首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectral and kinetic parameters and quantum yield of IR phosphorescence accompanying radiative deactivation of the chlorophyll a (Chl a) triplet state were compared in pigment solutions, greening and mature plant leaves, isolated chloroplasts, and thalluses of macrophytic marine algae. On the early stages of greening just after the Shibata shift, phosphorescence is determined by the bulk Chl a molecules. According to phosphorescence measurement, the quantum yield of triplet state formation is not less than 25%. Further greening leads to a strong decrease in the phosphorescence yield. In mature leaves developing under normal irradiation conditions, the phosphorescence yield declined 1000-fold. This parameter is stable in leaves of different plant species. Three spectral forms of phosphorescence-emitting chlorophyll were revealed in the mature photosynthetic apparatus with the main emission maxima at 955, 975, and 995 nm and lifetimes ~1.9, ~1.5, and 1.1–1.3 ms. In the excitation spectra of chlorophyll phosphorescence measured in thalluses of macrophytic green and red algae, the absorption bands of Chl a and accessory pigments — carotenoids, Chl b, and phycobilins — were observed. These data suggest that phosphorescence is emitted by triplet chlorophyll molecules that are not quenched by carotenoids and correspond to short wavelength forms of Chl a coupled to the normal light harvesting pigment complex. The concentration of the phosphorescence-emitting chlorophyll molecules in chloroplasts and the contribution of these molecules to chlorophyll fluorescence were estimated. Spectral and kinetic parameters of the phosphorescence corresponding to the long wavelength fluorescence band at 737 nm were evaluated. The data indicate that phosphorescence provides unique information on the photophysics of pigment molecules, molecular organization of the photosynthetic apparatus, and mechanisms and efficiency of photodynamic stress in plants.  相似文献   

2.
The low-temperature (77 K) phosphorescence of chlorophyll (Chl) in the reaction centres (D1D2-cyt b559-particles) and the core complexes of photosystem II isolated from higher plants was studied. Two phosphorescence spectral bands with the emission maxima at 950 and 977 nm, excitation maxima at 666 and 675-680 nm, and the lifetimes equal to 2 and 1.5 ms, respectively, were registered. The data indicate that the phosphorescence corresponds to the triplet Chl a molecules spatially separated from carotenoids. In samples treated by potassium ferricyanide and frozen under illumination by red light, the intensities of both bands were reduced, but the decrease of the short-wavelength 950-nm band was much more pronounced. This allows an assumption that the short-wavelength phosphorescence belongs to Chl a molecules, which are more accessible for ferricyanide because they are located on the surface of the chlorophyll-protein complexes, whereas the long-wavelength phosphorescence is emitted by the Chl molecules located inside the D1D2 heterodimer and therefore, is more protected by protein macromolecules.  相似文献   

3.
Fluorescence detected magnetic resonance (FDMR) was used to study the lowest triplet state of bacteriochlorophylls (BChls) c and d in Chlorobium (Chl.) tepidum and Chl. vibrioforme, respectively. These pigments were studied both in the oligomeric form (in whole cells) and in the monomeric form (after conversion using a 1% 1-hexanol treatment). Fluorescence spectra show the presence of lower-state aggregates, apart from monomers, in samples treated with 1-hexanol. Values of the zero field splitting (ZFS) parameter D, obtained from FDMR spectra, were found to decrease with an increasing aggregate size. The observed ZFS trends are explained by a delocalization of the triplet spins, including a charge resonance (CR) contribution, over the aggregate. A simple model is presented relating the changes of D and E as a result of monomer aggregation to the aggregate geometry. Application of this model to BChls c and d indicates approximately diagonal stacking of the monomers in the dimer. Results for oligomeric BChl c and d were compared with those previously obtained for oligomeric BChl e. FDMR transitions of BChls c, d and e differ both in frequencies and in signs. The D and E values of Car's and BChl a (in whole cells) agree well with those reported for Chl. phaeobacteroides and Chl. limicola.  相似文献   

4.
The triplet state of the carotenoid peridinin, populated by triplet-triplet energy transfer from photoexcited chlorophyll triplet state, in the reconstituted Peridinin-Chlorophyll a-protein, has been investigated by ODMR (Optically detected magnetic resonance), and pulse EPR spectroscopies. The properties of peridinins associated with the triplet state formation in complexes reconstituted with Chl a and Chl d have been compared to those of the main-form peridinin-chlorophyll protein (MFPCP) isolated from Amphidinium carterae. In the reconstituted samples no signals due to the presence of chlorophyll triplet states have been detected, during either steady state illumination or laser-pulse excitation. This demonstrates that reconstituted complexes conserve total quenching of chlorophyll triplet states, despite the biochemical treatment and reconstitution with the non-native Chl d pigment. Zero field splitting parameters of the peridinin triplet states are the same in the two reconstituted samples and slightly smaller than in native MFPCP. Analysis of the initial polarization of the photoinduced Electron-Spin-Echo detected spectra and their time evolution, shows that, in the reconstituted complexes, the triplet state is probably localized on the same peridinin as in native MFPCP although, when Chl d replaces Chl a, a local rearrangement of the pigments is likely to occur. Substitution of Chl d for Chl a identifies previously unassigned bands at ∼ 620 and ∼ 640 nm in the Triplet-minus-Singlet (T − S) spectrum of PCP detected at cryogenic temperature, as belonging to peridinin.  相似文献   

5.
6.
T V Alfredson  A H Maki 《Biochemistry》1990,29(38):9052-9064
Echinomycin complexes with polymeric DNAs and model duplex oligonucleotides have been studied by low-temperature phosphorescence and optical detection of triplet-state magnetic resonance (ODMR) spectroscopy, with the quinoxaline chromophores of the drug used as intrinsic probes. Although not optically resolved, plots of ODMR transition frequencies versus monitored wavelength revealed heterogeneity in the phosphorescence emission of echinomycin, which was ascribed to the presence of two distinct quinoxaline triplet-state environments (referred to as the blue and red triplet states of echinomycin in this report). We think that a likely origin of the two triplet states of echinomycin is the occurrence of two or more distinct conformations of the drug in aqueous solutions. Spectroscopically observed perturbations of the triplet-state properties of echinomycin such as the phosphorescence emission spectrum, phosphorescence lifetime, ODMR spectrum, and zero-field splitting (zfs) energies were investigated upon drug binding to the double-stranded alternating copolymers poly(dG-dC).poly(dG-dC) [abbreviated as poly[d(G-C)2]] and poly(dA-dT).poly(dA-dT) [abbreviated as poly[d(A-T)2]], the homopolymer duplexes poly(dG).poly(dC) [abbreviated as poly(dG.dC)] and poly(dA).poly(dT) [abbreviated as poly(dA.dT)], and the natural DNAs from Escherichia coli, Micrococcus lysodeikticus, and calf thymus. Echinomycin bisintercalation complexes with the self-complementary oligonucleotides d(ACGT), d(CGTACG), and d(ACGTACGT), which are thought to model drug binding sites, were also investigated. Phosphorescence and ODMR spectroscopic results indicate that the quinoxaline chromophores of the drug are involved in aromatic stacking interactions in complexes with the natural DNAs as evidenced by red shifts in the phosphorescence 0,0 band of the drug, a small but significant reduction in the phosphorescence lifetime of the red triplet state, and reduction of the zfs D-value of both the blue and red triplet states upon drug complexation. These changes in the triplet-state properties of echinomycin are consistent with stacking interactions that increase the polarizability of the quinoxaline environment. The extent of the reduction of the D parameter for the red triplet state upon complexation with the polymeric DNAs was found to correlate with the binding affinities measured for these targets [Wakelin, L. P. G., & Waring, M. J. (1976) Biochem. J. 157, 721-740], with the single exception of the drug-poly[d(G-C)2] complex, for which an increase in the D-value was noted. In addition, upon drug binding to the natural DNAs, there is a reversal of signal polarity in the ODMR spectra of the red triplet state. Among the synthetic DNA polymers investigated, a reversal of ODMR signal polarity was found only with the echinomycin-poly[d(A-T)2] complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Chlorophyll f is a photosynthetic pigment that was discovered in 2010. In this study, we present investigations on spectral and dynamic characteristics of singlet-excited and triplet states of Chl f with the application of ultrafast time-resolved absorption and fluorescence spectroscopies. The pigment was studied at room temperature in two organic solvents: pyridine and diethyl ether that have different characters of coordination of the chlorophyll magnesium (Mg) atom (hexa- and penta-coordination, respectively). Cryogenic measurements (77 K) were performed in 2-methyltetrahydrofuran (hexa-coordination). The singlet-excited state lifetime was measured to be 5.6 ns at room temperature regardless of Mg coordination and 8.1 ns at 77 K. The fluorescence quantum yield of Chl f was also determined in pyridine to be 0.16. The triplet state lifetime was studied in detail in pyridine at room temperature, and the inherent lifetime was estimated to ~150 μs. Selective measurements at 77 K demonstrated that the metastability of the triplet state greatly enhances, and its lifetime increases by a factor of more than three.  相似文献   

8.
Waloszek  A.  Więckowski  S.  Planner  A.  Boguta  A.  Frąckowiak  D. 《Photosynthetica》2002,40(2):279-288
The character of interaction between carotenoids (Cars) and chlorophylls (Chls) in thylakoids isolated from cucumber cotyledons at three stages of greening (3, 6, and 24 h of irradiation with 120 µmol m–2 s–1) was studied. The shapes of the steady state photoacoustic spectra were changed with the change in time of greening and with the frequency of radiation modulation. The shapes show that changes not only in the contents of various pigments but also in pigment interactions with surrounding occur and that processes of thermal deactivation characterised by different kinetics take place. Slow processes of thermal deactivation are in most cases due to deactivation of triplet states. Long living triplet states are very often engaged in photochemical reactions that can destroy the tissue. Analysis of the time-resolved photothermal spectra shows that at later stage of greening, the chlorophyll (Chl) molecules are better shielded against photo-destruction because Cars more efficiently quench their triplet states. The yield of formation of the pigment triplet states measured by the time resolved photothermal method, always at the same energy absorbed by pigment mixture, declined during sample greening. The decay time of the slow component of pigment thermal deactivation, due predominantly to deactivation of the triplet state of Chl, decreases with the increase of time of greening from 6.2 µs for the 3-h sample to 1.5 µs for the 24 h sample. The energy taken by Cars from Chls is dissipated into heat, therefore the steady state and quick thermal deactivation values increased during the greening process. The Cars/Chls ratio in the thylakoids decreased during greening approximately 2 fold. Hence at a later phase of greening the Cars can quench the triplet states of Chls more efficiently than at an earlier phase of greening.  相似文献   

9.
The cytochrome b(6)f complex of oxygenic photosynthesis mediates electron transfer between the reaction centers of photosystems I and II and facilitates coupled proton translocation across the membrane. High-resolution x-ray crystallographic structures (Kurisu et al., 2003; Stroebel et al., 2003) of the cytochrome b(6)f complex unambiguously show that a Chl a molecule is an intrinsic component of the cytochrome b(6)f complex. Although the functional role of this Chl a is presently unclear (Kuhlbrandt, 2003), an excited Chl a molecule is known to produce toxic singlet oxygen as the result of energy transfer from the excited triplet state of the Chl a to oxygen molecules. To prevent singlet oxygen formation in light-harvesting complexes, a carotenoid is typically positioned within approximately 4 A of the Chl a molecule, effectively quenching the triplet excited state of the Chl a. However, in the cytochrome b(6)f complex, the beta-carotene is too far (> or =14 Angstroms) from the Chl a for effective quenching of the Chl a triplet excited state. In this study, we propose that in this complex, the protection is at least partly realized through special arrangement of the local protein structure, which shortens the singlet excited state lifetime of the Chl a by a factor of 20-25 and thus significantly reduces the formation of the Chl a triplet state. Based on optical ultrafast absorption difference experiments and structure-based calculations, it is proposed that the Chl a singlet excited state lifetime is shortened due to electron exchange transfer with the nearby tyrosine residue. To our knowledge, this kind of protection mechanism against singlet oxygen has not yet been reported for any other chlorophyll-containing protein complex. It is also reported that the Chl a molecule in the cytochrome b(6)f complex does not change orientation in its excited state.  相似文献   

10.
The kinetic parameters of porphyrin-photosensitized formation and deactivation of singlet molecular oxygen (1O2) and their dependence on the concentration of the 1O2 quencher sodium azide were investigated in air-saturated water, ethanol, and aqueous micellar solutions of detergents using time-resolved measurements of oxygen phosphorescence under pulsed laser excitation. The lifetimes of 1O2 formation and deactivation and the rate constants of 1O2 quenching by sodium azide were determined. It was shown that, with no azide in the solutions, the rise in phosphorescence intensity after the laser flash corresponded to the kinetics of energy transfer from the porphyrin triplet molecules to oxygen, while the decay kinetics corresponded to the kinetics of 1O2 deactivation. In the presence of detergent, a considerable increase in the 1O2 lifetime was observed, which is likely due to the localization of 1O2 molecules mostly in lipophilic micelles and not in the water phase. If relatively high azide concentrations were used, the lifetime of the porphyrin triplet state did not change but the 1O2 lifetime decreased to values similar to those in living cells. In this case, the inversion of the phosphorescence kinetic phases was observed. The rise corresponded to 1O2 deactivation, and the decay, to the energy transfer from triplet porphyrin to oxygen. The data suggest that, in living cells, 1O2 molecules are also located mainly in lipophilic structures and the 1O2 lifetime determines the kinetics of the phosphorescence rise after the laser pulse.  相似文献   

11.
Lipid bilayers containing chlorophyll (Chl) or magnesium octaethylporphyrin (MgOEP) and separating solutions containing varying amounts of differing acceptors are illuminated by a dye laser pulse (FWHM 0.3 microseconds) at 590 mm. Interfacial charge transfer is measured at the first current peak in a voltage clamp circuit. The constants describing the hyperbolic saturations of the charge transferred by differing acceptors are only weakly related to the redox potential of the acceptors. An assymetric molecule, anthraquinone-2-sulfonate, is over 20 times as effective in accepting the electron as is the symmetrical anthraquinone-2,6-disulfonate. In contrast to this variable effectiveness, the maximum amount of charge transferred as a function of acceptor redox potential is constant up to a cut-off value: -0.6 V (vs. standard hydrogen electrode) for MgOEP and -0.5 V for Chl. The reversible redox potential of MgOEP in the bilayer was determined by following both the decrease in photoactivity and the transmembrane potential as a function of aqueous redox potential. It is +0.77 V for MgOEP and approximately 0.7 V for Chl (limited by stability). Thus, a total of 1.4 V of reversible redox potential (free energy) is obtained from 1.8 eV (internal energy) of the triplet excited state of MgOEP.  相似文献   

12.
Phosphorescence and optically detected zero field magnetic resonance ( ODMR ) spectra are reported for a bromine atom-containing polynucleotide, poly(dA- br5dU ). The triplet state luminescence of poly(dA- br5dU ) is dominated by the phosphorescence of the bromouracil base which possesses sub-millisecond triplet lifetimes. Characteristic multiple slow passage ODMR transitions, which are observed in both br5dUrd and poly(dA- br5dU ), are assigned to the triplet state of bromouracil. In addition, an abnormally-perturbed adenine triplet state, which is not apparent in the phosphorescence spectrum of poly(dA- br5dU ), is detected and identified by its slow passage ODMR and amplitude-modulated phosphorescence microwave double resonance spectra. It is proposed that the perturbed adenine is a minor component of the polynucleotide structure which is present in regions of altered stacking induced by the high polarizability of the Br atom.  相似文献   

13.
The assignment is presented for the principal phosphorescence bands of protochlorophyll(ide), chlorophyllide and chlorophyll in etiolated and greening bean leaves measured at -196°C using a mechanical phosphoroscope. Protochlorophyll(ide) phosophorescence spectra in etiolated leaves consist of three bands with maxima at 870, 920 and 970 nm. Excitation spectra show that the 870 nm band belongs to the short wavelength protochlorophyll(ide), P627. The latter two bands correspond to the protochlorophyll(ide) forms, P637 and P650. The overall quantum yield for P650 phosphorescence in etiolated leaves is near to that in solutions of monomeric protochlorophyll, indicating a rather high efficiency of the protochlorophyll(ide) triplet state formation in frozen plant material. Short-term (2–20 min) illumination of etiolated leaves at the temperature range from -30 to 20°C leads to the appearance of new phosphorescence bands at about 990–1000 and 940 nm. Judging from excitation and emission spectra, the former band belongs to aggregated chlorophyllide, the latter one, to monomeric chlorophyll or chlorophyllide. This indicates that both monomeric and aggregated pigments are formed at this stage of leaf greening. After preillumination for 1 h at room temperature, chlorophyll phosphorescence predominates. The spectral maximum of this phosphorescence is at 955–960 nm, the lifetime is about 2 ms, and the maximum of the excitation spectrum lies at 668 nm. Further greening leads to a sharp drop of the chlorophyll phosphorescence intensity and to a shift of the phosphorescence maximum to 980 nm, while the phosphorescence lifetime and a maximum of the phosphorescence excitation spectrum remains unaltered. The data suggest that chlorophyll phosphorescence belongs to the short wavelength, newly synthesized chlorophyll, not bound to chloroplast carotenoids. Thus, the phosphorescence measurement can be efficiently used to study newly formed chlorophyll and its precursors in etiolated and greening leaves and to address various problems arising in the analysis of chlorophyll biosynthesis.Abbreviations Pchl protochlorophyll and protochlorophyllide - Chld chlorophyllide - Chl chlorophyll  相似文献   

14.
In this paper we suggest a basic mechanism for the utilization of light quanta in photosynthesis. Through interactions between the lowest lying triplet state of the reaction-center chlorophylls and the first excited singlet state of the antenna chlorophylls, absorbed light quanta are upconverted to a higher-lying charge transfer state of the reaction-center Chl molecules. It is shown that the efficiency of the upconversion process is maximized by the parallel configuration of the two Chl porphyrin rings in the reaction-center water adduct proposed by the writer. Steady-state solutions are obtained, and the theoretical results are shown to account for a variety of crucial experimental observations including (1) the doubling (in whole cells) of in vivo fluorescence quantum yield of system II in strong light, (2) the observation by Dutton et al. of the light-induced triplet-state reaction-center bacteriochlorophyll when the primary electron acceptor is reduced and (3) despite the apparent involvement of two excitations in the energy upconversion process, only one quantum is needed for the transfer of one electron in the primary photo-chemical reaction, satisfying the eight-quanta requirement for the evolution of one O2 molecule in photosynthesis.  相似文献   

15.
The mechanism of triplet-triplet energy transfer in the peridinin-chlorophyll-protein (PCP) from Amphidinium carterae was investigated by time-resolved EPR (TR-EPR). The approach exploits the concept of spin conservation during triplet-triplet energy transfer, which leads to spin polarization conservation in the observed TR-EPR spectra. The acceptor (peridinin) inherits the polarization of the donor (chlorophyll) in a way which depends on the relative geometrical arrangement of the donor-acceptor couple. Starting from the initially populated chlorophyll triplet state and taking the relative positions among Chls and peridinins from the X-ray structure of PCP, we calculated the expected triplet state polarization of any peridinin in the complex. Comparison with the experimental data allowed us to propose a path for triplet quenching in the protein. The peridinin-chlorophyll pair directly involved in the triplet-triplet energy transfer coincides with the one having the shortest center to center distance. A water molecule, which is coordinated to the central Mg atom of the Chl, is also placed in close contact with the peridinin. The results support the concept of localization of the triplet state mainly in one specific peridinin in each of the two pigment subclusters related by a pseudo C2 symmetry.  相似文献   

16.
Misra A  Ozarowski A  Maki AH 《Biochemistry》2002,41(20):6477-6482
Phosphorescence and optical detection of magnetic resonance (ODMR) is used to study the excited triplet state of 4',6-diamidino-2-phenyl indole (DAPI) and its complexes with the oligonucleotides [d(CGACGTCG)](2) and [d(GGCCAATTGG)](2), where binding occurs by intercalation between GC base pairs and by minor groove insertion, respectively. Weaker binding of DAPI to phosphate is also detected, and the triplet state of this complex is characterized. Intercalation with [d(CGACGTCG)](2) produces a phosphorescence redshift, while groove binding with [d(GGCCAATTGG)](2) leads to a blueshift. Both binding modes give rise to a small decrease in the zero-field splitting (zfs) of the DAPI triplet state. The largest redshift and zfs decrease are found for the phosphate complex. The phosphorescence lifetimes are shorter by an order of magnitude than that of indole or tryptophan as expected for the lower triplet state energy, E(00), of DAPI. The lifetimes agree well with a correlation with E(00) introduced by Siebrand [Siebrand, W. (1966) J. Chem. Phys. 44, 4055-4057] except for the [d(GGCCAATTGG)](2) minor groove complex with a lifetime that is about 20% too long. The longer lifetime is attributed to distortion of the amidino groups in this complex, resulting in less efficient intersystem crossing.  相似文献   

17.
《BBA》2023,1864(3):148982
Photosystem II in oxygenic organisms is a large membrane bound rapidly turning over pigment protein complex. During its biogenesis, multiple assembly intermediates are formed, including the CP43-preassembly complex (pCP43). To understand the energy transfer dynamics in pCP43, we first engineered a His-tagged version of the CP43 in a CP47-less strain of the cyanobacterium Synechocystis 6803. Isolated pCP43 from this engineered strain was subjected to advanced spectroscopic analysis to evaluate its excitation energy dissipation characteristics. These included measurements of steady-state absorption and fluorescence emission spectra for which correlation was tested with Stepanov relation. Comparison of fluorescence excitation and absorptance spectra determined that efficiency of energy transfer from β-carotene to chlorophyll a is 39 %. Time-resolved fluorescence images of pCP43-bound Chl a were recorded on streak camera, and fluorescence decay dynamics were evaluated with global fitting. These demonstrated that the decay kinetics strongly depends on temperature and buffer used to disperse the protein sample and fluorescence decay lifetime was estimated in 3.2–5.7 ns time range, depending on conditions. The pCP43 complex was also investigated with femtosecond and nanosecond time-resolved absorption spectroscopy upon excitation of Chl a and β-carotene to reveal pathways of singlet excitation relaxation/decay, Chl a triplet dynamics and Chl a → β-carotene triplet state sensitization process. The latter demonstrated that Chl a triplet in the pCP43 complex is not efficiently quenched by carotenoids. Finally, detailed kinetic analysis of the rise of the population of β-carotene triplets determined that the time constant of the carotenoid triplet sensitization is 40 ns.  相似文献   

18.
The mechanism of triplet-triplet energy transfer in the peridinin-chlorophyll-protein (PCP) from Amphidinium carterae was investigated by time-resolved EPR (TR-EPR). The approach exploits the concept of spin conservation during triplet-triplet energy transfer, which leads to spin polarization conservation in the observed TR-EPR spectra. The acceptor (peridinin) inherits the polarization of the donor (chlorophyll) in a way which depends on the relative geometrical arrangement of the donor-acceptor couple. Starting from the initially populated chlorophyll triplet state and taking the relative positions among Chls and peridinins from the X-ray structure of PCP, we calculated the expected triplet state polarization of any peridinin in the complex. Comparison with the experimental data allowed us to propose a path for triplet quenching in the protein. The peridinin-chlorophyll pair directly involved in the triplet-triplet energy transfer coincides with the one having the shortest center to center distance. A water molecule, which is coordinated to the central Mg atom of the Chl, is also placed in close contact with the peridinin. The results support the concept of localization of the triplet state mainly in one specific peridinin in each of the two pigment subclusters related by a pseudo C2 symmetry.  相似文献   

19.
An O2-barrier in the intact light-harvesting complex LHC II protects chlorophylls (Chl) and xanthophylls (Car) from photooxidation. Direct evidence for the limited access of O2 to pigment sites comes from the decay kinetics of the first excited triplet state of Car (3Car-). The LHC-bound 3Car- in air-saturated solution decays mono-exponentially with a lifetime of 6.7-7.1 µs as compared to the approx. 1.2 µs of the -carotene triplet in hexane and the 8.8-9 µs observed for both systems under anaerobiosis. Further properties of the photostable complex are the limited access of protons to pigment sites and the efficient energy transfer from 1Car- to Chl-a and from 3Chl- to Car. Fatty acids with increasing chain length increasingly lower both, the efficiency of the O2 barrier and the photo- and acid stability of the LHC-bound pigments while singlet and triplet energy transfer between the pigments is maintained. Therefore, the close proximity of Chl and Car is not sufficient to protect the pigments from photooxidation; in addition, an O2-barrier limiting the access of O2 to pigment sites is required for efficient photoprotection. Structural properties of the photostable LHC II possibly underlying its O2-barrier function are discussed.  相似文献   

20.
The single room temperature phosphorescent (RTP) residue of horse liver alcohol dehydrogenase (LADH). Trp-314, and of alkaline phosphatase (AP), Trp-109, show nonexponential phosphorescence decays when the data are collected to a high degree of precision. Using the maximum entropy method (MEM) for the analysis of these decays, it is shown that AP phosphorescence decay is dominated by a single Gaussian distribution, whereas for LADH the data reveal two amplitude packets. The lifetime-normalized width of the MEM distribution for both proteins is larger than that obtained for model monoexponential chromophores (e.g., terbium in water and pyrene in cyclohexane). Experiments show that the nonexponential decay is fundamental; i.e., an intrinsic property of the pure protein. Because phosphorescence reports on the state of the emitting chromophore, such nonexponential behavior could be caused by the presence of excited state reactions. However, it is also well known that the phosphorescence lifetime of a tryptophan residue is strongly dependent on the local flexibility around the indole moiety. Hence, the nonexponential phosphorescence decay may also be caused by the presence of at least two states of different local rigidity (in the vicinity of the phosphorescing tryptophan) corresponding to different ground state conformers. The observation that in the chemically homogeneous LADH sample the phosphorescence decay kinetics depends on the excitation wavelength further supports this latter interpretation. This dependence is caused by the wavelength-selective excitation of Trp-314 in a subensemble of LADH molecules with differing hydrophobic and rigid environments. With this interpretation, the data show that interconversion of these states occurs on a time scale long compared with the phosphorescence decay (0.1-1.0 s). Further experiments reveal that with increasing temperature the distributed phosphorescence decay rates for both AP and LADH broaden, thus indicating that either 1) the number of conformational states populated at higher temperature increases or 2) the temperature differentially affects individual conformer states. The nature of the observed heterogeneous triplet state kinetics and their relationship to aspects of protein dynamics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号