首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Dietary lipid absorption is dependent on chylomicron production whose rate-limiting step across the intestinal absorptive cell is the exit of chylomicrons from the endoplasmic reticulum (ER) in its ER-to-Golgi transport vesicle, the prechylomicron transport vesicle (PCTV). This study addresses the composition of the budding complex for PCTV. Immunoprecipitation (IP) studies from rat intestinal ER solubilized in Triton X-100 suggested that vesicle-associated membrane protein 7 (VAMP7), apolipoprotein B48 (apoB48), liver fatty acid-binding protein (L-FABP), CD36, and the COPII proteins were associated on incubation of the ER with cytosol and ATP. This association was confirmed by chromatography of the solubilized ER over Sephacryl S400-HR in which these constituents cochromatographed with an apparent kDa of 630. No multiprotein complex was detected when the ER was chromatographed in the absence of PCTV budding activity (resting ER or PKCζ depletion of ER and cytosol). Treatment of the ER with anti-apoB48 or anti-VAMP7 antibodies or using gene disrupted L-FABP or CD36 mice all significantly inhibited PCTV generation. A smaller complex (no COPII proteins) was formed when only rL-FABP was used to bud PCTV. The data support the conclusion that the PCTV budding complex in intestinal ER is composed of VAMP7, apoB48, CD36, and L-FABP, plus the COPII proteins.  相似文献   

2.
Sphingomyelin and cholesterol can assemble into domains and segregate from other lipids in the membranes. These domains are reported to function as platforms for protein transport and signalling. Do similar domains exist in the Golgi membranes and are they required for protein secretion? We tested this hypothesis by using D ‐ceramide‐C6 to manipulate lipid homeostasis of the Golgi membranes. Lipidomics of the Golgi membranes isolated from D ‐ceramide‐C6‐treated HeLa cells revealed an increase in the levels of C6‐sphingomyelin, C6‐glucosylceramide, and diacylglycerol. D ‐ceramide‐C6 treatment in HeLa cells inhibited transport carrier formation at the Golgi membranes without affecting the fusion of incoming carriers. The defect in protein secretion as a result of D ‐ceramide‐C6 treatment was alleviated by knockdown of the sphingomyelin synthases 1 and 2. C6‐sphingomyelin prevented liquid‐ordered domain formation in giant unilamellar vesicles and reduced the lipid order in the Golgi membranes of HeLa cells. These findings highlight the importance of a regulated production and organization of sphingomyelin in the biogenesis of transport carriers at the Golgi membranes.  相似文献   

3.
Bet3p, a component of a large novel complex called TRAPP, acts upstream of endoplasmic reticulum (ER)-Golgi SNAREs. Unlike the SNAREs, which reside on multiple compartments, Bet3p is localized exclusively to Golgi membranes. While other proteins recycle from the Golgi to the ER, Bet3p and other TRAPP subunits remain associated with this membrane under conditions that block anterograde traffic. We propose that the persistent localization of TRAPP to the Golgi may be important for its role in docking vesicles to this membrane. Consistent with this proposal, we find that transport vesicles fail to bind to Golgi membranes in vitro in the absence of Bet3p. Binding is restored by the addition of cytosol containing Bet3p. These findings indicate that TRAPP stably associates with the Golgi and is required for vesicle docking.  相似文献   

4.
Sec7p directs the transitions required for yeast Golgi biogenesis   总被引:6,自引:0,他引:6  
Endoplasmic reticulum (ER)-to-Golgi traffic in yeast proceeds by the maturation of membrane compartments from post-ER vesicles to intermediate small vesicle tubular clusters (VTCs) to Golgi nodular membrane networks (Morin-Ganet et al., Traffic 2000; 1: 56–68). The balance between ER and Golgi compartments is maintained by COPII- and COPI-mediated anterograde and retrograde traffic, which are dependent on Sec7p and ARF function. The sec7-4 temperature-sensitive allele is a mutation in the highly conserved Sec7 domain (Sec7d) found in all ARF-guanine nucleotide exchange factor proteins. Post-ER trafficking is rapidly inactivated in sec7-4 mutant yeast at the restrictive temperature. This conditional defect prevented the normal production of VTCs and instead generated Golgi-like tubes emanating from the ER exit sites. These tubes progressively developed into stacked cisternae defining the landmark sec7 mutant phenotype. Consistent with the in vivo results, a Sec7d peptide inhibited ER-to-Golgi transport and displaced Sec7p from its membrane anchor in vitro . The similarities in the consequences of inactivating Sec7p or ARFs in vivo was revealed by genetic disruption of yeast ARFs or by addition of brefeldin A (BFA) to whole cells. These treatments, as in sec7-4 yeast, affected the morphology of membrane compartments in the ER-Golgi transition. Further evidence for Sec7p involvement in the transition for Golgi biogenesis was revealed by in vitro binding between distinct domains of Sec7p with ARFs, COPI and COPII coat proteins. These results suggest that Sec7p coordinates membrane transitions in Golgi biogenesis by directing and scaffolding the binding and disassembly of coat protein complexes to membranes, both at the VTC transition from ER exit sites to form Golgi elements and for later events in Golgi maturation.  相似文献   

5.
A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393-406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor)-associated protein Sly1p, Sly1-20p. Weaker suppression is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p. This genetic suppression profile is similar to that of sec35-1, a mutant allele of a gene encoding an ER to Golgi vesicle tethering factor and, like Sec35p, Sec34p is required in vitro for vesicle tethering. sec34-2 and sec35-1 display a synthetic lethal interaction, a genetic result explained by the finding that Sec34p and Sec35p can interact by two-hybrid analysis. Fractionation of yeast cytosol indicates that Sec34p and Sec35p exist in an approximately 750-kD protein complex. Finally, we describe RUD3, a novel gene identified through a genetic screen for multicopy suppressors of a mutation in USO1, which suppresses the sec34-2 mutation as well.  相似文献   

6.
The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES.  相似文献   

7.
The Sec24 subunit of the coat protein complex II (COPII) has been implicated in selecting newly synthesized cargo from the endoplasmic reticulum (ER) for delivery to the Golgi. The protozoan parasite, Trypanosoma brucei, contains two paralogs, TbSec24.1 and TbSec24.2, which were depleted using RNA interference in the insect form of the parasite. Depletion of either TbSec24.1 or TbSec24.2 resulted in growth arrest and modest inhibition of anterograde transport of the putative Golgi enzyme, TbGntB, and the secretory marker, BiPNAVRG-HA9. In contrast, depletion of TbSec24.1, but not TbSec24.2, led to reversible mislocalization of the Golgi stack proteins, TbGRASP and TbGolgin63. The latter accumulated in the ER. The localization of the COPI coatomer subunit, TbεCOP, and the trans Golgi network (TGN) protein, TbGRIP70, was largely unaffected, although the latter was preferentially lost from those Golgi that were not associated with the bilobe, a structure previously implicated in Golgi biogenesis. Together, these data suggest that TbSec24 paralogs can differentiate among proteins destined for the Golgi.  相似文献   

8.
Sec2p is required for the polarized transport of secretory vesicles in S. cerevisiae. The Sec2p NH(2) terminus encodes an exchange factor for the Rab protein Sec4p. Sec2p associates with vesicles and in Sec2p COOH-terminal mutants Sec4p and vesicles no longer accumulate at bud tips. Thus, the Sec2p COOH terminus functions in targeting vesicles, however, the mechanism of function is unknown. We found comparable exchange activity for truncated and full-length Sec2 proteins, implying that the COOH terminus does not alter the exchange rate. Full-length Sec2-GFP, similar to Sec4p, concentrates at bud tips. A COOH-terminal 58-amino acid domain is necessary but not sufficient for localization. Sec2p localization depends on actin, Myo2p and Sec1p, Sec6p, and Sec9p function. Full-length, but not COOH-terminally truncated Sec2 proteins are enriched on membranes. Membrane association of full-length Sec2p is reduced in sec6-4 and sec9-4 backgrounds at 37 degrees C but unaffected at 25 degrees C. Taken together, these data correlate loss of localization of Sec2 proteins with reduced membrane association. In addition, Sec2p membrane attachment is substantially Sec4p independent, supporting the notion that Sec2p interacts with membranes via an unidentified Sec2p receptor, which would increase the accessibility of Sec2p exchange activity for Sec4p.  相似文献   

9.
Glucose stimulates insulin secretion from pancreatic beta cells by inducing the recruitment and fusion of insulin vesicles to the plasma membrane. However, little is currently known about the mechanism of the initial docking or tethering of insulin vesicles prior to fusion. Here, we examined the role of the SEC6-SEC8 (exocyst) complex, implicated in trafficking of secretory vesicles to fusion sites in the plasma membrane in yeast and in regulating glucose-stimulated insulin secretion from pancreatic MIN6 beta cells. We show first that SEC6 is concentrated on insulin-positive vesicles, whereas SEC5 and SEC8 are largely confined to the cytoplasm and the plasma membrane, respectively. Overexpression of truncated, dominant-negative SEC8 or SEC10 mutants decreased the number of vesicles at the plasma membrane, whereas expression of truncated SEC6 or SEC8 inhibited overall insulin secretion. When single exocytotic events were imaged by total internal reflection fluorescence microscopy, the fluorescence of the insulin surrogate, neuropeptide Y-monomeric red fluorescent protein brightened, diffused, and then vanished with kinetics that were unaffected by overexpression of truncated SEC8 or SEC10. Together, these data suggest that the exocyst complex serves to selectively regulate the docking of insulin-containing vesicles at sites of release close to the plasma membrane.  相似文献   

10.
In yeast, the Class C Vps protein complex (C-Vps complex), composed of Vps11, Vps16, Vps18, and Vps33, functions in Golgi-to-vacuole protein transport. In this study, we characterized and purified this complex and identified its interaction with the syntaxin homolog Vam3. Vam3 pairs with the SNAP-25 homolog Vam7 and VAMP homolog Vti1 to form SNARE complexes during vesicle docking/fusion with the vacuole. The C-Vps complex does not bind to Vam3-Vti1-Vam7 paired SNARE complexes but instead binds to unpaired Vam3. Antibodies to a component of this complex inhibited in vitro vacuole-to-vacuole fusion. Furthermore, temperature-conditional mutations in the Class C VPS genes destabilized Vam3-Vti1-Vam7 pairing. Therefore, we propose that the C-Vps complex associates with unpaired (activated) Vam3 to mediate the assembly of trans-SNARE complexes during both vesicle docking/fusion and vacuole-to-vacuole fusion.  相似文献   

11.
The SEC13 gene of Saccharomyces cerevisiae is required in vesicle biogenesis at a step before or concurrent with the release of transport vesicles from the ER membrane. SEC13 encodes a 33-kD protein with sequence homology to a series of conserved internal repeat motifs found in beta subunits of heterotrimeric G proteins. The product of this gene, Sec13p, is a cytosolic protein peripherally associated with membranes. We developed a cell-free Sec13p-dependent vesicle formation reaction. Sec13p-depleted membranes and cytosol fractions were generated by urea treatment of membranes and affinity depletion of a Sec13p-dihydrofolate reductase fusion protein, respectively. These fractions were unable to support vesicle formation from the ER unless cytosol containing Sec13p was added. Cytosolic Sec13p fractionated by gel filtration as a large complex of about 700 kD. Fractions containing the Sec13p complex restored activity to the Sec13p- dependent vesicle formation reaction. Expression of SEC13 on a multicopy plasmid resulted in overproduction of a monomeric form of Sec13p, suggesting that another member of the complex becomes limiting when Sec13p is overproduced. Overproduced, monomeric Sec13p was inactive in the Sec13p- dependent vesicle formation assay.  相似文献   

12.
The p24 family members are transmembrane proteins assembled into heteromeric complexes that continuously cycle between the ER and the Golgi apparatus. These cargo proteins were assumed to play a structural role in COPI budding because of their major presence in mammalian COPI vesicles. However, this putative function has not been proved conclusively so far. Furthermore, deletion of all eight yeast p24 family members does not produce severe transport phenotypes, suggesting that the p24 complex is not essential for COPI function. In this paper we provide direct evidence that the yeast p24 complex plays an active role in retrograde transport from Golgi to ER by facilitating the formation of COPI-coated vesicles. Therefore, our results demonstrate that p24 proteins are important for vesicle formation instead of simply being a passive traveler, supporting the model in which cargo together with a small GTPase of the ARF superfamily and coat subunits act as primer for vesicle formation.  相似文献   

13.
14.
Vam2p/Vps41p is known to be required for transport vesicles with vacuolar cargo to bud from the Golgi. Like other VAM-encoded proteins, which are needed for homotypic vacuole fusion, we now report that Vam2p and its associated protein Vam6p/Vps39p are needed on each vacuole partner for homotypic fusion. In vitro vacuole fusion occurs in successive steps of priming, docking, and membrane fusion. While priming does not require Vam2p or Vam6p, the functions of these two proteins cannot be fulfilled until priming has occurred, and each is required for the docking reaction which culminates in trans-SNARE pairing. Consistent with their dual function in Golgi vesicle budding and homotypic fusion of vacuoles, approximately half of the Vam2p and Vam6p of the cell are recovered from cell lysates with purified vacuoles.  相似文献   

15.
Dynactin is required for bidirectional organelle transport   总被引:19,自引:0,他引:19       下载免费PDF全文
Kinesin II is a heterotrimeric plus end-directed microtubule motor responsible for the anterograde movement of organelles in various cell types. Despite substantial literature concerning the types of organelles that kinesin II transports, the question of how this motor associates with cargo organelles remains unanswered. To address this question, we have used Xenopus laevis melanophores as a model system. Through analysis of kinesin II-mediated melanosome motility, we have determined that the dynactin complex, known as an anchor for cytoplasmic dynein, also links kinesin II to organelles. Biochemical data demonstrates that the putative cargo-binding subunit of Xenopus kinesin II, Xenopus kinesin II-associated protein (XKAP), binds directly to the p150Glued subunit of dynactin. This interaction occurs through aa 530-793 of XKAP and aa 600-811 of p150Glued. These results reveal that dynactin is required for transport activity of microtubule motors of opposite polarity, cytoplasmic dynein and kinesin II, and may provide a new mechanism to coordinate their activities.  相似文献   

16.
17.
The Sec34/35 complex was identified as one of the evolutionarily conserved protein complexes that regulates a cis-Golgi step in intracellular vesicular transport. We have identified three new proteins that associate with Sec35p and Sec34p in yeast cytosol. Mutations in these Sec34/35 complex subunits result in defects in basic Golgi functions, including glycosylation of secretory proteins, protein sorting, and retention of Golgi resident proteins. Furthermore, the Sec34/35 complex interacts genetically and physically with the Rab protein Ypt1p, intra-Golgi SNARE molecules, as well as with Golgi vesicle coat complex COPI. We propose that the Sec34/35 protein complex acts as a tether that connects cis-Golgi membranes and COPI-coated, retrogradely targeted intra-Golgi vesicles.  相似文献   

18.
Four mammalian golgins are specifically targeted to the trans-Golgi network (TGN) membranes via their C-terminal GRIP domains. The TGN golgins, p230/golgin-245 and golgin-97, are recruited via the GTPase Arl1, whereas the TGN golgin GCC185 is recruited independently of Arl1. Here we show that GCC185 is localized to a region of the TGN distinct from Arl1 and plays an essential role in maintaining the organization of the Golgi apparatus. Using both small interfering RNA (siRNA) and microRNA (miRNA), we show that depletion of GCC185 in HeLa cells frequently resulted in fragmentation of the Golgi apparatus. Golgi apparatus fragments were dispersed throughout the cytoplasm and contained both cis and trans markers. Trafficking of anterograde and retrograde cargo was analysed over an extended period following GCC185 depletion. Early effects of GCC185 depletion included a perturbation in the distribution of the mannose-6-phosphate receptor and a block in shiga toxin trafficking to the Golgi apparatus, which occurred in parallel with the fragmentation of the Golgi ribbon. Internalized shiga toxin accumulated in Rab11-positive endosomes, indicating GCC185 is essential for transport between the recycling endosome and the TGN. In contrast, the plasma membrane-TGN recycling protein TGN38 was efficiently transported into GCC185-depleted Golgi apparatus fragments throughout a 96-h period, and anterograde transport of E-cadherin was functional until a late stage of GCC185 depletion. This study demonstrated (i) a more effective long-term depletion of GCC185 using miRNA than siRNA and (ii) a dual role for the GCC185 golgin in the regulation of endosome-to-TGN membrane transport and in the organization of the Golgi apparatus.  相似文献   

19.
The COPII vesicle coat protein promotes the formation of endoplasmic reticulum- (ER) derived transport vesicles that carry secretory proteins to the Golgi complex in Saccharomyces cerevisiae. This coat protein consists of Sar1p, the Sec23p protein complex containing Sec23p and Sec24p, and the Sec13p protein complex containing Sec13p and a novel 150-kDa protein, p150. Here, we report the cloning and characterization of the p150 gene. p150 is encoded by an essential gene. Depletion of this protein in vivo blocks the exit of secretory proteins from the ER and causes an elaboration of ER membranes, indicating that p150 is encoded by a SEC gene. Additionally, overproduction of the p150 gene product compromises the growth of two ER to Golgi sec mutants: sec16-2 and sec23-1. p150 is encoded by SEC31, a gene isolated in a genetic screen for mutations that accumulate unprocessed forms of the secretory protein alpha-factor. The sec31-1 mutation was mapped by gap repair, and sequence analysis revealed an alanine to valine change at position 1239, near the carboxyl terminus. Sec31p is a phosphoprotein and treatment of the Sec31p-containing fraction with alkaline phosphatase results in a 50-75% inhibition of transport vesicle formation activity in an ER membrane budding assay.  相似文献   

20.
Rabphilin is generally thought to be involved in the regulation of secretory vesicle exocytosis in neurons and neuroendocrine cells, and it has recently been hypothesized that the C2B domain of rabphilin promotes the docking of dense-core vesicles to the plasma membrane through simultaneous interaction with a vesicle protein, Rab3A/27A, and a plasma membrane protein, SNAP-25 (synaptosome-associated protein of 25 kDa). However, the physiological significance of the rabphilin-SNAP-25 interaction in the vesicle-docking step has never been elucidated. In this study we demonstrated by a mutation analysis that the polybasic sequence (587 KKAKHKTQIKKK 598) in the C2B domain of rabphilin is required for SNAP-25 binding, and that the Asp residues in the Ca(2+)-binding loop 3 (D628 and D630) of the C2B domain are not required. We also investigated the effect of Lys-->Gln (KQ) mutations in the polybasic sequence of the C2B domain on vesicle dynamics by total internal reflection fluorescence microscopy in individual PC12 cells. A rabphilin(KQ) mutant that completely lacks SNAP-25-binding activity significantly decreased the number of plasma-membrane-docked vesicles and strongly inhibited high-KCl-induced dense-core vesicle exocytosis. These results indicate that the polybasic sequence in the C2B domain functions as an effector domain for SNAP-25 and controls the number of 'releasable' vesicles docked to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号