首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Smoke formed during pan-broiling of lean pork was recovered at 3 different pan temperatures: 200, 250 and 300 degrees C, using an efficient device for collection of aerosol and volatiles. The mutagenicity of the smoke was assayed using the Ames' Salmonella test. A strong temperature dependence of the mutagen concentration in smoke as well as in meat crust and pan residues was shown. The contribution of mutagenic activity from the smoke relative to the total mutagenicity was 3.1, 4.2 and 11.1% at 200, 250 and 300 degrees C, respectively.  相似文献   

2.
3.
Lanthanum(III) chloride was found to effectively catalyze the degradation of cellulose in water at 250 degrees C. The degradation conversion of cellulose in the presence of a catalytic amount of lanthanum chloride reached 80.3% after 180 s, which corresponded to the turnover number of 83, whereas the reaction did scarcely proceed in the absence of the catalyst. The degradation products were separately quantified as water-soluble (WS), methanol-soluble (MS), methanol-insoluble (MI), and gaseous (G) products. The HPLC and GC analyses revealed that the WS materials are mainly composed of 5-hydroxymethyl-2-furaldehyde (HMF), D-glucose, and levulinic acid. Cellobiose, the disaccharide component of cellulose, was scarcely detected during the reaction.  相似文献   

4.
This study compared glycogen depletion in active skeletal muscle after light and moderate exercise in both cold and comfortable ambient conditions. Twelve male subjects (Ss) were divided into two groups equally matched for the submaximal exercise intensity corresponding to a blood lactate concentration of 4 mM (W4) during cycle exercise. On two separate days Ss rested for 30 min at ambient temperatures of either 9 degrees C or 21 degrees C, with the order of temperature exposure being counter-balanced among Ss. Following rest a tissue specimen was obtained from the m. vastus lateralis with the needle biopsy technique. Six Ss then exercised on a cycle ergometer for 30 min at 30% W4 (range = 50 - 65 W) while the remaining group exercised at 60% W4 (range = 85 - 120 W). Another biopsy was taken immediately after exercise and both samples were assayed for glycogen content. Identical procedures were repeated for the second environmental exposure. No significant glycogen depletion was observed in the Ss exercising at 30% W4 in 21 degrees C, but a 23% decrease (p = 0.04) was observed when the same exercise was performed at 9 degrees C. A 22% decrease (p = 0.002) in glycogen occurred in the 60% W4 group at 21 degrees C, which was not significantly different from that observed during the same exercise at 9 degrees C. The results suggest that muscle substrate utilization is increased during light exercise in a cold environment as compared to similar exercise at a comfortable temperature, probably due to shivering thermogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
D M Ward 《Applied microbiology》1978,35(6):1019-1026
Algal-bacterial mats which grow in the effluent channels of alkaline hot springs provided an environment suitable for studying natural thermophilic methane producing bacteria. Methane was rapidly produced in cores taken from the meat and appeared to be an end product of decomposition of the algal-bacterial organic matter. Formaldehyde prevented production of methane. Initial methanogenic rate was lower and methanogenesis became exponential when samples were permitted to cool before laboratory incubation. Methanogenesis occurred and methanogenic bacteria were present over a range of 68 to 30 degrees C, with optimum methanogenesis near 45 degrees C. The temperature distribution of methanogenesis in the mat is discussed relative to published results on standing crop, primary production, and decomposition in the thermal gradient. The depth distribution of methanogenesis was similar to that of freshwater sediments, with a zone of intense methanogenesis near the mat surface. Methanogenesis in deeper mat layers was very low or undetectable despite large numbers of viable methanogenic bacteria and could not be stimulated by addition of anoxic source water, sulfide, or a macronutrient solution.  相似文献   

7.
Algal-bacterial mats which grow in the effluent channels of alkaline hot springs provided an environment suitable for studying natural thermophilic methane producing bacteria. Methane was rapidly produced in cores taken from the meat and appeared to be an end product of decomposition of the algal-bacterial organic matter. Formaldehyde prevented production of methane. Initial methanogenic rate was lower and methanogenesis became exponential when samples were permitted to cool before laboratory incubation. Methanogenesis occurred and methanogenic bacteria were present over a range of 68 to 30 degrees C, with optimum methanogenesis near 45 degrees C. The temperature distribution of methanogenesis in the mat is discussed relative to published results on standing crop, primary production, and decomposition in the thermal gradient. The depth distribution of methanogenesis was similar to that of freshwater sediments, with a zone of intense methanogenesis near the mat surface. Methanogenesis in deeper mat layers was very low or undetectable despite large numbers of viable methanogenic bacteria and could not be stimulated by addition of anoxic source water, sulfide, or a macronutrient solution.  相似文献   

8.
9.
The short-term effects of temperature on methanogenesis from acetate or CO(2) in a thermophilic (58 degrees C) anaerobic digestor were studied by incubating digestor sludge at different temperatures with C-labeled methane precursors (CH(3)COO or CO(2)). During a period when Methanosarcina sp. was numerous in the sludge, methanogenesis from acetate was optimal at 55 to 60 degrees C and was completely inhibited at 65 degrees C. A Methanosarcina culture isolated from the digestor grew optimally on acetate at 55 to 58 degrees C and did not grow or produce methane at 65 degrees C. An accidental shift of digestor temperature from 58 to 64 degrees C during this period caused a sharp decrease in gas production and a large increase in acetate concentration within 24 h, indicating that the aceticlastic methanogens in the digestor were the population most susceptible to this temperature increase. During a later period when Methanothrix sp. was numerous in the digestor, methanogenesis from CH(3)COO was optimal at 65 degrees C and completely inhibited at 75 degrees C. A partially purified Methanothrix enrichment culture derived from the digestor had a maximum growth temperature near 70 degrees C. Methanogenesis from CO(2) in the sludge was optimal at 65 degrees C and still proceeded at 75 degrees C. A CO(2)-reducing Methanobacterium sp. isolated from the digestor was capable of methanogenesis at 75 degrees C. During the period when Methanothix sp. was apparently dominant, sludge incubated for 24 h at 65 degrees C produced more methane than sludge incubated at 60 degrees C, and no acetate accumulated at 65 degrees C. Methanogenesis was severely inhibited in sludge incubated at 70 degrees C, but since neither acetate nor H(2) accumulated, production of these methanogenic substrates by fermentative bacteria was probably the most temperature-sensitive process. Thus, there was a correlation between digestor performance at different temperatures and responses to temperature by cultures of methanogens believed to play important roles in the digestor.  相似文献   

10.
The feasibility of thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular sludge previously not exposed to high temperatures. Full methanol and formate degradation at temperatures up to, respectively, 70 and 75 degrees C, were achieved when operating UASB reactors fed with sulfate rich (COD/SO4(2-)=0.5) synthetic wastewater. Methane-producing archaea (MPA) outcompeted sulfate-reducing bacteria (SRB) in the formate-fed UASB reactor at all temperatures tested (65-75 degrees C). In contrast, SRB outcompeted MPA in methanol-fed UASB reactors at temperatures equal to or exceeding 65 degrees C, whereas strong competition between SRB and MPA was observed in these reactors at 55 degrees C. A short-term (5 days) temperature increase from 55 to 65 degrees C was an effective strategy to suppress methanogenesis in methanol-fed sulfidogenic UASB reactors operated at 55 degrees C. Methanol was found to be a suitable electron donor for sulfate-reducing processes at a maximal temperature of 70 degrees C, with sulfide as the sole mineralization product of methanol degradation at that temperature.  相似文献   

11.
12.
We modeled changes in contractile element kinetics derived from the cyclic relationship between myoplasmic [Ca(2+)], measured by indo 1 fluorescence, and left ventricular pressure (LVP). We estimated model rate constants of the Ca(2+) affinity for troponin C (TnC) on actin (A) filament (TnCA) and actin and myosin (M) cross-bridge (A x M) cycling in intact guinea pig hearts during baseline 37 degrees C perfusion and evaluated changes at 1) 20 min 17 degrees C pressure, 2) 30-min reperfusion (RP) after 30-min 37 degrees C global ischemia during 37 degrees C RP, and 3) 30-min RP after 240-min 17 degrees C global ischemia during 37 degrees C RP. At 17 degrees C perfusion versus 37 degrees C perfusion, the model predicted: A x M binding was less sensitive; A x M dissociation was slower; Ca(2+) was less likely to bind to TnCA with A x M present; and Ca(2+) and TnCA binding was less sensitive in the absence of A x M. Model results were consistent with a cold-induced fall in heart rate from 260 beats/min (37 degrees C) to 33 beats/min (17 degrees C), increased diastolic LVP, and increased phasic Ca(2+). On RP after 37 degrees C ischemia vs. 37 degrees C perfusion, the model predicted the following: A x M binding was less sensitive; A x M dissociation was slower; and Ca(2+) was less likely to bind to TnCA in the absence of A. M. Model results were consistent with reduced myofilament responsiveness to [Ca(2+)] and diastolic contracture on 37 degrees C RP. In contrast, after cold ischemia versus 37 degrees C perfusion, A x M association and dissociation rates, and Ca(2+) and TnCA association rates, returned to preischemic values, whereas the dissociation rate of Ca(2+) from A x M was ninefold faster. This cardiac muscle kinetic model predicted a better-restored relationship between Ca(2+) and cross-bridge function on RP after an eightfold longer period of 17 degrees C than 37 degrees C ischemia.  相似文献   

13.
14.
15.
16.
17.
Anaerobic acetate degradation at 70 degrees C and at 55 degrees C (as a reference) was studied by running laboratory upflow anaerobic sludge blanket (UASB) reactors inoculated with mesophilic granular sludge. In UASB reactors fed with acetate-containing media (3 g of chemical oxygen demand [COD] per liter, corresponding to 47 mM acetate) approximately 50 days was needed at 70 degrees C and less than 15 days was needed at 55 degrees C to achieve an effluent COD of 500 to 700 mg/liter. In the UASB reactors at both 70 and 55 degrees C up to 90% of the COD was removed. Batch assays showed that sludges from two 70 degrees C UASB reactors, one run at a low effluent acetate concentration and the other run at a high effluent acetate concentration, exhibited slightly different responses to temperatures in the range from 37 to 70 degrees C. Both 70 degrees C sludges, as well as the 55 degrees C sludge, produced methane at temperatures of 37 to 73 degrees C. The 55 degrees C sludge exhibited shorter lag phases than the 70 degrees C sludges and higher specific methane production rates between 37 and 65 degrees C.  相似文献   

18.
19.
A total of 268 strains of Pseudomonas isolated during storage life of lamb carcasses was identified to species level. One-hundred and thirteen strains obtained at 30 degrees C were Ps. fragi (51), Ps. lundensis (17), Ps. fluorescens biovars I (10), III (9) and VI (1), Ps. putida biovar A (8 strains) and unidentified (17 strains). Species and biovars isolated at 7 degrees C (155) were Ps. fragi (101), Ps. lundensis (32), Ps. fluorescens biovar I (6), Ps. putida biovar A (8) and unidentified (8). Numerical analysis (82% SSM, UPGMA) of 'psychrotrophic' and 'mesophilic' strains resulted in the formation of nine and eight clusters respectively. The dendrograms obtained exhibited similar structures. Most of the strains of Ps. lundensis and Ps. fragi clustered together. Strains of this latter species also joined the type strain of Ps. testosteroni and appeared included with phenons containing the Ps. putida strains. There were clusters made up exclusively of strains assigned to one biovar or group (Ps. fluorescens biovars I and II and unidentified). A high level of similarity was observed between clusters of Ps. fluorescens biovar I and those containing the Ps. fragi-Ps. lundensis complex (> 74% SSM) and Ps. lundensis (> 80%). The recovery of pseudomonads seemed to be affected by the sampling day.  相似文献   

20.
A hot spring in the solfataric field of Pisciarelli (Naples-Italy) was analysed for Archaeal diversity. Total DNA was extracted from the environment, archaeal 16S rRNA genes were amplified with Archaea specific primers, and a clone library consisting of 201 clones was established. The clones were grouped in 10 different groups each representing a specific band pattern using restriction fragment length polymorphism (RFLP). Members of all 10 groups were sequenced and phylogenetically analyzed. Surprisingly, a high abundance of clones belonging to non-thermophilic Crenarchaeal clusters were detected together with the thermophilic archaeon Acidianus infernus in this thermophilic environment. Neither Sulfolobus species nor other hyperthermophilic Crenarchaeota were detected in the clone library. The relative abundance of the sequenced clones was confirmed by terminal restriction fragment analyses. Amplification of 16S rRNA genes from Archaea transferred from the surrounding environment was considered negligible because DNA from non-thermophilic Crenarchaeota incubated under conditions similar to the solfatara could not be PCR amplified after 5 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号