首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.

Background and Aims

Versatility in the reproductive development of pseudoviviparous grasses in response to growth conditions is an intriguing reproduction strategy. To better understand this strategy, this study examined variation in flowering and pseudovivipary among populations, co-occurring clones within populations, and among tillers in individual clones of Poa bulbosa, a summer-dormant geophytic grass that reproduces sexually by seed, and asexually by basal tiller bulbs and bulbils formed in proliferated panicles.

Methods

Clones were collected from 17 populations across a rainfall gradient. Patterns of reproduction were monitored for 11 years in a common garden experiment and related to interannual differences in climatic conditions. Intraclonal variation in flowering and pseudovivipary was studied in a phytotron, under daylengths marginal for flowering induction.

Key Results

Clones showed large temporal variability in their reproductive behaviour. They flowered in some years but not in others, produced normal or proliferated panicles in different years, or became dormant without flowering. Proliferating clones did not show a distinct time sequence of flowering and proliferation across years. Populations differed in incidence of flowering and proliferation. The proportion of flowering clones increased with decreasing rainfall at the site of population origin, but no consistent relationship was found between flowering and precipitation in the common garden experiment across years. In contrast, flowering decreased at higher temperatures during early growth stages after bulb sprouting. Pulses of soil fertilization greatly increased the proportion of flowering clones and panicle production. High intraclonal tiller heterogeneity was observed, as shown by the divergent developmental fates of daughter plants arising from bulbs from the same parent clone and grown under similar conditions. Panicle proliferation was enhanced by non-inductive 8 h short days, while marginally inductive 12 h days promoted normal panicles.

Conclusions

Interannual variation in flowering and proliferation in P. bulbosa clones was attributed to differences in the onset of the rainy season, resulting in different daylength and temperature conditions during the early stages of growth, during which induction of flowering and dormancy occurs.  相似文献   

2.
Ofir M  Kigel J 《Annals of botany》2003,91(3):391-400
Variation in the onset of summer dormancy and flowering capacity of 16 populations of Poa bulbosa, collected along a steep north-south aridity gradient in Israel (810-110 mm rain year(-1)), was studied under controlled conditions in a phytotron (16 h daylength, 22/16 degrees C day/night) and under natural conditions in a garden experiment in a net-house. Plant age at the onset of dormancy varied markedly amongst populations (7-16 weeks under controlled conditions) and was positively correlated with mean annual precipitation at the site of origin of the population, i.e. dormancy was earlier as aridity increased. Flowering capacity in the different populations was negatively correlated with rainfall in the original habitat and, consequently, also with the age at onset of dormancy, i.e. the lower the mean annual precipitation, the earlier the onset of dormancy and the higher the proportion of flowering plants and panicles per plant. Differences in xeromorphic leaf traits were also observed among populations from locations differing in aridity. Plants from the more arid sites (110-310 mm year(-1)) generally had greyish and curved leaves, whereas plants from more humid sites (500-810 mm year(-1)) tended to have green and straight leaves. Thus, plants with curved and/or greyish leaves generally had a higher flowering capacity and entered dormancy earlier than plants with straight and/or green leaves. The significance of the association among these traits for the adaptation of P. bulbosa to increasing aridity is discussed.  相似文献   

3.
Ofir M  Kigel J 《Annals of botany》2007,99(2):293-299
BACKGROUND AND AIMS: Survival of many herbaceous species in Mediterranean habitats during the dry, hot summer depends on the induction of summer dormancy by changes in environmental conditions during the transition between the winter (growth) season to the summer (resting) season, i.e. longer days, increasing temperature and drought. In Poa bulbosa, a perennial geophytic grass, summer dormancy is induced by long days, and the induction is enhanced by high temperature. Here the induction of summer dormancy in a Mediterranean perennial grass by water deficit under non-inductive photoperiodic conditions is reported for the first time. METHODS: Plants grown under 22/16 degrees C and non-inductive short-day (9 h, SD) were subjected to water deficit (WD), applied as cycles of reduced irrigation, or sprayed with ABA solutions. They were compared with plants in which dormancy was induced by transfer from SD to inductive long-day (16 h, LD). Responses of two contrasting ecotypes, from arid and mesic habitats were compared. Dormancy relaxation in bulbs from these ecotypes and treatments was studied by comparing sprouting capacity in a wet substrate at 10 degrees C of freshly harvested bulbs to that of dry-stored bulbs at 40 degrees C. Endogenous ABA in the bulbs was determined by monoclonal immunoassay analysis. KEY RESULTS: Dormancy was induced by WD and by ABA application in plants growing under non-inductive SD. Dormancy induction by WD was associated with increased levels of ABA. Bulbs were initially deeply dormant and their sprouting capacity was very low, as in plants in which dormancy was induced by LD. Dormancy was released after 2 months dry storage at 40 degrees C in all treatments. ABA levels were not affected by dormancy relaxation. CONCLUSIONS: Summer dormancy in P. bulbosa can be induced by two alternative and probably additive pathways: (1) photoperiodic induction by long-days, and (2) water deficit. Increased levels of endogenous ABA are involved in both pathways.  相似文献   

4.
Ofir M  Kigel J 《Annals of botany》2006,97(4):659-666
BACKGROUND AND AIMS: The timing of flowering and summer dormancy induction plays a central role in the adaptation of Mediterranean geophytes to changes in the length of the growth season along rainfall gradients. Our aim was to analyse the role of the variation in the responses of flowering and summer dormancy to vernalization, daylength and growth temperature for the adaptation of Poa bulbosa, a perennial geophytic grass, to increasing aridity. METHODS: Flowering and dormancy were studied under controlled daylengths [9 h short day (SD) vs. 16 h long day (LD)] and temperatures (16/10, 22/16 and 28/22 degrees C day/night) in four ecotypes originating in arid, semi-arid and mesic habitats (110, 276 and 810 mm rain year(-1), respectively) and differing in flowering capacity under natural conditions: arid-flowering, semi-arid-flowering, semi-arid-non-flowering and mesic-non-flowering. KEY RESULTS: Flowering and dormancy were affected in opposite ways by daylength and growth temperature. Flowering occurred almost exclusively under SD. In contrast, plants became dormant much earlier under LD than under SD. In both daylengths, high temperature and pre-chilling (6 weeks at 5 degrees C) enhanced dormancy imposition, but inhibited or postponed flowering, respectively. Induction of flowering and dormancy in the different ecotypes showed differential responsiveness to daylength and temperature. Arid and semi-arid ecotypes had a higher proportion of flowering plants and flowering tillers as well as more panicles per plant than mesic ecotypes. 'Flowering' ecotypes entered dormancy earlier than 'non-flowering' ecotypes, while the more arid the site of ecotype origin, the earlier the ecotype entered dormancy. CONCLUSIONS: Variation in the flowering capacity of ecotypes differing in drought tolerance was interpreted as the result of balanced opposite effects of daylength and temperature on the flowering and dormancy processes.  相似文献   

5.
Summer‐dormancy occurs in geophytes that inhabit regions with a Mediterranean climate (mild, rainy winters and hot, dry summers). The environmental control of summer‐dormancy and the involvement of phytohormones in its induction have been little studied. Poa bulbosa L. is a perennial grass geophyte in which summer‐dormancy is induced by long days and by high temperature. Prolonged treatment with ABA (0.1‐1.0 m M ) under non‐inductive 8‐h short days (SD) resulted in cessation of leaf and tiller production and in the development of typical features of dormancy: bulbing at the base of the tillers and leaf senescence. Short‐term applications of ABA had similar effects but dormancy was transient, i.e. after a short while, leaf growth from the formed bulbs was resumed. ABA treatment of plants growing under an inductive 16‐h photoperiod (LD) enhanced the onset of dormancy. Endogenous levels of ABA in leaf blades and at the tiller base (where the bulb develops) increased markedly after the plants were transferred from SD to LD. This increase was greater in the tiller base, and concomitant with bulb maturation. High temperature (27/22 vs 22/17°C) accelerated both bulb development and ABA accumulation in leaf blades.
These results suggest that ABA plays a key role in the photoperiodic induction and development of summer‐dormancy in P. bulbosa .  相似文献   

6.
K. J. Rice 《Oecologia》1987,72(4):589-596
Summary The periodic occurrence of summer/early autumn precipitation in the California annual grassland can result in the formation of early and late emerging cohorts of Erodium botrys and E. brachycarpum. The occurrence of early rainfall and the timing of such rainfall are highly variable from year to year. A series of field watering experiments in 1980–81 were used to simulate early emergence conditions that would result from significant rainfall (1 cm) occurring in mid-July, late August, and mid-September. Net reproduction was used to estimate fitness differentials between Erodium cohorts emerging in response to a watering treatment (early emerging cohorts) and Erodium cohorts emerging with the onset of winter rains in mid-October (late emerging cohorts). Survival was lower and gross reproduction was higher among early emerging cohorts than late emerging cohorts. For both species, net reproduction of the early cohort was lower than that of the late cohort under the July watering treatment and higher than that of the late cohort under the August watering treatment.Early cohorts, formed in response to rainfall in mid-September, 1982, were also compared demographically to later cohorts emerging in October. Compared to late cohorts, net reproduction, gross reproduction and survival were higher for the early cohorts.Common garden experiments indicate that differences in the duration of seed dormancy between the progenies of early and late emerging plants reflect a significant genetic component. Progency produced by early cohorts of E. brachycarpum from all three watering treatments possessed more extended seed dormancy than progeny of late cohorts. In E. botrys, progeny from early cohorts emerging in response to the July watering treatment were also more dormant than late progeny. In contrast, early cohorts of E. botrys emerging in response to the September watering treatment produced seed less dormant than seed produced by late cohorts. When combined with demographic data, indicating that fitness differentials between early and late cohorts varied with changes in the date of early emergence, genetic results suggest that year to year variation in early rainfall may act to retain genetic variation in the duration of seed dormancy.  相似文献   

7.
Poa bulbosa L., like many other Mediterranean geophytes, grows in the winter and enters a phase of summer dormancy in the spring. Summer dormancy enables these plants to survive the hot and dry summer. Long days are the main environmental factor active in the induction of summer dormancy in P . bulbosa and elevated temperatures accelerate dormancy development. P . bulbosa becomes dormant earlier than most other species that grow actively in the winter. Previous studies suggested that pre-exposure of P . bulbosa to short days and low temperatures during the autumn and early winter increased its sensitivity to photoperiodic induction in late winter, and thus enabled the early imposition of dormancy. To study this hypothesis, experiments were carried out under controlled photothermal conditions in the phytotron, under natural daylight extended with artificial lighting. The critical photoperiod for induction of summer dormancy at an optimal temperature (22/17°C day/night) was between 11 and 12 h. Photoperiods shorter than 12 h were noninductive, while 14- and 16-h days were fully inductive. A night break of 1 h of light given at the middle of the dark period of an 8-h photoperiod also resulted in full induction of dormancy. Pre-exposure to either low temperature (chilling at 5°C) or to short days of 8 h (SD) enhanced the inductive effect of subsequent 16-h long days (LD). The enhancing effect of chilling and SD increased with longer duration, i.e. fewer LDs were required to impose dormancy. However, the day-length during the low-temperature pretreatment had no effect on the level of induction at the following LD. Chilling followed by SD did not induce dormancy. The relevance of these responses to the development and survival of P . bulbosa in its natural habitat is discussed.  相似文献   

8.
降雨对草地土壤呼吸季节变异性的影响   总被引:4,自引:0,他引:4  
王旭  闫玉春  闫瑞瑞  杨桂霞  辛晓平 《生态学报》2013,33(18):5631-5635
利用土壤碳通量自动观测系统(LI-8150)对呼伦贝尔草原在自然降雨条件下的土壤呼吸作用进行了野外定位连续观测,研究结果表明:降雨对土壤呼吸作用存在激发效应和抑制效应,降雨发生后1-2 h内土壤呼吸速率可增加约1倍,当单次或者连续降雨累积量大于7-8 mm,或土壤含水量大于29%-30%时,降雨对土壤呼吸会产生明显的抑制作用。土壤呼吸的激发效应往往体现在次日,表现为次日平均土壤呼吸速率的显著升高;而抑制效应则在当日即可体现出来,表现为观测当日平均土壤呼吸速率的明显下降。土壤呼吸季节变异性与降雨频率和降雨强度密切相关,在降雨量一定的情况下,较低的降雨频率和较高的降雨强度会增加土壤呼吸的变异性。呼伦贝尔草甸草原而言,在生长季土壤平均含水量为16.5%时,土壤呼吸的温度敏感性值(Q10)为2.12;而平均土壤含水量为26%时,Q10值为2.82,明显高于前者,土壤含水量与Q10之间存在正相关关系。降雨导致土壤呼吸的激发效应和抑制效应交替发生,使草地土壤呼吸的季节变异性增加,降雨格局变化必然会对草地碳循环和碳通量特征产生深刻影响。  相似文献   

9.
BACKGROUND AND AIMS: Seedlings of Acanthocarpus preissii are needed for coastal sand dune restoration in Western Australia. However, seeds of this Western Australian endemic have proven to be very difficult to germinate. The aims of this study were to define a dormancy-breaking protocol, identify time of suitable conditions for dormancy-break in the field and classify the type of seed dormancy in this species. METHODS: Viability, water-uptake (imbibition) and seed and embryo characteristics were assessed for seeds collected in 2003 and in 2004 from two locations. The effects of GA(3), smoke-water, GA(3) + smoke-water and warm stratification were tested on seed dormancy-break. In a field study, soil temperature and the moisture content of soil and buried seeds were monitored for 1 year. KEY RESULTS: Viability of fresh seeds was >90 %, and they had a fully developed, curved-linear embryo. Fresh seeds imbibed water readily, with mass increasing approx. 52 % in 4 d. Non-treated fresh seeds and those exposed to 1000 ppm GA(3), 1 : 10 (v/v) smoke-water/water or 1000 ppm GA(3) + 1 : 10 (v/v) smoke-water/water germinated <8 %. Fresh seeds germinated to >80 % when warm-stratified for at least 7 weeks at 18/33 degrees C and then moved to 7/18 degrees C, whereas seeds incubated continuously at 7/18 degrees C germinated to <20 %. CONCLUSIONS: Seeds of A. preisii have non-deep physiological dormancy that is released by a period of warm stratification. Autumn (March/April) is the most likely time for warm stratification of seeds of this species in the field. This is the first report of the requirement for warm stratification for dormancy release in seeds of an Australian species.  相似文献   

10.

Background and Aims

Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors.

Methods

We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA).

Key Results

Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions.

Conclusions

The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change.  相似文献   

11.

Aims and Background

While the temperature response of soil respiration (RS) has been well studied, the partitioning of heterotrophic respiration (RH) by soil microbes from autotrophic respiration (RA) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting RH, the rhizosphere priming effect. In this study the short-term temperature responses of RA and RH in relation to rhizosphere priming are investigated.

Methods

Temperature responses of RA, RH and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ13C discrimination approach.

Results

The temperature response of RS was found to be regulated primarily by RA, which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature.

Conclusions

The results emphasize the importance of roots in regulating the temperature response of RS, and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.  相似文献   

12.

Background and Aims

Jatropha curcas is a drought-resistant tree whose seeds are a good source of oil that can be used for producing biodiesel. A successful crop establishment depends on a rapid and uniform germination of the seed. In this work we aimed to characterize the responses of J. curcas seeds to temperature and water availability, using thermal time and hydrotime analysis,

Methods

Thermal and hydrotime analysis was performed on germination data obtained from the incubation of seeds at different temperatures and at different water potentials.

Key Results

Base and optimum temperatures were 14·4 and 30 °C, respectively. Approximately 20 % of the seed population displayed absolute dormancy and part of it displayed relative dormancy which was progressively expressed in further fractions when incubation temperatures departed from 25 °C. The thermal time model, but not the hydrotime model, failed to describe adequately final germination percentages at temperatures other than 25 °C. The hydrotime constant, θH, was reduced when the incubation temperature was increased up to 30 °C, the base water potential for 50 % germination,Ψb(50), was less negative at 20 and 30 °C than at 25 °C, indicating either expression or induction of dormancy. At 20 °C this less negative Ψb(50) explained satisfactorily the germination curves obtained at all water potentials, while at 30 °C it had to be corrected towards even less negative values to match observed curves at water potentials below 0. Hence, Ψb(50) appeared to have been further displaced to less negative values as exposure to 30 °C was prolonged by osmoticum. These results suggest expression of dormancy at 20 °C and induction of secondary dormancy above 25 °C. This was confirmed by an experiment showing that inhibition of germination imposed by temperatures higher than 30 °C, but not that imposed at 20 °C, is a permanent effect.

Conclusions

This study revealed (a) the extremely narrow thermal range within which dormancy problems (either through expression or induction of dormancy) may not be encountered; and (b) the high sensitivity displayed by these seeds to water shortage. In addition, this work is the first one in which temperature effects on dormancy expression could be discriminated from those on dormancy induction using a hydrotime analysis.  相似文献   

13.
周志琼  何其华 《生态学报》2020,40(17):6037-6045
通过测定横断山区干旱河谷18个川滇蔷薇种群新采集种子以及低温层积8周种子的发芽率和发芽速度,分析发芽率和发芽速度与种子特征以及环境因子之间的关系,阐明川滇蔷薇种子休眠与萌发的地理空间差异及其影响因素。结果表明,18个川滇蔷薇种群种子具有不同程度的休眠,新采集种子发芽率变化幅度大,为15.8%±5.0%至82.7%±2.3%,发芽速度指数范围:2.3%±0.2%至5.3%±0.5%。不同种群种子发芽率和发芽速度差异显著。新采集种子的发芽率在流域间存在显著差异,表现为金沙江流域 > 雅砻江流域 > 大渡河流域和岷江流域。新采集种子的发芽率和发芽速度随着采集地点海拔的升高而显著增加,即种子休眠程度随着海拔的升高呈现降低趋势。低温层积8周显著提高了种子发芽率和发芽速度,但减弱了种子发芽率和发芽速度在流域以及海拔间的差异。偏相关分析表明:瘦果皮厚度与新采集种子萌发速度成显著负相关关系;环境因子中年蒸发量与发芽率以及发芽速度之间关系最为密切,成极显著正相关关系;其次为年降水量,与发芽率和发芽速度之间具有显著的负相关关系。综合分析表明,川滇蔷薇种子休眠与萌发在横断山区干旱河谷存在较强地理空间差异。环境因子中年蒸发量和年降水量以及植物自身特征瘦果皮厚度是引起种子休眠与萌发地理空间差异的主要因素。  相似文献   

14.

Background and Aims

Recent phylogenetic analysis has placed the aquatic family Hydatellaceae as an early-divergent angiosperm. Understanding seed dormancy, germination and desiccation tolerance of Hydatellaceae will facilitate ex situ conservation and advance hypotheses regarding angiosperm evolution.

Methods

Seed germination experiments were completed on three species of south-west Australian Hydatellaceae, Trithuria austinensis, T. bibracteata and T. submersa, to test the effects of temperature, light, germination stimulant and storage. Seeds were sectioned to examine embryo growth during germination in T. austinensis and T. submersa.

Key Results

Some embryo growth and cell division in T. austinensis and T. submersa occurred prior to the emergence of an undifferentiated embryo from the seed coat (‘germination’). Embryo differentiation occurred later, following further growth and a 3- to 4-fold increase in the number of cells. The time taken to achieve 50 % of maximum germination for seeds on water agar was 50, 35 and 37 d for T. austinensis, T bibracteata and T. submersa, respectively.

Conclusions

Seeds of Hydatellaceae have a new kind of specialized morphophysiological dormancy in which neither root nor shoot differentiates until after the embryo emerges from the seed coat. Seed biology is discussed in relation to early angiosperm evolution, together with ex situ conservation of this phylogenetically significant group.  相似文献   

15.

Background and Aims

The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming.

Methods

Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments.

Key Results

Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted.

Conclusions

Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.  相似文献   

16.

Background and Aims

Only very few studies have been carried out on seed dormancy/germination in the large monocot genus Narcissus. A primary aim of this study was to determine the kind of seed dormancy in Narcissus hispanicus and relate the dormancy breaking and germination requirements to the field situation.

Methods

Embryo growth, radicle emergence and shoot growth were studied by subjecting seeds with and without an emerged radicle to different periods of warm, cold or warm plus cold in natural temperatures outdoors and under controlled laboratory conditions.

Key Results

Mean embryo length in fresh seeds was approx. 1·31 mm, and embryos had to grow to 2·21 mm before radicle emergence. Embryos grew to full size and seeds germinated (radicles emerged) when they were warm stratified for 90 d and then incubated at cool temperatures for 30 d. However, the embryos grew only a little and no seeds germinated when they were incubated at 9/5, 10 or 15/4 °C for 30 d following a moist cold pre-treatment at 5, 9/5 or 10 °C. In the natural habitat of N. hispanicus, seeds are dispersed in late May, the embryo elongates in autumn and radicles emerge (seeds germinate) in early November; however, if the seeds are exposed to low temperatures before embryo growth is completed, they re-enter dormancy (secondary dormancy). The shoot does not emerge until March, after germinated seeds are cold stratified in winter.

Conclusion

Seeds of N. hispanicus have deep simple epicotyl morphophysiological dormancy (MPD), with the dormancy formula C1bB(root) – C3(epicotyl). This is the first study on seeds with simple MPD to show that embryos in advanced stages of growth can re-enter dormancy (secondary dormancy).  相似文献   

17.
18.
The Sox gene family is found in a broad range of animal taxa and encodes important gene regulatory proteins involved in a variety of developmental processes. We have obtained clones representing the HMG boxes of twelve Sox genes from grass carp (Ctenopharyngodon idella), one of the four major domestic carps in China. The cloned Sox genes belong to group B1, B2 and C. Our analyses show that whereas the human genome contains a single copy of Sox4, Sox11 and Sox14, each of these genes has two co-orthologs in grass carp, and the duplication of Sox4 and Sox11 occurred before the divergence of grass carp and zebrafish, which support the "fish-specific whole-genome duplication" theory. An estimation for the origin of grass carp based on the molecular clock using Sox1, Sox3 and Sox11 genes as markers indicates that grass carp (subfamily Leuciscinae) and zebrafish (subfamily Danioninae) diverged approximately 60 million years ago. The potential uses of Sox genes as markers in revealing the evolutionary history of grass carp are discussed.  相似文献   

19.
Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica.Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis.Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems.Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees.  相似文献   

20.

Background and Aims

Seed yield and dormancy status are key components of species fitness that are influenced by the maternal environment, in particular temperature. Responses to environmental conditions can differ between ecotypes of the same species. Therefore, to investigate the effect of maternal environment on seed production, this study compared two contrasting Arabidopsis thaliana ecotypes, Cape Verdi Isle (Cvi) and Burren (Bur). Cvi is adapted to a hot dry climate and Bur to a cool damp climate, and they exhibit winter and summer annual phenotypes, respectively.

Methods

Bur and Cvi plants were grown in reciprocal controlled environments that simulated their native environments. Reproductive development, seed production and subsequent germination behaviour were investigated. Measurements included: pollen viability, the development of floral structure, and germination at 10 and 25 °C in the light to determine dormancy status. Floral development was further investigated by applying gibberellins (GAs) to alter the pistil:stamen ratio.

Key Results

Temperature during seed development determined seed dormancy status. In addition, seed yield was greatly reduced by higher temperature, especially in Bur (>90 %) compared with Cvi (approx. 50 %). The reproductive organs (i.e. stamens) of Bur plants were very sensitive to high temperature during early flowering. Viability of pollen was unaffected, but limited filament extension relative to that of the pistils resulted in failure to pollinate. Thus GA applied to flowers to enhance filament extension largely overcame the effect of high temperature on yield.

Conclusions

High temperature in the maternal environment reduced dormancy and negatively affected the final seed yield of both ecotypes; however, the extent of these responses differed, demonstrating natural variation. Reduced seed yield in Bur resulted from altered floral development not reduced pollen viability. Future higher temperatures will impact on seed performance, but the consequences may differ significantly between ecotypes of the same species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号