首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Smooth muscle cells (SMC) are the major cellular component of the blood vessel wall and are continuously exposed to cyclic stretch due to pulsatile blood flow. This study examined the effects of a physiologically relevant level of cyclic stretch on rat aortic vascular SMC proliferation. Treatment of static SMC with serum, platelet-derived growth factor, or thrombin stimulated SMC proliferation, whereas exposure of SMC to cyclic stretch blocked the proliferative effect of these growth factors. The stretch-mediated inhibition in SMC growth was not due to cell detachment or increased cell death. Flow cytometry analysis revealed that cyclic stretch increased the fraction of SMC in the G(0)/G(1) phase of the cell cycle. Stretch-inhibited G(1)/S phase transition was associated with a decrease in retinoblastoma protein phosphorylation and with a selective increase in the cyclin-dependent kinase inhibitor p21, but not p27. These results demonstrate that cyclic stretch inhibits SMC growth by blocking cell cycle progression and suggest that physiological levels of cyclic stretch contribute to vascular homeostasis by inhibiting the proliferative pathway of SMC.  相似文献   

2.
The effects of interleukin-6 (IL-6), a cytokine recently found to be secreted by monocytes and macrophages, on c-myc expression and proliferation of cultured vascular smooth muscle cells (VSMC) were investigated. Treatment with IL-6 caused rapid increase in the c-myc mRNA level of VSMC. It also stimulated DNA synthesis and proliferation of the cells significantly and dose-dependently at concentrations of more than 10 U/ml. These results suggest that IL-6 may be important in the proliferation of VSMC, which is a key event in the development of arteriosclerosis, as a factor mediating immune cell-VSMC interaction.  相似文献   

3.
4.
Polyamines are important for cell growth and proliferation and they are formed from arginine and ornithine via arginase and ornithine decarboxylase (ODC). Arginine may alternatively be metabolised to NO via NO synthase. Here we study if vascular smooth muscle cell proliferation can be reversed by polyamine synthesis inhibitors and investigate their mechanism of action. Cell proliferation was assessed in cultured vascular smooth muscle A7r5 cells and in endothelium-denuded rat arterial rings by measuring [3H]-thymidine incorporation and by cell counting. Cell cycle phase distribution was determined by flow cytometry and polyamines by HPLC. Protein expression was determined by Western blotting. The ODC inhibitor DFMO (1–10 mM) reduced polyamine concentration and attenuated proliferation in A7r5 cells and rat tail artery. DFMO accumulated cells in S phase of the cell cycle and reduced cyclin A expression. DFMO had no effect on cell viability and apoptosis as assessed by fluorescence microscopy. Polyamine concentration and cellular proliferation were not affected by the arginase inhibitor NOHA (100–200 μM) and the NO synthase inhibitor l-NAME (100 μM). Lack of effect of NOHA was reflected by absence of arginase expression. Polyamine synthesis inhibition attenuates vascular smooth muscle cell proliferation by reducing DNA synthesis and accumulation of cells in S phase, and may be a useful approach to prevent vascular smooth muscle cell proliferation in cardiovascular diseases.  相似文献   

5.
Hyperproliferation of vascular smooth muscle cells is a hallmark of atherosclerosis and related vascular complications. Microtubules are important for many aspects of mammalian cell responses including growth, migration and signaling. alpha-Tubulin, a component of the microtubule cytoskeleton, is unique amongst cellular proteins in that it undergoes a reversible posttranslational modification whereby the C-terminal tyrosine residue is removed (Glu-tubulin) and re-added (Tyr-tubulin). Whereas the reversible detyrosination/tyrosination cycle of alpha-tubulin has been implicated in regulating various aspects of cell biology, the precise function of this posttranslational modification has remained poorly characterized. Herein, we provide evidence suggesting that alpha-tubulin detyrosination is a required event in the proliferation of vascular smooth muscle cells. Proliferation of rat aortic smooth muscle cells in response to serum was temporally associated with the detyrosination of alpha-tubulin, but not acetylation of alpha-tubulin; Glu-tubulin reached maximal levels between 12 and 18h following cell cycle initiation. Inclusion of 3-nitro-l-tyrosine (NO(2)Tyr) in the culture medium resulted in the selective nitrotyrosination of alpha-tubulin, that was paralleled by decreased elaboration of Glu-tubulin, decreased expression of cyclins A and E, decreased association of the microtubule plus-end binding protein EB1, and inhibited cell proliferation. Nitrotyrosination of alpha-tubulin did not induce necrotic or apoptotic death of rat aortic smooth muscle cells, but instead led to cell cycle arrest at the G(1)/S boundary coincident with decreased DNA synthesis. Collectively, these results suggest that the C-terminus of alpha-tubulin and its detyrosination are functionally important as a molecular switch that regulates cell cycle progression in vascular smooth muscle cells.  相似文献   

6.
Recently, a potent vasoconstrictor peptide, endothelin (EDT), was isolated from vascular endothelial cells. We examined its effect on rat vascular smooth muscle cells (VSMCs). EDT induced the elevation of intracellular calcium, which was dependent on extracellular calcium and inhibited by a calcium-channel antagonist in a competitive manner. EDT caused a rapid and transient increase in the c-fos and c-myc mRNA levels and stimulated the DNA synthesis of VSMCs in a dose-dependent manner. This effect of EDT on the proliferation of VSMCs might be related to the development of atherosclerosis.  相似文献   

7.
8.
9.
The binding, internalization, and metabolism of [3H]-heparin by human umbilical vein endothelial cells (HUVEC) and human umbilical arterial smooth muscle cells (HUASMC) have been characterized using size-exclusion HPLC. Incubation of HUVEC with [3H]-heparin demonstrated selective binding of high-molecular-weight (MW) components (MW = 21 kd), which was followed by rapid, temperature-dependent internalization. Over the next 3 hours, this internalized [3H]-heparin was degraded to low-MW fragments (MW = 0.9 kd). Primary cultures of HUASMC selectively bound extremely high-MW components (MW = 40 kd) and also smaller components whose MW (0.9 kd) corresponded to that of the heparin metabolite(s) formed by HUVEC. Subcultured HUASMC bound only the 40-kd components. Internalization of heparin by smooth muscle cells (SMC) was significantly slower than that determined for HUVEC, and even after 4 hours there was no evidence of the heparin being metabolized. However, when incubating primary rabbit aortic SMC with purified low-MW heparin fragment(s) produced in culture by HUVEC, a significantly lower proliferative response of these cells (IC50 = 18.4 micrograms/ml) was obtained. Virtually no effect was observed with subcultured SMC in the range of the tested concentrations (0-20 micrograms/ml). These fragments were 10- to 15-fold more effective in inhibiting primary SMC growth than was standard heparin. Furthermore, heparin fractions in the same range of molecular weights, purified either after nitrous acid or heparinase depolymerization of standard heparin, showed no activity on primary SMC growth, thus indicating a high degree of selectivity of the heparin metabolite(s) produced by HUVEC in culture.  相似文献   

10.
11.
Cultured smooth muscle cells (SMC) undergo induction of smooth muscle (SM) alpha actin at confluency. Since confluent cells exhibit contact inhibition of growth, this finding suggests that induction of SM alpha actin may be associated with cell cycle withdrawal. This issue was further examined in the present study using fluorescence-activated cell sorting of SMC undergoing induction at confluency and by examination of the effects of FBS and platelet-derived growth factor (PDGF) on SM alpha actin expression in postconfluent SMC cultures that had already undergone induction. Cell sorting was based on DNA content or differential incorporation of bromodeoxyuridine (Budr). The fractional synthesis of SM alpha actin in confluent cells was increased two- to threefold compared with subconfluent log phase cells, but no differences were observed between confluent cycling (Budr+) and noncycling (Budr-) cells. In cultures not exposed to Budr, confluent cycling S + G2 cells exhibited similar induction. These data indicate that cell cycle withdrawal is not a prerequisite for the induction of SM alpha actin synthesis in SMC at confluency. Growth stimulation of postconfluent cultures with either FBS or PDGF resulted in marked repression of SM alpha actin synthesis but the level of repression was not directly related to entry into S phase in that PDGF was a more potent repressor of SM alpha actin synthesis than was FBS despite a lesser mitogenic effect. This differential effect of FBS versus PDGF did not appear to be due to transforming growth factor-beta present in FBS since addition of transforming growth factor-beta had no effect on PDGF-induced repression. Likewise, FBS (0.1-10.0%) failed to inhibit PDGF-induced repression. Taken together these data demonstrate that factors other than replicative frequency govern differentiation of cultured SMC and suggest that an important function of potent growth factors such as PDGF may be the repression of muscle-specific characteristics.  相似文献   

12.
Vascular remodeling is a pathological process following cardiovascular intervention. Vascular smooth muscle cells (VSMC) play a critical role in the vascular remodeling. Long noncoding RNAs (lncRNA) are a class of gene regulators functioning through various mechanisms in physiological and pathological conditions. By using cultured VSMC and rat carotid artery balloon injury model, we found that lncRNA growth arrest specific 5 (GAS5) serves as a negative regulator for VSMC survival in vascular remodeling. By manipulating GAS5 expression via adenoviral overexpression or short hairpin RNA knockdown, we found that GAS5 suppresses VSMC proliferation while promoting cell cycle arrest and inducing cell apoptosis. Mechanistically, GAS5 directly binds to p53 and p300, stabilizes p53-p300 interaction, and thus regulates VSMC cell survival via induction of p53-downstream target genes. Importantly, local delivery of GAS5 via adenoviral vector suppresses balloon injury-induced neointima formation along with an increased expression of p53 and apoptosis in neointimal SMCs. Our study demonstrated for the first time that GAS5 negatively impacts VSMC survival via activation the p53 pathway during vascular remodeling.  相似文献   

13.
Smooth muscle cells (SMCs) form the backbone of arteries and their proliferation hallmarks collateral vessel growth, a process termed arteriogenesis, as well as pathogenic responses such as restenosis. Since signaling pathways in SMCs are the main targets for therapeutic interventions, we aimed to determine how and to what extent the activation of the ubiquitous MEK-ERK signaling pathway correlates with important in vivo phenomena such as dedifferentiation, nuclear activation and proliferation of SMCs. Specificity of this pathway was monitored using MEK inhibitors UO126 and PD98059 in platelet derived growth factor-AB (PDGF-AB)- and fibroblast growth factor-2 (FGF-2)-stimulated SMCs. PDGF-AB induced a rapid MEK activation followed by phosphorylation of the MEK substrates ERK1/2 while FGF-2 showed a less pronounced and delayed activation. Both growth factors triggered a marked phosphorylation of c-Myc and expression of Egr1. Pretreatment with MEK inhibitors suppressed the activation of the ERK cascade, abolished the down-regulation of desmin and led to cell cycle arrest. However, the reversibility of p27Kip1 down-regulation by UO126 was mainly observed after PDGF-AB stimulation, indicating MEK independent p27Kip1 down-regulation by FGF-2. Surprisingly, treatment of SMCs with UO126 or PD98059 increased the level of MEK phosphorylation in a dose dependent manner at serine residues 217/221 in the presence as well as in the absence of both growth factors. Our results strongly imply that depending on the environmental context phosphorylation of serines 217/221 serves as an "on" as well as an "off " switch.  相似文献   

14.
Cultured vascular endothelial cells were exposed to fluid shear stress by means of a rotary-disc shear-loading device, and the physiological effects of the conditioned medium (CM) and the homogenate (HM) of the cells on migration, adhesion and growth of endothelial cells (EC) or smooth muscle cells (SMC) were studied. Effects of shear stress on the production and secretion of collagen, one of the extracellular matrices of EC, were also studied. CM stimulated the adhesion and growth of SMC, but not of EC themselves. The ability to stimulate SMC adhesion and growth was similar in CM obtained from the static and shear-loaded cells. HM of the shear-loaded EC stimulated SMC migration. Further, HM of the shear-loaded EC contained increased amounts of collagen compared with the static EC. These results suggest that: 1) EC produce and secrete accelerators for the adhesion and growth of SMC, 2) EC react to the physical stimulus of fluid shear stress to produce stimulators of SMC migration, and 3) EC produce collagen, the production of which is enhanced by fluid shear stress.  相似文献   

15.
16.
The heterogeneity of vascular smooth muscle cells is well established in tissue culture, but their differential responses to growth factors are not completely defined. We wished to identify effects of epidermal growth factor (EGF) on vascular smooth muscle cells in distinct phenotypes, such as spindle and epithelioid. We found that the EGF receptors were abundant in epithelioid cells but not spindle cells. EGF treatment inhibited serum-independent DNA synthesis, which was absent in spindle cells, of epithelioid cells. Additionally, using a pulse-chase assay, we found that bromodeoxyuridine-labeled cells failed to re-enter the S phase in the presence of EGF. These EGF effects were abolished by either inhibiting the EGF receptor tyrosine kinase with AG1478 or inhibiting the mitogen-activated protein kinase pathway with PD98059. In response to treatment with EGF, the EGF receptor was phosphorylated, which was correlated with phosphorylation and activation of p42/44 mitogen-activated protein kinases. Inhibition of EGF receptor phosphorylation and mitogen-activated protein kinase activation resulted in a reversal of the EGF-induced inhibition of bromodeoxyuridine incorporation and cell cycle arrest. Subsequent studies revealed that the activation of the EGF receptor and the mitogen-activated protein kinase pathway in epithelioid cells induced expression of the cell cycle inhibitory protein p27Kip1 but not p21Cip1. Taken together, our data demonstrate that the EGF receptor is abundantly expressed in epithelioid vascular smooth muscle cells and that the activation of this receptor results in cell cycle arrest through activation of the mitogen-activated protein kinase pathway.  相似文献   

17.
18.
We explored the hypothesis that discrepancies in the literature concerning the nature of myosin expression in cultured smooth muscle cells are due to the appearance of a new form of myosin heavy chain (MHC) in vitro. Previously, we used a very porous sodium dodecyl sulfate gel electrophoresis system to detect two MHCs in intact smooth muscles (SM1 and SM2) which differ by less than 2% in molecular weight (Rovner, A. S., Thompson, M. M., and Murphy, R. A. (1986) Am. J. Physiol. 250, C861-C870). Myosin-containing homogenates of rat aorta cells in primary culture were electrophoresed on this gel system, and Western blots were performed using smooth muscle-specific and nonmuscle-specific myosin antibodies. Subconfluent, rapidly proliferating cultures contained a form of heavy chain not found in rat aorta cells in vivo (NM) with electrophoretic mobility and antigenicity identical to the single unique heavy chain seen in nonmuscle cells. Moreover, these cultures expressed almost none of the smooth muscle heavy chains. In contrast, postconfluent growth-arrested cultures expressed increased levels of the two smooth muscle heavy chains, along with large amounts of NM. Analysis of cultures pulsed with [35S] methionine indicated that subconfluent cells were synthesizing almost exclusively NM, whereas postconfluent cells synthesized SM1 and SM2 as well as larger amounts of NM. Similar patterns of MHC content and synthesis were found in subconfluent and postconfluent passaged cells. These results show that cultured vascular smooth muscle cells undergo differential expression of smooth muscle- and nonmuscle-specific MHC forms with changes in their growth state, which appear to parallel changes in expression of the smooth muscle and nonmuscle forms of actin (Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M. (1986) J. Cell Biol. 102, 343-352). The reappearance of the smooth muscle MHCs in postconfluent cells suggests that density-related growth arrest promotes cytodifferentiation, but the continued expression of the nonmuscle MHC form in these smooth muscle cells indicates that other factors are required to induce the fully differentiated state while in culture.  相似文献   

19.
Intercellular communication in cultured human vascular smooth muscle cells   总被引:1,自引:0,他引:1  
Intercellular communication through gap junction channelsplays a fundamental role in regulating vascular myocyte tone. We investigated gap junction channel expression and activity in myocytes from the physiologically distinct vasculature of the human internal mammary artery (IMA, conduit vessel) and saphenous vein (SV,capacitance vessel). Northern and Western blots documented the presenceof connexin43 (Cx43) in frozen tissues and cultured cells from both vessels. Northern blots also confirmed the presence of Cx40 mRNA incultured IMA and SV myocytes. Dual whole cell patch-clamp experiments revealed that macroscopic junctional conductance was voltage dependent and characteristic of that observed for Cx43. In the majority ofrecords, in both vessels, single-channel activity was dominated by amain-state conductance of 120 pS, with subconducting events comprisingless than 10% of the amplitude histograms. However, some recordsshowed "atypical" unitary events that had a conductance similar toCx40 (~140-160 pS), but gating behavior like that of Cx43. Assuch, it is conceivable that the presence and coexpression of Cx40 andCx43 in IMA and SV myocytes may result in heteromeric channelformation. Nonetheless, in terms of gating, Cx43-like behavior clearly dominates.

  相似文献   

20.
In cultured rat aortic smooth muscle cells, angiotensin II induced tyrosine phosphorylation of at least 9 proteins with molecular masses of 190, 117, 105, 82, 79, 77, 73, 45 and 40 kDa in time- and dose-dependent manners. Other vasoconstrictors such as [Arg]vasopressin, 5-hydroxytryptamine and norepinephrine induced the tyrosine phosphorylation of the same set of proteins as angiotensin II. The tyrosine phosphorylation of these proteins was mimicked by the protein kinase C-activating phorbol ester, phorbol 12 myristate 13-acetate, and the Ca2+ ionophore, ionomycin. These results demonstrate that the vasoconstrictors stimulate the tyrosine phosphorylation of several proteins in vascular smooth muscle cells and suggest that the tyrosine phosphorylation reactions are the events distal to the activation of protein kinase C and Ca2+ mobilization in the intracellular signalling pathways of the vasoconstrictors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号