首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human serum albumin is one of the most abundant plasma proteins that readily undergoes glycation, thus glycated albumin has been suggested as an additional marker for monitoring glycemic status. Hitherto, only Amadori-modified peptides of albumin were quantified. In this study, we report the construction of fragment ion library for Amadori-modified lysine (AML), N(ε)-(carboxymethyl)lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of the corresponding synthetically modified albumin using high resolution accurate mass spectrometry (HR/AM). The glycated peptides were manually inspected and validated for their modification. Further, the fragment ion library was used for quantification of glycated peptides of albumin in the context of diabetes. Targeted Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH) analysis in pooled plasma samples of control, prediabetes, diabetes, and microalbuminuria, has led to identification and quantification of 13 glycated peptides comprised of four AML, seven CML, and two CEL modifications, representing nine lysine sites of albumin. Five lysine sites namely K549, K438, K490, K88, and K375, were observed to be highly sensitive for glycation modification as their respective m/z showed maximum fold change and had both AML and CML modifications. Thus, peptides involving these lysine sites could be potential novel markers to assess the degree of glycation in diabetes.Diabetes is a complex metabolic disorder characterized by prolonged hyperglycemia resulting from defects in insulin secretion, insulin action, or both, leading to abnormalities in carbohydrate, fat, and protein metabolism (1). According to the projection by the International Diabetes Foundation, around 592 million people will be affected by diabetes by the year 2040 (2). Diabetes and its associated complications are becoming global public health problems and posing a serious challenge in disease management. Many studies have implicated advanced glycation end products (AGEs)1 in the development of insulin resistance, as well as in pathogenesis of diabetic complications (3). The levels of AGEs increase substantially in diabetic plasma due to the hyperglycemic condition. Factors such as oxidative stress, overnutrition, and foods rich in glycating agents promote the formation of AGEs even in nondiabetic condition (4). Oral AGEs foster insulin resistance and diabetes by down-regulation of anti-AGE receptor-1(AGER1), sirtuin 1, and up-regulation of receptor for AGEs (RAGE) (5). AGEs affect glucose uptake, transport and promote insulin resistance in adipocytes (6). While in skeletal muscle cells AGEs inhibit insulin action, mediated through RAGE (7). The AGE-RAGE axis induces oxidative stress, activates proinflammatory pathways and has been considered as a principal pathway in the pathogenesis of diabetes and its complications (8). AGE interacts with RAGE in different cells and tissues, contributing to pathogenesis in diabetes (9). By and large, AGEs contribute to development of insulin resistance leading to diabetes, as well as in the pathogenesis of diabetic complications. Therefore, analysis of plasma AGEs can possibly provide information about the severity of diabetes.Human serum albumin (HSA), one of the most abundant plasma proteins, is highly glycated and contributes predominantly to the plasma AGEs. Apart from its role in pathogenesis, AGE-modified HSA (AGE-HSA) has been suggested as an alternative diagnostic marker to glycated hemoglobin (HbA1c) for monitoring glycemic status in diabetes (10). Although HbA1c is considered the “gold standard” marker, reflecting the glycemic status over the period of 8–10 weeks (1, 10), factors like anemia, blood loss, splenomegaly, and iron deficiency affect HbA1c levels (11). AGE-HSA reflects glycemic status over the preceding 3–4 weeks and has been recommended in gestational diabetes (12). In diabetes, the levels of AGE-HSA increase and were found to be positively correlated with hyperglycemia (13, 14). In addition, several recent studies have suggested that the levels of AGE-HSA are associated with prediabetic condition (15) and microalbuminuria (16). Therefore, quantification of AGE-HSA is of utmost clinical significance. Thus, understanding the site-specific modification and their dynamic transformation to heterogeneous AGEs is quite critical for mass spectrometric quantification.AGEs can be quantified by various approaches, including colorimetric assay, ketoamine oxidase assay, enzyme-linked boronate immunoassay, fluorescence spectroscopy, boronic acid affinity chromatography assay, and mass spectrometry (MS) (17). Among these approaches, MS offers precise characterization of protein glycation, including the amino acid involved in the modification. Most of the AGEs reported in vitro and in vivo were discovered by MS-based techniques (18). AML modification has been extensively studied by different MS approaches. The fragmentation pattern and diagnostic ions for AML rearrangement product has been well established (19, 20). Further specific neutral loss ions of 162 Da, 120 Da, and 84 Da and water loss of 36 Da arising from hexose moiety of glycated peptide were also considered as signature ions to validate the glycation of peptides in HSA (21, 22). Similar characteristic patterns of water loss (18, 36, and 54 Da) ions and immonium ions derived from lysine arising from AML-modified peptide were also used to identify glycated peptides (23, 24). Diagnostic ions serve as the most reliable way of identifying glycated peptide by tandem mass spectrometry. Thus, having a good MS/MS fragment ion is key for precise characterization of glycation. However, the ratio of in vivo AGE-modified to unmodified protein is significantly low, which limits better MS/MS. Therefore, to achieve efficient identification, enrichment of glycated peptides using boronate affinity chromatography (BAC) was adopted prior to MS analysis (25). Further, by using a combination of immunodepletion, enrichment and fractionation strategies, a total of 7,749 unique glycated peptides corresponding to 1,095 native human plasma proteins, 1,592 in vitro glycated human plasma proteins, and 1,664 erythrocyte proteins were identified (26). In these lines, we have previously reported a database search approach for the identification of glycated peptide in a crude or nonenriched sample by untargeted MS/MS or data-independent workflow (27). Glycation is chronic process; a given protein can undergo dynamic heterogeneous transformations as these proteins have varying biological lifespans, influencing the function of a protein. Thus, to assess the degree of glycation at a given pathophysiological condition, precise identification of glycation becomes critical. In this regard, a stable-isotope-dilution tandem mass spectrometry method was employed for simultaneous analysis of CML and CEL in hydrolysates of plasma proteins (28), and 13C6-glucose was utilized to quantify glycated proteins in the plasma and erythrocytes (29, 30). In a recent study, the glycation-sensitive peptides of HSA that could serve as markers for early diagnosis of type 2 diabetes were quantified by using an MS-based 18O-labeling technique (31). However, most of the previous studies have focused on AML modification, rather than other AGE modification. In fact, CML and CEL are the predominant AGEs, constituting up to 80% of total AGEs (32, 33). Diagnostic reporter ions for CML and CEL were reported recently by Prof. Ralf Hoffmann''s group (34). Here, for the first time, we report comprehensive development of an MS/MS fragment ion library for AML, CML, and CEL modifications of albumin. Further, fragment ion library was used as reference for quantification of AML-, CML-, and CEL-modified peptides of albumin in clinical plasma of healthy, prediabetic, diabetic, and microalbuminuria. Targeted SWATH analysis has led to quantification of 13 glycated peptides representing nine lysine sites. These peptides could serve as novel markers in diabetes.  相似文献   

2.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

3.
4.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

5.
6.
7.
8.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

9.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

10.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

11.
12.
Decomposing a biological sequence into its functional regions is an important prerequisite to understand the molecule. Using the multiple alignments of the sequences, we evaluate a segmentation based on the type of statistical variation pattern from each of the aligned sites. To describe such a more general pattern, we introduce multipattern consensus regions as segmented regions based on conserved as well as interdependent patterns. Thus the proposed consensus region considers patterns that are statistically significant and extends a local neighborhood. To show its relevance in protein sequence analysis, a cancer suppressor gene called p53 is examined. The results show significant associations between the detected regions and tendency of mutations, location on the 3D structure, and cancer hereditable factors that can be inferred from human twin studies.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]  相似文献   

13.
14.
15.
Age-related macular degeneration (AMD) causes severe vision loss in the elderly; early identification of AMD risk could help slow or prevent disease progression. Toward the discovery of AMD biomarkers, we quantified plasma protein Nε-carboxymethyllysine (CML) and pentosidine from 58 AMD and 32 control donors. CML and pentosidine are advanced glycation end products that are abundant in Bruch membrane, the extracellular matrix separating the retinal pigment epithelium from the blood-bearing choriocapillaris. We measured CML and pentosidine by LC-MS/MS and LC-fluorometry, respectively, and found higher mean levels of CML (∼54%) and pentosidine (∼64%) in AMD (p < 0.0001) relative to normal controls. Plasma protein fructosyl-lysine, a marker of early glycation, was found by amino acid analysis to be in equal amounts in control and non-diabetic AMD donors, supporting an association between AMD and increased levels of CML and pentosidine independent of other diseases like diabetes. Carboxyethylpyrrole (CEP), an oxidative modification from docosahexaenoate-containing lipids and also abundant in AMD Bruch membrane, was elevated ∼86% in the AMD cohort, but autoantibody titers to CEP, CML, and pentosidine were not significantly increased. Compellingly higher mean levels of CML and pentosidine were present in AMD plasma protein over a broad age range. Receiver operating curves indicate that CML, CEP adducts, and pentosidine alone discriminated between AMD and control subjects with 78, 79, and 88% accuracy, respectively, whereas CML in combination with pentosidine provided ∼89% accuracy, and CEP plus pentosidine provided ∼92% accuracy. Pentosidine levels appeared slightly altered in AMD patients with hypertension and cardiovascular disease, indicating further studies are warranted. Overall this study supports the potential utility of plasma protein CML and pentosidine as biomarkers for assessing AMD risk and susceptibility, particularly in combination with CEP adducts and with concurrent analyses of fructosyl-lysine to detect confounding factors.Age-related macular degeneration (AMD)1 is a progressive, multifactorial disease and a major cause of severe vision loss in the elderly (1). Deposition of debris (drusen) in the macular region of Bruch membrane, the extracellular matrix separating the choriocapillaris from the retinal pigment epithelium (RPE), is an early, hallmark risk factor of AMD. The disease can progress to advanced dry AMD (geographic atrophy), which is characterized by regional degeneration of photoreceptor and RPE cells, or to advanced wet AMD (choroidal neovascularization (CNV)), which is characterized by abnormal blood vessels growing from the choriocapillaris through Bruch membrane beneath the retina. CNV accounts for over 80% of debilitating vision loss in AMD; however, only 10–15% of AMD cases progress to CNV.There is growing consensus that AMD is an age-related inflammatory disease involving dysregulation of the complement system; however, triggers of the inflammatory response have yet to be well defined. Oxidative stress appears to be involved as smoking significantly increases the risk of AMD (2), antioxidant vitamins can selectively slow AMD progression (3), and a host of oxidative protein and DNA modifications have been detected at elevated levels in AMD Bruch membrane, drusen, retina, RPE, and plasma (411). Oxidative protein modifications like carboxyethylpyrrole (CEP) and Nε-carboxymethyllysine (CML), both elevated in AMD Bruch membrane, stimulate neovascularization in vivo (12, 13), suggesting possible roles in CNV. Other studies have shown that mice immunized with CEP protein modifications develop an AMD-like phenotype (14). Accordingly oxidative modifications may be catalysts or triggers of AMD pathology (6).AMD has long been hypothesized to be a systemic disease (15) based in part on the presence of retinal drusen in patients with membranoproliferative glomerulonephritis type II (16) and systemic complement activation in AMD (17). Support for this hypothesis also comes from mounting evidence that advanced glycation end products (AGEs) may play a role in AMD (4, 5, 7, 18, 19). AGEs are a heterogeneous group of mostly oxidative modifications resulting from the Maillard nonenzymatic glycation reaction that have been associated with age-related diseases and diabetic complications (20, 21). In 1998, CML was the first AGE to be found in AMD Bruch membrane and drusen (4). Other AGEs have since been detected in AMD ocular tissues (5, 7, 18) and in Bruch membrane, drusen, RPE, and choroidal extracellular matrix from healthy eyes (6, 22). CML, a nonfluorescent AGE, and pentosidine, a fluorescent cross-linking AGE, increase with age in Bruch membrane (18, 23). Receptors for AGEs (RAGE and AGE-R1) appear elevated on RPE and photoreceptor cells in early and advanced dry AMD (7) especially in RPE overlying drusen-like deposits on Bruch membrane (19). AGE-R3, also known as galectin-3, is elevated in AMD Bruch membrane (24).Although AMD susceptibility genes now account for over 50% of AMD cases (25), many individuals with AMD risk genotypes may never develop advanced disease with severe vision loss. Nevertheless the prevalence of advanced AMD is increasing (26). Toward the discovery of better methods to detect those at risk for advanced AMD, we quantified CML and pentosidine in plasma proteins from AMD and control patients and compared their discriminatory accuracy with plasma CEP biomarkers. CEP biomarkers have been shown to enhance the AMD predictive accuracy of genomic AMD biomarkers (11). This report shows CML and pentosidine to be elevated in AMD plasma proteins and demonstrates their potential biomarker utility in assessing AMD risk and susceptibility especially in combination with CEP biomarkers.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号