首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last decade, repetitive transcranial magnetic stimulation (rTMS) of the prefrontal cortex has become established as a treatment for various mental diseases. The rational of prefrontal stimulation has been adapted from the mode of action known from rTMS using motor-evoked potentials though little is known about the precise effect of rTMS at prefrontal sites. The objective of the current study is to investigate the inhibitory effect of prefrontal 1 Hz rTMS by stimulating the generators of event-related potentials (ERP) which are located in the prefrontal cortex. Thus, 1 Hz rTMS was applied offline over the left dorsolateral prefrontal cortex (DLPFC) and the medial prefrontal cortex (MPFC) in 18 healthy subjects who subsequently underwent a GoNogo task. Both active conditions were compared to sham rTMS within a randomized and counterbalanced cross-over design in one day. ERPs were recorded during task performance and the N2 and the P3 were analysed. After 1 Hz rTMS of the left DLPFC (but not of the MPFC), an inhibitory effect on the N2 amplitude was observed, which was related to inhibitory control. In contrast, after 1 Hz rTMS of the MPFC (but not at the left DLPFC) a trend towards an increased P3 amplitude was found. There was no significant modulation of latencies and behavioural data. The results argue in favour of an inhibitory effect of 1 Hz rTMS on N2 amplitudes in a GoNogo task. Our findings suggest that rTMS may mildly modulate prefrontally generated ERP immediately after stimulation, even where behavioural effects are not measurable. Thus, combined rTMS-ERP approaches need to be further established in order to serve as paradigms in experimental neuroscience and clinical research.  相似文献   

2.
Previous studies of young people have revealed that the left dorsolateral prefrontal cortex (DLPFC) plays an important role in inductive reasoning. An fMRI experiment was performed in this study to examine whether the left DLPFC was involved in inductive reasoning of MCI patients and normal agings, and whether the activation pattern of this region was different between MCI patients and normal agings. The fMRI results indicated that MCI patients had no difference from normal agings in behavior per-formance (reaction time and accuracy) and the activation pattern of DLPFC. However, the BOLD re-sponse of the DLPFC region for MCI patients was weaker than that for normal agings, and the func-tional connectivity between the bilateral DLPFC regions for MCI patients was significantly higher than for normal agings. Taken together, these results indicated that DLPFC plays an important role in inductive reasoning of agings, and the functional abnormity of DLPFC may be an earlier marker of MCI before structural alterations.  相似文献   

3.

Background

It has been suggested that working memory deficits is a core feature of symptomatology of schizophrenia, which can be detected in patients and their unaffected relatives. The impairment of working memory has been found related to the abnormal activity of human brain regions in many functional magnetic resonance imaging (fMRI) studies. This study investigated how brain region activation was altered in schizophrenia and how it was inherited independently from performance deficits.

Method

The authors used fMRI method during N-back task to assess working memory related cortical activation in four groups (N = 20 in each group, matching task performance, age, gender and education): schizophrenic patients, their unaffected biological parents, young healthy controls for the patients and older healthy controls for their parents.

Results

Compared to healthy controls, patients showed an exaggerated response in the right dorsolateral prefrontal cortex (brodmann area [BA] 46) and bilateral ventrolateral prefrontal cortex, and had reduced activation in bilateral dorsolateral prefrontal cortex (BA 9). In the conjunction analysis, the effect of genetic risk (parents versus older control) shared significantly overlapped activation with effect of disease (patients versus young control) in the right middle frontal gyrus (BA 46) and left inferior parietal gyrus (BA 40).

Conclusions

Physiological inefficiency of dorsal prefrontal cortex and compensation involvement of ventral prefrontal cortex in working memory function may one physiological characteristics of schizophrenia. And relatively inefficient activation in dorsolateral prefrontal cortex probably can be a promising intermediate phenotype for schizophrenia.  相似文献   

4.

Background

Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson''s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA).

Methodology/Principal Findings

Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [11C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [11C]FLB 457 BP following right DLPFC rTMS.

Conclusions/Significance

To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.  相似文献   

5.
The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load.  相似文献   

6.
The difference between the speed of simple cognitive processes and the speed of complex cognitive processes has various psychological correlates. However, the neural correlates of this difference have not yet been investigated. In this study, we focused on working memory (WM) for typical complex cognitive processes. Functional magnetic resonance imaging data were acquired during the performance of an N-back task, which is a measure of WM for typical complex cognitive processes. In our N-back task, task speed and memory load were varied to identify the neural correlates responsible for the difference between the speed of simple cognitive processes (estimated from the 0-back task) and the speed of WM. Our findings showed that this difference was characterized by the increased activation in the right dorsolateral prefrontal cortex (DLPFC) and the increased functional interaction between the right DLPFC and right superior parietal lobe. Furthermore, the local gray matter volume of the right DLPFC was correlated with participants' accuracy during fast WM tasks, which in turn correlated with a psychometric measure of participants' intelligence. Our findings indicate that the right DLPFC and its related network are responsible for the execution of the fast cognitive processes involved in WM. Identified neural bases may underlie the psychometric differences between the speed with which subjects perform simple cognitive tasks and the speed with which subjects perform more complex cognitive tasks, and explain the previous traditional psychological findings.  相似文献   

7.
The counting Stroop is a validated Stroop task variant. Initially designed as a functional magnetic resonance imaging (fMRI) task for identifying brain regions subserving cognition and attention (dorsal anterior midcingulate cortex (daMCC) and dorsolateral prefrontal cortex (DLPFC)), it has been used to study cognition in healthy volunteers and to identify functional brain abnormalities in neuropsychiatric disorders, such as attention deficit hyperactivity disorder (ADHD). During the counting Stroop, subjects report by button-press the number of words (one to four) appearing on the screen, regardless of word meaning. Neutral-word control trials contain single semantic category common animals (e.g., 'dog' written three times), while interference trials contain number words that are incongruent with the correct response (e.g., 'two' written four times). The counting Stroop can be completed in approximately 20 min per subject and can be used offline (behavioral performance) or with fMRI, positron emission tomography, event-related potentials, magnetoencephalography or intracranial recordings.  相似文献   

8.
The lateral prefrontal and orbitofrontal cortices have both been implicated in emotion regulation, but their distinct roles in regulation of negative emotion remain poorly understood. To address this issue we enrolled 58 participants in an fMRI study in which participants were instructed to reappraise both negative and neutral stimuli. This design allowed us to separately study activations reflecting cognitive processes associated with reappraisal in general and activations specifically related to reappraisal of negative emotion. Our results confirmed that both the dorsolateral prefrontal cortex (DLPFC) and the lateral orbitofrontal cortex (OFC) contribute to emotion regulation through reappraisal. However, activity in the DLPFC was related to reappraisal independently of whether negative or neutral stimuli were reappraised, whereas the lateral OFC was uniquely related to reappraisal of negative stimuli. We suggest that relative to the lateral OFC, the DLPFC serves a more general role in emotion regulation, perhaps by reflecting the cognitive demand that is inherent to the regulation task.  相似文献   

9.
Otsuka Y  Osaka N  Yaoi K  Osaka M 《PloS one》2011,6(4):e19320
This study examined dissociations between brain networks involved in theory of mind, which is needed for guessing others' mental states, and the self, which might constitute the basis for theory of mind's development. We used event-related fMRI to compare a condition that required participants to guess the mental state of a subject featured in first-person perspective sentences (1stPP condition) with a third-person perspective sentence condition (3rdPP condition). The caudate nucleus was marginally more activated in the 1stPP than in the 3rdPP condition, while the left dorsolateral prefrontal cortex (DLPFC) was significantly more activated in the 3rdPP condition as compared to the 1stPP condition. Furthermore, we examined the correlation between activation (signal intensity) of the caudate nucleus and left DLPFC with that of the right DLPFC, which is thought to be closely connected with sense of self. We found a significant correlation between caudate nucleus and right DLPFC activation in the 1stPP condition, and between left and right DLPFC activation in the 3rdPP condition. Although theory of mind and the self both appear to recruit the right DLPFC, this region seems to be accessed through the left DLPFC during theory of mind tasks, but through the caudate nucleus when tasks require self reference.  相似文献   

10.
This functional magnetic resonance imaging (fMRI) study examined neural contributions to managing task difficulty and response correctness during fluid reasoning. Previous studies investigate reasoning by independently varying visual complexity or task difficulty, or the specific domain. Under natural conditions these factors interact in a complex manner to support dynamic combinations of perceptual and conceptual processes. This study investigated fluid reasoning under circumstances that would represent the cognitive flexibility of real life decision-making. Results from a mixed effects analysis corrected for multiple comparisons indicate involvement of cortical and subcortical areas during fluid reasoning. A 2 × 2 ANOVA illustrates activity related to variances in task difficulty correlated with increased blood oxygenation level-dependent (BOLD)-signal in the left middle frontal gyrus (BA6). Activity related to response correctness correlated with increased BOLD-signal in a larger, distributed system including right middle frontal gyrus (BA6), right superior parietal lobule (BA7), left inferior parietal lobule (BA40), left lingual gyrus (BA19), and left cerebellum (Lobule VI). The dissociation of function in left BA 6 for task difficulty and right BA6 for response correctness and the involvement of a more diffuse network involving the left cerebellum in response correctness extends knowledge about contributions of classic motor and premotor areas supporting higher level cognition.  相似文献   

11.
带状疱疹后遗神经痛(postherpetic neuralgia,PHN)是临床上一种慢性顽固性神经病理性疼痛,然而,对于其潜在的中枢机制还知之甚少.为了进一步探讨带状疱疹后遗神经痛患者的相关脑区活动,利用功能核磁共振成像低频振幅振荡(ALFF)技术观察带状疱疹后遗神经痛患者的基础脑区活动.8名带状疱疹后遗神经痛患者与8名性别、年龄相匹配的健康者行静息态功能磁共振(f MRI)成像扫描,用SPM8中的多重回归分析,在控制被试年龄、性别、教育年限的影响下,将每个体素的ALFF值同每个被试的病程、视觉模拟评分(visual analog scale,VAS)进行相关分析.与健康志愿者相比,PHN组与VAS评分相关的ALFF值增高的脑区有:右侧小脑后叶、前额叶背外侧区域(BA11/46/47)、右侧顶叶(BA40)、右侧舌回(BA17/18/19);与VAS评分相关的ALFF值降低的脑区有:右侧颞中回(BA21)、左侧舌回(BA17/18)、右侧小脑前叶、左侧后扣带回(BA30/19)和右侧中央前回(BA3/4/6);PHN组与病程相关的ALFF值增高的脑区有:右侧小脑后叶、前额叶背外侧区域(BA9/10/11/47)、左侧颞上回(BA38)、右侧顶叶和右侧舌回(BA17/18/19);与病程相关ALFF值降低的脑区有:左侧海马旁回(BA28)、右侧小脑前叶、左侧扣带回(BA24)、右侧颞上回(BA13)、左侧中央前回和右侧顶下小叶(BA39/40).研究结果提示,涉及疼痛的情绪、警觉行为、注意的脑区在带状疱疹后遗痛慢性疼痛的产生和维持中发挥重要作用.  相似文献   

12.
In this study we aimed to investigate whether transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) reduces interference effects of a dual task (DT) on post-exercise facilitation (PEF) of the motor evoked potentials. Anodal tDCS reversed the DT interference on PEF after a non-fatiguing isometric contraction. We conclude that anodal DLPFC tDCS improves the ability to allocate attentional resources and modulates plastic adaptations across brain systems.  相似文献   

13.

Objective

The role of the Dorsolateral Prefrontal Cortex (DLPFC) in recognition memory has been well documented in lesion, neuroimaging and repetitive Transcranial Magnetic Stimulation (rTMS) studies. The aim of the present study was to investigate the effects of transcranial Direct Current Stimulation (tDCS) over the left and the right DLPFC during the delay interval of a non-verbal recognition memory task.

Method

36 right-handed young healthy subjects participated in the study. The experimental task was an Italian version of Recognition Memory Test for unknown faces. Study included two experiments: in a first experiment, each subject underwent one session of sham tDCS and one session of left or right cathodal tDCS; in a second experiment each subject underwent one session of sham tDCS and one session of left or right anodal tDCS.

Results

Cathodal tDCS over the right DLPFC significantly improved non verbal recognition memory performance, while cathodal tDCS over the left DLPFC had no effect. Anodal tDCS of both the left and right DLPFC did not modify non verbal recognition memory performance.

Conclusion

Complementing the majority of previous studies, reporting long term memory facilitations following left prefrontal anodal tDCS, the present findings show that cathodal tDCS of the right DLPFC can also improve recognition memory in healthy subjects.  相似文献   

14.

Introduction

Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a “Jumping to Conclusions” probabilistic reasoning task.

Methods

We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.

Results

Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices) all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information), while for prefrontal areas a wider multivariate pattern of activity was maximally informative.

Conclusions/Significance

We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable tool to assess how area-specific processing is altered in psychiatric disorders such as schizophrenia, and in healthy subjects carrying different genetic polymorphisms.  相似文献   

15.
Donaldson DI  Petersen SE  Buckner RL 《Neuron》2001,31(6):1047-1059
We employed event-related fMRI to constrain cognitive accounts of memory retrieval. Studies of explicit retrieval reveal that lateral and medial parietal, dorsal middle frontal gyrus, and anterior prefrontal cortex respond more for studied than new words, reflecting a correlate of "retrieval success." Studies of implicit memory suggest left temporal cortex, ventral and dorsal inferior frontal gyrus respond less for studied than new words, reflecting a correlate of "conceptual priming." In the present study, responses for old and new items were compared during performance on explicit recognition (old/new judgement) and semantic (abstract/concrete judgement) tasks. Regions associated with priming were only modulated during the semantic task, whereas regions associated with retrieval success were modulated during both tasks. These findings constrain functional-anatomic accounts of the networks, suggesting that processes associated with priming do not support explicit recognition judgments.  相似文献   

16.
The early detection of major depression in elderly individuals who are at risk of developing the disease is of prime importance when it comes to the prevention of geriatric depression. We used resting-state functional magnetic resonance imaging (fMRI) to examine changes in regional homogeneity (ReHo) of spontaneous activity in late-life subthreshold depression (StD), and we evaluated the sensitivity/specificity performance of these changes. Nineteen elderly individuals with StD and 18 elderly controls underwent a resting-state fMRI scan. The ReHo approach was employed to examine whether StD was related to alterations in resting-state neural activity, in the form of abnormal regional synchronization. Receiver operating characteristic curve analysis and the Fisher stepwise discriminant analysis were used to evaluate the sensitivity/specificity characteristics of the ReHo index in discriminating between the StD subjects and normal controls. The results demonstrated that, compared to controls, StD subjects display lower ReHo in the right orbitofrontal cortex (OFC), left dorsolateral prefrontal cortex (DLPFC), left postcentral gyrus (PCG), and left middle frontal and inferior temporal gyri, as well as higher ReHo in the bilateral insula and right DLPFC. The left PCG and the right DLPFC, OFC, and posterior insula, together reported a predictive accuracy of 91.9%. These results suggest that the regional activity coherence was changed in the resting brain of StD subjects, and that these alterations may serve as potential markers for the early detection of StD in late-life depression.  相似文献   

17.
Humans can anticipate and prepare for uncertainties to achieve a goal. However, it is difficult to maintain this effort over a prolonged period of time. Inappropriate behavior is impulsively (or mindlessly) activated by an external trigger, which can result in serious consequences such as traffic crashes. Thus, we examined the neural mechanisms underlying such impulsive responding using functional magnetic resonance imaging (fMRI). Twenty-two participants performed a block-designed sustained attention to response task (SART), where each task block was composed of consecutive Go trials followed by a NoGo trial at the end. This task configuration enabled us to measure compromised preparation for NoGo trials during Go responses using reduced Go reaction times. Accordingly, parametric modulation analysis was conducted on fMRI data using block-based mean Go reaction times as an online marker of impulsive responding in the SART. We found that activity in the right dorsolateral prefrontal cortex (DLPFC) and the bilateral intraparietal sulcus (IPS) was positively modulated with mean Go reaction times. In addition, activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) was negatively modulated with mean Go reaction times, albeit statistically weakly. Taken together, spontaneously reduced activity in the right DLPFC and the IPS and spontaneously elevated activity in the MPFC and the PCC were associated with impulsive responding in the SART. These results suggest that such a spontaneous transition of brain activity pattern results in impulsive responding in monotonous situations, which in turn, might cause human errors in actual work environments.  相似文献   

18.
Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person’s visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants’ tendency to adopt another’s point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males’ responses to threatening faces whereas it interferes with the ability to adopt another’s viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.  相似文献   

19.
Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. We here present an incidental finding from a simultaneous EEG-TMS experiment as well as a replication of this unexpected effect. Our results reveal that stimulating the left dorsolateral prefrontal cortex (DLPFC) with slow repetitive transcranial magnetic stimulation (rTMS) leads to enhanced word memory performance. A total of 40 healthy human participants engaged in a list learning paradigm. Half of the participants (N = 20) received 1 Hz rTMS to the left DLPFC, while the other half (N = 20) received 1 Hz rTMS to the vertex and served as a control group. Participants receiving left DLPFC stimulation demonstrated enhanced memory performance compared to the control group. This effect was replicated in a within-subjects experiment where 24 participants received 1 Hz rTMS to the left DLPFC and vertex. In this second experiment, DLPFC stimulation also induced better memory performance compared to vertex stimulation. In addition to these behavioural effects, we found that 1 Hz rTMS to DLPFC induced stronger beta power modulation in posterior areas, a state that is known to be beneficial for memory encoding. Further analysis indicated that beta modulations did not have an oscillatory origin. Instead, the observed beta modulations were a result of a spectral tilt, suggesting inhibition of these parietal regions. These results show that applying 1 Hz rTMS to DLPFC, an area involved in episodic memory formation, improves memory performance via modulating neural activity in parietal regions.

Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. An incidental finding from a simultaneous EEG-TMS experiment reveals that applying 1-Hz repetitive transcranial magnetic stimulation to this area of the brain improves memory performance by modulating neural activity in parietal regions.  相似文献   

20.
Posttraumatic stress disorder (PTSD) is associated with decreased activity in the dorsolateral prefrontal cortex (DLPFC), the brain region that regulates working memory and preparation and selection of fear responses. We investigated gene expression profiles in DLPFC Brodmann area (BA) 46 of postmortem patients with (n=6) and without PTSD (n=6) using human mitochondria-focused cDNA microarrays. Our study revealed PTSD-specific expression fingerprints of 800 informative mitochondria-focused genes across all of these 12 BA46 samples, and 119 (+/->1.25, p<0.05) and 42 (+/->1.60, p<0.05) dysregulated genes between the PTSD and control samples. Quantitative RT-PCR validated the microarray results. These fingerprints can essentially distinguish the PTSD DLPFC BA46 brains from controls. Of the 119 dysregulated genes (+/-> or =125%, p<0.05), the highest percentages were associated with mitochondrial dysfunction (4.8%, p=6.61 x 10(-6)), oxidative phosphorylation (3.8%, p=9.04 x 10(-4)), cell survival-apoptosis (25.2%, p<0.05) and neurological diseases (23.5%, p<0.05). Fifty (50) dysregulated genes were present in the molecular networks that are known to be involved in neuronal function-survival and contain 7 targets for neuropsychiatric drugs. Thirty (30) of the dysregulated genes are associated with a number of neuropsychiatric disorders. Our results indicate mitochondrial dysfunction in the PTSD DLPFC BA46 and provide the expression fingerprints that may ultimately serve as biomarkers for PTSD diagnosis and the drugs and molecular targets that may prove useful for development of remedies for prevention and treatment of PTSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号