首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The inhibition of protein synthesis in L cells by vesicular stomatitis virus (VSV) requires the synthesis of new protein subsequent to virus infection. However, two mechanisms may be involved in the inhibition of cell protein synthesis by VSV: an initial, multiplicity-dependent, ultraviolet-insensitive inhibition and a progressive, ultraviolet-sensitive inhibition.  相似文献   

3.
The induction of apoptosis in host cells is a prominent cytopathic effect of vesicular stomatitis virus (VSV) infection. The viral matrix (M) protein is responsible for several important cytopathic effects, including the inhibition of host gene expression and the induction of cell rounding in VSV-infected cells. This raises the question of whether M protein is also involved in the induction of apoptosis. HeLa or BHK cells were transfected with M mRNA to determine whether M protein induces apoptosis when expressed in the absence of other viral components. Expression of M protein induced apoptotic morphological changes and activated caspase-3 in both cell types, indicating that M protein induces apoptosis in the absence of other viral components. An M protein containing a point mutation that renders it defective in the inhibition of host gene expression (M51R mutation) activated little, if any, caspase-3, while a deletion mutant lacking amino acids 4 to 21 that is defective in the virus assembly function but fully functional in the inhibition of host gene expression was as effective as wild-type (wt) M protein in activating caspase-3. To determine whether M protein influences the induction of apoptosis in the context of a virus infection, the M51R M protein mutation was incorporated onto a wt background by using a recombinant infectious cDNA clone (rM51R-M virus). The timing of the induction of apoptosis by rM51R-M virus was compared to that by the corresponding recombinant wt (rwt) virus and to that by tsO82 virus, the mutant virus in which the M51R mutation was originally identified. In HeLa cells, rwt virus induced apoptosis faster than did rM51R-M virus, demonstrating a role for M protein in the induction of apoptosis. In contrast to the results obtained with HeLa cells, rwt virus induced apoptosis more slowly than did rM51R-M virus in BHK cells. This indicates that a viral component other than M protein contributes to induction of apoptosis in BHK cells and that wt M protein acts to delay induction of apoptosis by the other viral component. tsO82 virus induced apoptosis more rapidly than did rM51R-M virus in both HeLa and BHK cells. These two viruses contain the same point mutation in their M proteins, suggesting that sequence differences in genes other than that for M protein affect their rates of induction of apoptosis.  相似文献   

4.
Protein Kinase and Phosphoproteins of Vesicular Stomatitis Virus   总被引:3,自引:25,他引:3       下载免费PDF全文
Protein kinases of similar but not identical activity were found associated with vesicular stomatitis (VS) virions grown in mouse L cells, primary chicken embryo (CE) cells, and BHK-21 cells, as well as being present in VS virions grown in HeLa and Aedes albopictus cells. The virion kinase preferentially phosphorylated the nucleocapsid NS protein in vitro and to a lesser extent the envelope M protein. Other virion proteins were phosphorylated in vitro only after drastic detergent treatment. Partial evidence that the virion kinase is of cellular origin was obtained by finding reduced enzyme activity in virions released from cells pretreated with actinomycin D and cycloheximide. Selective detergent and detergent-salt fractionation of VS virions revealed that the kinase activity was present in the envelope but not the spikes. The virion kinase activity in a Triton-salt-solubilized envelope fraction could be separated from M and G proteins and partially purified by phosphocellulose column chromatography. Virions released from L, CE, and BHK-21 cells infected in the presence of [(32)P]orthophosphate were labeled almost exclusively in the NS protein. Both soluble and nucleocapsid-associated NS phosphoprotein were present in cytoplasmic extracts of VS viral-infected L cells. The origin and function of the NS phosphoprotein remain to be elucidated.  相似文献   

5.
Entry of Vesicular Stomatitis Virus into L Cells   总被引:3,自引:10,他引:3       下载免费PDF全文
Early stages of the entry of vesicular stomatitis (VS) virus into L cells were followed by electron microscopy with the aid of ferritin antibody labeling. Cells which were infected at 0 C and incubated for 10 min at 37 C were reacted first with antiviral-antiferritin hybrid antibody and then with ferritin or fluorescein-labeled apoferritin. Extensive ferritin labeling of the cell surface was detected by both electron and fluorescence microscopy. The labeled regions of the cell surface were continuous with and indistinguishable from the rest of the host cell membrane, suggesting incorporation of viral antigens into the cell surface during viral penetration. Fusion of parental viral membrane with host cell membrane was further demonstrated by examining the localization of (3)H-labeled viral structural proteins in cells infected at 0 C and incubated for short periods at 37 C. Viral nucleoprotein was found in a soluble fraction of the cells which was derived primarily from the cytoplasm, whereas a particulate fraction from the cells was enriched in viral envelope proteins. Cytoplasmic membrane was isolated from these cells, and this membrane contained viral envelope proteins. These results suggest that penetration by VS virus occurs by fusion of the viral and cellular membranes followed by release of nucleo-protein into the cytoplasm.  相似文献   

6.
To study VSV entry and the fate of incoming matrix (M) protein during virus uncoating we used recombinant viruses encoding M proteins with a C-terminal tetracysteine tag that could be fluorescently labeled using biarsenical (Lumio) compounds. We found that uncoating occurs early in the endocytic pathway and is inhibited by expression of dominant-negative (DN) Rab5, but is not inhibited by DN-Rab7 or DN-Rab11. Uncoating, as defined by the separation of nucleocapsids from M protein, occurred between 15 and 20 minutes post-entry and did not require microtubules or an intact actin cytoskeleton. Unexpectedly, the bulk of M protein remained associated with endosomal membranes after uncoating and was eventually trafficked to recycling endosomes. Another small, but significant fraction of M distributed to nuclear pore complexes, which was also not dependent on microtubules or polymerized actin. Quantification of fluorescence from high-resolution confocal micrographs indicated that after membrane fusion, M protein diffuses across the endosomal membrane with a concomitant increase in fluorescence from the Lumio label which occurred soon after the release of RNPs into the cytoplasm. These data support a new model for VSV uncoating in which RNPs are released from M which remains bound to the endosomal membrane rather than the dissociation of M protein from RNPs after release of the complex into the cytoplasm following membrane fusion.  相似文献   

7.
The requirement of the presence of a nucleus for the replication of vesicular stomatitis virus and influenza virus has been examined by following the growth and development of these viruses in enucleate BS-C-1 cells. Vesicular stomatitis virus replicates normally in enucleate cells with the rate of production of infectious virus, the amount of virus-specific protein synthesis, and the type of proteins produced being essentially the same in nucleate and enucleate cells. Influenza virus does not replicate in enucleate cells, no virus gene products can be detected, and there is no inhibition of cellular protein synthesis.  相似文献   

8.
Digitonin, a sterol glycoside which complexes with cholesterol, stripped off the envelope of vesicular stomatitis (VS) virions and liberated two viral structural proteins, 83% of P6 and 53% of P4. Deoxycholate also disrupted VS virions but released nucleocapsid cores which could be identified by higher buoyant density, ratio of incorporated (3)H-uridine to (14)C-protein, and electron microscopy. The major nucleocapsid protein was P5 but varying amounts of the minor protein aggregate P2 were present, depending on the concentration of urea used for extraction. P2 appeared to be a polymer of P5. Two other minor structural proteins, P1 and P3, could not be located in the virion. From these data, we conclude that the three microscopically identifiable structures of VS virions are each composed primarily of a single major protein, as follows: P6 = envelope protein, P4 = protein of underlying "shell," and P5 = nucleocapsid protein.  相似文献   

9.
A comparison has been made of the membrane glycoproteins and glycopeptides from two enveloped viruses, Sindbis virus and vesicular stomatitis virus (VSV). Glycopeptides isolated from Sindbis virus and VSV grown in the same host appear to differ principally in the number of sialic acid residues per glycopeptide; when sialic acid is removed by mild acid treatment, the glycopeptides of the two viral proteins are indistinguishable by exclusion chromatography. Preliminary evidence argues that the carbohydrate moiety covalently bound to different virus-specified membrane proteins may be specified principally by the host.  相似文献   

10.
A previous report (Youngner et al., J. Virol. 19:90-101, 1976) documented that noncytocidal persistent infection can be established with wild-type vesicular stomatitis virus (VSV) in mouse L cells at 37°C and that a rapid selection of RNA, group I temperature-sensitive (ts) mutants consistently occurs in this system. To assess the selective advantage of the RNAts phenotype, evolution of the virus population was studied in persistent infections initiated in L cells by use of VSV ts 0 23 and ts 0 45, RNA+ mutants belonging to complementation groups III and V. In L cells persistently infected with ts 0 23, the ts RNA+ virus population was replaced gradually by viruses which had a ts RNA phenotype. VSV ts 0 45 (V) has another marker in addition to reduced virus yield at 39.5°C: a defective protein (G) which renders virion infectivity heat labile at 50°C. Persistent infections initiated with this virus (ts, heat labile, RNA+) evolved into a virus population which was ts, heat resistant, and RNA. These findings suggest that the ts phenotype itself is not sufficient to stabilize the VSV population in persistently infected L cells and also indicate that the ts RNA phenotype may have a unique selective advantage in this system. In addition to the selection of ts RNA mutants, other mechanisms which also might operate in the maintenance of persistent VSV infections of L cells were explored. Whereas defective-interfering particles did not seem to mediate the carrier state, evidence was obtained that interferon may play a role in the regulation of persistent infections of L cells with VSV.  相似文献   

11.
At an early stage in infection, vesicular stomatitis viruses were attached to the surface of L cells by fusion of the viral and cell membranes.  相似文献   

12.
13.
Model for Vesicular Stomatitis Virus   总被引:4,自引:18,他引:4       下载免费PDF全文
Vesicular stomatitis virus contains single-stranded ribonucleic acid of molecular weight 3.6 x 10(6) and three major proteins with molecular weights of 75 x 10(3), 57 x 10(3), and 32.5 x 10(3). The proteins have been shown to be subunits of the surface projections, ribonucleoprotein, and matrix protein, respectively. From these values and from estimates of the proportions of the individual proteins, it has been calculated that the virus has approximately 500 surface projections, 1,100 protein units on the ribonucleoprotein strand, and 1,600 matrix protein units. Possible models of the virus are proposed in which the proteins are interrelated.  相似文献   

14.
The identity of the glycoprotein of vesicular stomatitis virus (VSV) as the spike protein has been confirmed by the removal of the spikes with a protease from Streptomyces griseus, leaving bullet-shaped particles bounded by a smooth membrane. This treatment removes the glycoprotein but does not affect the other virion proteins, apparently because they are protected from the enzyme by the lipids in the viral membrane. The proteins of phenotypically mixed, bullet-shaped virions produced by cells mixedly infected with VSV and the parainfluenza virus simian virus 5 (SV5) have been analyzed by polyacrylamide gel electrophoresis. These virions contain all the VSV proteins plus the two SV5 spike proteins, both of which are glycoproteins. The finding of the SV5 spike glycoproteins on virions with the typical morphology of VSV indicates that there is not a stringent requirement that only the VSV glycoprotein can be used to form the bullet-shaped virion. On the other hand, the SV5 nucleocapsid protein and the major non-spike protein of the SV5 envelope were not detected in the phenotypically mixed virions, and this suggests that a specific interaction between the VSV nucleocapsid and regions of the cell membrane which contain the nonglycosylated VSV envelope protein is necessary for assembly of the bullet-shaped virion.  相似文献   

15.
16.
Treatment of suspensions of vesicular stomatitis virus with Tween-ether results in a rapid and considerable loss of infectivity (ca. 4 logs in 2 min), but the residual infectivity is comparatively stable to further treatment with ether. The infectivity remaining after the short exposure to Tween-ether is not due to virus for the following reasons. (i) It is much less infective for tissue cultures than for mice, whereas the intact virion is equally infective for both hosts. (ii) The residual infectivity is much less stable than virus infectivity in both sucrose and tartrate gradients. (iii) Virus immune serum does not neutralize its activity. (iv) The infectivity is associated with material which sediments further in sucrose gradients and has a greater buoyant density in tartrate gradients than the virion. Experiments with (32)P-labeled virion showed that the infective substructure contains ribonucleic acid with the same sedimentation characteristics as that extracted from the virion. Electron microscopy shows that the infective component has the same overall bullet-like structure as the virion but lacks the outer envelope and fringe structure.  相似文献   

17.
Carbohydrate Composition of Vesicular Stomatitis Virus   总被引:4,自引:11,他引:4       下载免费PDF全文
Analysis by gas-liquid chromatography of the trimethylsilylated sugar residues of purified vesicular stomatitis virus grown in L cells or chick embryo cells revealed the presence in the whole virion of four hexoses (glucose, galactose, mannose, and fucose), two hexosamines (glucosamine and galactosamine), and 34 to 40% neuraminic acid. The isolated viral glycoprotein was devoid of galactosamine and fucose, both of which sugars were present in whole virions presumably as part of the membrane glycolipids.  相似文献   

18.
Polyadenylation of Vesicular Stomatitis Virus mRNA   总被引:10,自引:8,他引:2  
  相似文献   

19.
20.
Previous studies have noted the existence of a 190,000-dalton vesicular stomatitis virus (VSV) protein called the large (L) protein. To determine whether this protein is a nonspecific aggregate, a precursor to the other VSV proteins, or a unique viral protein, its synthesis relative to the other VSV proteins was studied under conditions of inhibition of initiation of protein synthesis. Also, its tryptic peptides were compared to those of the other VSV proteins. In both cases the results were consistent with the identification of the large protein as a unique viral protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号