric voluntary contractions at 20%, 50%, and 80% of the maximal voluntary contraction (MVC) force. Each contraction was performed three times in the experimental session which was repeated in three non-consecutive days. Single MU action potentials were identified from the surface EMG signals and their times of occurrence used to trigger the averaging of the MMG signal. At each contraction level, the MUs with action potentials of highest amplitude were identified. Single MU EMG and MMG amplitude and mean frequency were estimated with normalized standard error of the mean within subjects (due to repetition of the measure in different trials and experimental sessions) smaller than 15% and 7%, respectively, in all conditions. The amplitude of the action potentials of the detected MUs increased with increasing force (mean +/- SD, 244 +/- 116 microV at 20% MVC, and 1426 +/- 638 microV at 80% MVC; P < 0.001) while MU MMG amplitude increased from 20% to 50% MVC (40.5 +/- 20.9 and 150 +/- 88.4 mm/s(2), respectively; P<0.001) and did not change significantly between 50% and 80% MVC (129 +/ -82.7 mm/s(2) at 80% MVC). MU EMG mean frequency decreased with contraction level (20% MVC: 97.2 +/- 13.9 Hz; 80% MVC: 86.2 +/- 11.4 Hz; P < 0.001) while MU MMG mean frequency increased (20% MVC: 33.2 +/- 6.8 Hz; 80% MVC: 40.1 +/- 6.1 Hz; P < 0.001). EMG peak-to-peak amplitude and mean frequency of individual MUs were not correlated with the corresponding variables of MMG at any contraction level.  相似文献   

4.
The characteristic of discharge behaviors of motor units (MUs) during low level contraction was investigated. The discharge of MUs in the m. vastus medialis was observed during the sustained contraction at 4 different levels below 10% MVC (2, 4, 8 and 10% MVC) for 15 min. The spike interval of all observed MUs gradually elongated during an initial several minutes of the contraction and the characteristic discharge patterns following the elongation were observed. i.e. continuous discharge throughout the contraction (CONT), decruitment (D-N), and re-recruitment following decruitment (D-REC).The relationship between recruitment threshold force (F(th)) and discharge pattern was not significant at 2% MVC but, at 10% MVC, there were significant differences in F(th) between D-N and CONT, and between D-REC and CONT MU populations.In pooled data, the MUs with the shorter mean spike interval at the beginning of the contraction (MSI(0), below 90 ms) tend to discharge continuously, but the MUs with longer MSI(0) showed various discharge patterns.In conclusion, during low level contraction MUs discharge characteristically, and the MU with high excitation levels tend to discharge continuously, but individual MU represents an intrinsic discharge pattern at not a high excitation level.  相似文献   

5.
Twelve male subjects were tested to determine the relationship between motor unit (MU) activities and surface electromyogram (EMG) power spectral parameters with contractions increasing linearly from zero to 80% of maximal voluntary contraction (MVC). Intramuscular spike and surface EMG signals recorded simultaneously from biceps brachii were analyzed by means of a computer-aided intramuscular MU spike amplitude-frequency (ISAF) histogram and an EMG frequency power spectral analysis. All measurements were made in triplicate and averaged. Results indicate that there were highly significant increases in surface EMG amplitude (71 +/- 31.3 to 505 +/- 188 microV, p less than 0.01) and mean power frequency (89 +/- 13.3 to 123 +/- 23.5 Hz, p less than 0.01) with increasing force. These changes were accompanied by progressive increases in the firing frequency of MU's initially recruited, and of newly recruited MU's with relatively larger spike amplitudes. The group data in the ISAF histograms revealed significant increases in mean spike amplitude (412 +/- 79 to 972 +/- 117 microV, p less than 0.01) and mean firing frequency (17.8 +/- 5.4 to 24.7 +/- 4.1 Hz, p less than 0.01). These data suggest that surface EMG spectral analysis can provide a sensitive measure of the relative changes in MU activity during increasing force output.  相似文献   

6.
Capabilities of amplitude and spectral methods for information extraction from interference EMG signals were assessed through simulation and preliminary experiment. Muscle was composed of 4 types of motor units (MUs). Different hypotheses on changes in firing frequency of individual MUs, intracellular action potential (IAP) and muscle fibre propagation velocity (MFPV) during fatigue were analyzed. It was found that changes in amplitude characteristics of interference signals (root mean square, RMS, or integrated rectified value, IEMG) detected by intramuscular and surface electrodes differed. RMS and IEMG of surface detected interference signals could increase even under MU firing rate reduction and without MU synchronisation. IAP profile lengthening can affect amplitude characteristics more significantly than MU firing frequency. Thus, an increase of interference EMG amplitude is unreliable to reflect changes in the neural drive. The ratio between EMG amplitude and contraction response can hardly characterise the so-called 'neuromuscular efficiency'. The recently proposed spectral fatigue indices can be used for quantification of interference EMG signals. The indices are practically insensitive to MU firing frequency. IAP profile lengthening and decrease in MFPV enhanced the index value, while recruitment of fast fatigable MUs reduced it. Sensitivity of the indices was higher than that of indices traditionally used.  相似文献   

7.
The recruitment and firing rate of biceps brachii (BB) and brachioradialis (BR) motor units (MUs) were studied in the course of fatiguing isometric contractions at 20%-30% of maximal voluntary contraction (MVC). MU recruitment generally occurred throughout the maintained contraction and was similar for BB and BR muscles. Newly recruited MUs started to discharge in the form of bursts, the duration of which increased until a continuous rhythmical firing was achieved. Within each burst, the first interval between two consecutive discharges was usually the shortest. MU threshold was lowered just after the limit time of the maintained contraction. The MU's firing rate either increased or remained stable as a function of the elapsed time. It is concluded that (1) in fatiguing isometric contractions at 20%-30% MVC contractile failure is mainly compensated for by MU recruitment and a lowered MU threshold and (2) differences between in surface changes in the electromyogram of BB and BR muscles cannot easily be explained by related differences in MU firing rate and recruitment.  相似文献   

8.
The objective of the present study was to investigate whether isometric contraction of the right triceps brachii muscle, of maximal duration and at 25% of the maximal voluntary contraction (MVC), would reduce mean fibre conduction velocity (CV) for the active motor units (MU). In addition to the cross-correlation of surface electromyograms (EMG) for CV determination, median frequency (fm) and root-mean-square amplitude (rms-amplitude) were calculated. The initial 5 min of the recovery of the three parameters was also investigated. The MVC were performed before and after the sustained contraction. Seven males-six in their twenties and one aged 43-participated in the investigation. Mean CV for the unfatigued muscle was 4.5 m.s-1, SD 0.38. On average, CV decreased less than 10% during the sustained contraction (P less than 0.05). The fm decreased almost linearly (46%) during the endurance time, while three quarters of the 250% increase in rms-amplitude took place during the last 50% of the contraction (P less than 0.001, both parameters). The MVC was reduced by 39% immediately after exhaustion (P less than 0.05). During the 1st min of recovery the rms-amplitude decreased by 50%, and the fm increased from 54% to 82% of the initial value (both P less than 0.05). No measurable simultaneous CV restitution occurred. A parallel 15% increase in fm and CV took place during the last 4 min of recovery (both P less than 0.001), while the amplitude remained constant. Since mean CV was essentially unchanged during the last 50% of the endurance time where large changes in fm and rms-amplitude occurred, factors supplementary to CV probably caused the striking changes in fatigue EMG, notably-MU recruitment, synchronization of MU activity, and lowering of MU firing frequencies. Nevertheless, during the last 4 min of recovery the entire increase in fm could be accounted for by the simultaneous increase in CV.  相似文献   

9.
Soundmyogram (SMG) and electromyogram signals were recorded simultaneously from the relatively fast medial gastrocnemius (MG) and slow soleus (SOL) during voluntary and electrically induced contractions. Using a spike-triggered averaging technique, the averaged elementary sound and corresponding MU spikes were also obtained from about 35 different MUs identified. The rms-SMG of MG increased as a function of force (P < 0.01). On the contrary, these values for SOL increased up to 60% MVC (P < 0.01), but decreased at 80% MVC. The relationship between the peak to peak amplitude of SMG and MU spike indicated significant positive correlations (r = 0.631 to approximately 0.657, P < 0.01). During electrical stimulation at 5 Hz, the SMG power spectral peak frequency (PF) was matched with stimulation frequency in both muscles. At higher stimulation frequencies, e.g., > 15 Hz, only in the MG was SMG-PF synchronized with stimulation frequency; the slow SOL did not show such synchronization. Our data suggest that the SMG frequency components might reflect active motor unit firing rates, and that the SMG amplitude depends upon mechanical properties of contraction, muscle fiber composition, and firing rate during voluntary and electrically induced contractions.  相似文献   

10.
The purpose of this work was to verify if deviation from the mirror-like behaviour of the motor units activation strategy (MUAS) and de-activation strategy (MUDS) and the degree of the error of the motor control system, during consecutive linearly increasing–decreasing isometric tension tasks, depend on the maximum reached tension and/or on the rate of tension changes. In 12 male subjects the surface EMG and force produced by the first dorsal interosseus activity were recorded during two (a and b) trapezoid isometric contractions with different plateau (a: 50% maximal voluntary contraction (MVC) and b: 100% MVC) and rate of tension changes (a: 6.7% MVC/s and b: 13.3% MVC/s) during up-going (UGR) and down-going (DGR) ramps. Ten steps (ST) 6 s long at 5, 10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC were also recorded. The root mean square (RMS) and mean frequency (MF) from EMG and the relative error of actual force output with respect to the target (% ERR) were computed. The EMG-RMS/% MVC and EMG-MF/% MVC relationships were not overlapped when the ST and DGR as well as the UGR and DGR data were compared. The % ERR/% MVC relationships during a and b contractions differed from ST data only below 20% MVC. It can be concluded that MUAS and MUDS are not mirroring one each other because MU recruitment or de-recruitment threshold may be influenced by the maximum effort and by the % MVC/s of UGR and DGR. The role of MUs mechanical and/or central nervous system hysteresis on force decrement control is discussed.  相似文献   

11.
The purpose of the present study was to determine whether the motor unit (MU) recruitment strategy of the agonist and antagonist muscles in the dominant arm differs from that in the non-dominant arm. The median frequency (MF) of the power density spectrum (PDS) of the electromyogram (EMG) was used as a tracking parameter to describe the MU recruitment. In 8 subjects the EMG was recorded from the biceps brachii and triceps brachii of each limb during isometric elbow flexion performed in a ramp fashion. Force was increased from 0 to 100% of the maximum voluntary contraction (MVC) in 3 s following a track displayed on an oscilloscope. When comparing the dominant versus non-dominant arm we found no statistical difference in the MU recruitment pattern of the biceps brachii and the triceps. Because the dominant arm was not always the better performing arm, we grouped the data according to the ability of the subjects to track the ramp signal. In this case we found a statistically significant difference between the better and worse performing arm in the full MU recruitment of the biceps. A more precise and accurate control of the increase in force was obtained when the central nervous system selected a slower and prolonged recruitment of MUs in the agonist muscle.  相似文献   

12.
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.  相似文献   

13.
In the present study the influence of speed of contraction on the interplay between recruitment and firing rate of motor units (MUs) was assessed. The surface electromyographic (sEMG) signal was recorded in nine healthy subjects from the right biceps brachii using a linear electrode array during ramp isometric contractions (from 0 to 100% of the maximal voluntary force, MVC) at 5, 10, and 20% MVC s(-1) (ramp phase), followed by 10 s of sustained MVC (hold phase). The median frequency (MDF), Root Mean Square (RMS) and conduction velocity (CV) of sEMG, were computed on adjacent epochs covering a force range of 5% MVC each. Full motor unit recruitment (FMUR) point was assessed as the force level at which MDF reached its maximum value; the MDF decay during the hold phase was taken as an index of localized muscle fatigue. At 5% MVC s(-1), FMUR was reached at 52.3% MVC. At 10%MVC s(-1) FMUR was achieved at 58% MVC; while at 20% MVC s(-1) FMUR point was located at 77% MVC, being statistically different from 5 and 10% MVCs(-1) ramps (p<0.05). The MDF decay was steeper at higher speed. CV modifications mirrored those reported for MDF. The RMS increased in a curvilinear fashion and the maximum value was always attained during the hold phase. Our findings suggest that MU recruitment strategies are significantly related to the speed of contraction even in a single muscle.  相似文献   

14.
Muscular sound and force relationship during isometric contraction in man   总被引:3,自引:0,他引:3  
The contracting muscle generates a low frequency sound detectable at the belly surface, ranging from 11 to 40 Hz. To study the relationship between the muscular sound and the intensity of the contraction a sound myogram (SMG) was recorded by a contact sensor from the biceps brachii of seven young healthy males performing 4-s isometric contractions from 10% to 100% of the maximal voluntary contraction (MVC), in 10% steps. Simultaneously, the electromyogram (EMG) was recorded as an index of muscle activity. SMG and EMG were integrated by conventional methods (iSMG and iEMG). The relationship between iSMG and iEMG vs MVC% is described by parabolic functions up to 80% and 100% MVC respectively. Beyond 80% MVC the iSMG decreases, being about half of its maximal value at 100% MVC. Our results indicate that the motor unit recruitment and firing rate affect the iSMG and iEMG in the same way up to 80% MVC. From 80% to 100% MVC the high motor units' discharge rate and the muscular stiffness together limit the pressure waves generated by the dimensional changes of the active fibres. The muscular sound seems to reflect the intramuscular visco-elastic characteristics and the motor unit activation pattern of a contracting muscle.  相似文献   

15.
The study compared changes in intramuscular and surface recordings of EMG amplitude with ultrasound measures of muscle architecture of the elbow flexors during a submaximal isometric contraction. Ten subjects performed a fatiguing contraction to task failure at 20% of maximal voluntary contraction force. EMG activity was recorded in biceps brachii, brachialis, and brachioradialis muscles using intramuscular and surface electrodes. The rates of increase in the amplitude of the surface EMG for the long and short heads of biceps brachii and brachioradialis were greater than those for the intramuscular recordings measured at different depths. The amplitude of the intramuscular recordings from three muscles increased at a similar rate (P = 0.13), as did the amplitude of the three surface recordings from two muscles (P = 0.83). The increases in brachialis thickness (27.7 +/- 5.7 to 30.9 +/- 3.5 mm; P < 0.05) and pennation angle (10.9 +/- 3.5 to 16.5 +/- 4.8 degrees ; P = 0.003) were not associated with the increase in intramuscular EMG amplitude (P > 0.58). The increase in brachioradialis thickness (22.8 +/- 4.8 to 25.5 +/- 3.4 mm; P = 0.0075) was associated with the increase in the amplitude for one of two intramuscular EMG signals (P = 0.007, r = 0.79). The time to failure was more strongly associated with the rate of increase in the amplitude of the surface EMG than that for the intramuscular EMG, which suggests that the surface measurement provides a more appropriate measure of the change in muscle activation during a fatiguing contraction.  相似文献   

16.
Paraspinal electromyographic (EMG) activity was recorded bilaterally from three lumbar levels during 30-s isometric trunk extensions [40 and 80% of maximum voluntary contraction (MVC)] in 20 healthy men and 14 chronic low back pain patients in pain. EMG parameters indicating neuromuscular fatigue and contralateral imbalances in EMG root-mean-square amplitude and median frequency were analyzed. Patients in pain showed less fatigue than controls at both contraction levels and produced only 55% of their MVC. Patients in pain likely did not produce a "true" maximum effort. A low MVC estimate would mean lower absolute contraction levels and less neuromuscular fatigue, thus explaining lower scores in the patients. Contralateral root-mean-square amplitude imbalances were present in both categories of subjects although such imbalances, when averaged across lumbar levels, were significantly larger in patients. Median frequency imbalances were significantly larger in the patients, at segmental as well as across lumbar levels. These results suggest that the presence of pain in these patients caused a redistribution of the activation behavior between synergistic muscles of the lumbar back.  相似文献   

17.
The physiological response to continuous and intermittent handgrip exercise was evaluated. Three experiments were performed until exhaustion at 25% of maximal voluntary contraction (MVC): experiment 1, continuous handgrip (CH) (n = 8); experiment 2, intermittent handgrip with 10-s rest pause every 3 min (IH) (n = 8); and experiment 3, as IH but with electrical stimulation (ES) of the forearm extensors in the pauses (IHES) (n = 4). Before, during, and after exercise, recordings were made of heart rate (HR), arterial blood pressure (BP), exercising forearm blood flow, and concentrations of potassium [K+] and lactate [La-] in venous blood from both arms. The electromyogram (EMG) of the exercising forearm extensors and perceived exertion were monitored during exercise. Before and up to 24 h after exercise, observations were made of MVC, of force response to electrical stimulation and of the EMG response to a 10-s test contraction (handgrip) at 25% of the initial MVC. Maximal endurance time (tlim) was significantly longer in IH (23.1 min) than in CH (16.2 min). The ES had no significant effect on tlim. During exercise, no significant differences were seen between CH and IH in blood flow, venous [K+] and [La-], or EMG response. The HR and BP increased at the same rate in CH and IH but, because of the longer duration of IH, the levels at exhaustion were higher in this protocol. The subjects reported less subjective fatigue in IH. During recovery, return to normal MVC was slower after CH (24 h) than after IH (4 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
It is generally accepted that ischemia produced by limb compression affects rapidly conducting large-diameter Ia afferents in the early stage and that the motor nerve-muscle complex is blocked later. This notion, however, seems to be controversial for several reasons, so an attempt to reveal the amount of motor unit (MU) impairment during ischemia was made. Observation of human soleus muscle electromyographic (EMG) signal recorded either by bipolar needle electrode or by surface electrodes at various levels of voluntary contraction during the course of ischemia showed that low-threshold small MUs were affected first while high-threshold large MUs survived longer. The changes in EMG patterns were temporally correlated with T-reflex deterioration. It is suggested that the early loss of low-threshold MUs may play a definite role in alterations of reflexes during ischemia.  相似文献   

19.
Decline in amplitude of EMG signals and in the rate of counts of intramuscularly recorded spikes during fatigue is often attributed to a progressive reduction of the neural drive only. As a rule, alterations in intracellular action potential (IAP) are not taken into account. To test correctness of the hypothesis, the effect of various discharge frequency patterns as well as changes in IAP shape and muscle fibre propagation velocity (MFPV) on the spike amplitude-frequency histogram of intramuscular interference EMG signals were simulated and analyzed. It was assumed that muscle was composed of four types of motor units (MUs): slow-twitch fatigue resistant, fast-twitch fatigue resistant, fast intermediate, and fast fatigable. MFPV and IAP duration at initial stage before fatigue as well as their changes differed for individual MU types. Fatigability of individual MU types in normal conditions as well as in the case of ischaemic or low oxygen conditions due to restricted blood flow was also taken into account. It was found that spike amplitude-frequency histogram is poorly sensitive to MU firing frequency, while it is highly sensitive to IAP profile lengthening. It is concluded that spike amplitude-frequency analysis can hardly provide a correct measure of MU rate-coding pattern during fatigue.  相似文献   

20.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号