首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitous in eukaryotes. The minimum conserved GPI core structure of all GPI-anchored glycans has been determined as EtN-PO4-6Manalpha1-2Manalpha1-6Manalpha1-4GlcN-myo-inositol-PO3H. Human placental alkaline phosphatase (AP) has been reported to be a GPI-anchored membrane protein. AP carries one N-glycan, (NeuAcalpha2-->3)2Gal2GlcNAc2Man3GlcNAc(+/-Fuc)GlcNAc, and a GPI anchor, which contains an ethanolamine phosphate diester group, as a side chain. However, we found that both sialidase-treated soluble AP (sAP) and its GPI-anchored glycan bound to a Psathyrella velutina lectin (PVL)-Sepharose column, which binds beta-GlcNAc residues. PVL binding of asialo-sAP and its GPI-anchored glycan was diminished by digestion with diplococcal beta-N-acetylhexosaminidase or by mild acid treatment. After sequential digestion of asialo-sAP with beta-N-acetylhexosaminidase and acid phosphatase, the elution patterns on chromatofocusing gels were changed in accordance with the negative charges of phosphate residues. Trypsin-digested sAP was analyzed by liquid chromatography/electrospray ionization mass spectrometry, and the structures of two glycopeptides with GPI-anchored glycans were confirmed as peptide-EtN-PO4-6Manalpha1-->2(GlcNAcbeta1-PO4-->6)Manalpha1-6(+/-EtN-PO4-->)Manalpha1-->4GlcN, which may be produced by endo-alpha-glucosaminidase. In addition to AP, GPI-anchored carcinoembryonic antigen, cholinesterase, and Tamm-Horsfall glycoprotein also bound to a PVL-Sepharose column, suggesting that the beta-N-acetylglucosaminyl phosphate diester residue is widely distributed in human GPI-anchored glycans. Furthermore, we found that the beta-N-acetylglucosaminyl phosphate diester residue is important for GPI anchor recognition of aerolysin, a channel-forming toxin derived from Aeromonas hydrophila.  相似文献   

2.
Macrophages play a central role in innate immunity, however mechanisms regulating macrophage survival are not fully understood. Herein we describe a novel apoptotic pathway involving α2-6 sialylation of the TNFR1 death receptor by the ST6Gal-I sialyltransferase. Variant glycosylation of TNFR1 has not previously been implicated in TNFR1 function, and little is known regarding the TNFR1 glycan composition. To study sialylation in macrophages, we treated U937 monocytic cells with PMA, which stimulates both macrophage differentiation and apoptosis. Interestingly, macrophage differentiation induces ST6Gal-I down-regulation, leading to reduced α2-6 sialylation of selected receptors. To prevent loss of α2-6 sialylation, we forced constitutive expression of ST6Gal-I, and found that this strongly inhibited PMA-induced apoptosis. Given that PMA-mediated apoptosis is thought to result from up-regulation of TNFα, which then activates TNFR1, we next evaluated the α2-6 sialylation of TNFR1. U937 cells with forced ST6Gal-I displayed TNFR1 with elevated α2-6 sialylation, and this was associated with diminished TNFα-stimulated apoptosis. Correspondingly, removal of α2-6 sialylation from TNFR1 through either neuraminidase treatment or expression of ST6Gal-I shRNA markedly enhanced TNFα-mediated apoptosis. To confirm the physiologic importance of TNFR1 sialylation, we generated overexpressing ST6Gal-I transgenic mice. Peritoneal macrophages from transgenic lines displayed TNFR1 with elevated α2-6 sialylation, and these cells were significantly protected against TNFα-stimulated apoptosis. Moreover, greater numbers of thioglycollate-induced peritoneal cells were observed in transgenic mice. These collective results highlight a new mechanism of TNFR1 regulation, and further intimate that loss of α2-6 sialylation during macrophage differentiation may limit macrophage lifespan by sensitizing cells to TNFα-stimulated apoptosis.  相似文献   

3.
Ecto-nucleotide phosphodiesterase/pyrophosphatase 6 (eNPP6) is a glycosylphosphatidylinositol (GPI)-anchored alkaline lysophospholipase C which is predominantly expressed in brain myelin and kidney. Due to shedding of the GPI-anchor eNPP6 occurs also as a soluble isoform (s-eNPP6). eNPP 6 consists of two identical monomers of 55 kDa joined by a disulfide bridge, and possesses four N-glycans in each monomer. In brain s-eNPP6 the N-glycans are mainly hybrid and high mannose type structures, reminiscent of processed mannose-6-phosphorylated glycans. Here we completed characterization of the site-specific glycan structures of bovine brain s-eNPP6, and determined the endo H-sensitivity glycan profiles of s-eNPP6 from bovine liver and kidney. Whereas in brain s-eNPP6 all of the N-glycans were endo H-sensitive, in liver and kidney only one of the glycosylation sites was occupied by an endo H-sensitive glycan, likely N406, which is located within the cleft formed by the dimer interface. Thus, the non-classical glycan processing pathway of brain eNPP 6 is not due to mannose-6-phosphorylation, suggesting that there is an alternative Golgi glycan-processing pathway of eNPP6 in brain. The resulting brain-specific expression of accessible hybrid and oligomannosidic glycans may be physiologically important within the cell–cell communication system of the brain.  相似文献   

4.
Targeting of lysosomal acid phosphatase with altered carbohydrate   总被引:3,自引:0,他引:3  
Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes, where it is converted into a soluble protein by a limited proteolysis (Waheed et al., 1988, EMBO J. 7, 2351-2358). Transport of human lysosomal acid phosphatase in heterologous BHK-21 cells was examined under conditions that impair mannose-6-phosphate receptor-dependent transport, N-glycosylation or processing of N-linked oligosaccharides. Targeting of lysosomal acid phosphatase to lysosomes was neither affected by antibodies blocking the mannose-6-phosphate/IGF II receptor, nor by NH4Cl, which inhibited the mannose-6-phosphate receptor-dependent targeting of soluble lysosomal enzymes. 1-Deoxynojirimycin, 1-deoxymannojirimycin and swainsonine inhibited processing of N-linked oligosaccharides in lysosomal acid phosphatase without significantly affecting its transport. Tunicamycin inhibited N-glycosylation of lysosomal acid phosphatase. The non-glycosylated lysosomal acid phosphatase polypeptides accumulated within light membranes and were not transported to dense lysosomes. These results indicate that transport of lysosomal acid phosphatase is independent of mannose-6-phosphate receptors, does not involve an acid pH-dependent step and does not require processing of N-linked oligosaccharides. N-glycosylation appears to be necessary to achieve a transport competent form of lysosomal acid phosphatase.  相似文献   

5.
Twenty-eight enzymes, encoded by different genes and secreted by different mutant strains of Chrysosporium lucknowense, were subjected to MALDI-TOF MS peptide fingerprinting followed by analysis of the MS data using the GlycoMod tool from the ExPASy proteomic site. Various N-linked glycan structures were discriminated in the C. lucknowense proteins as a result of the analysis. N-Glycosylated peptides with modifications matching the oligosaccharide compositions contained in the GlycoSuiteDB were found in 12 proteins. The most frequently encountered N-linked glycan, found in 9 peptides from 7 proteins, was (Man)(3)(GlcNAc)(2), that is, the core pentasaccharide structure forming mammalian-type high-mannose and hybrid/complex glycans in glycoproteins from different organisms. Nine out of 12 enzymes represented variably N-glycosylated proteins carrying common (Hex)(0-4)(HexNAc)(0-6)+(Man)(3)(GlcNAc)(2) structures, most of them being hybrid/complex glycans. Various glycan structures were likely formed as a result of the enzymatic trimming of a 'parent' oligosaccharide with different glycosidases. The N-glycosylation patterns found in C. lucknowense proteins differ from those reported for the extensively studied enzymes from Aspergilli and Trichoderma species, where high-mannose glycans of variable structure have been detected.  相似文献   

6.
Interleukin (IL)-18 induces T cells and natural killer cells to produce not only interferon-gamma but also other cytokines by binding to the IL-18 receptor (IL-18R) alpha and beta subunits. However, little is known about how IL-18, IL-18Ralpha, and IL-18Rbeta form a high-affinity complex on the cell surface and transduce the signal. We found that IL-18 and IL-18Ralpha bind to glycosylphosphatidylinositol (GPI) glycan via the third mannose 6-phosphate diester and the second beta-GlcNAc-deleted mannose 6-phosphate of GPI glycan, respectively. To determine which GPI-anchored glycoprotein is involved in the complex of IL-18 and IL-18Ralpha, IL-18Ralpha of IL-18-stimulated KG-1 cells was immunoprecipitated together with CD48 by anti-IL-18Ralpha antibody. More than 90% of CD48 was detected as beta-GlcNAc-deleted GPI-anchored glycoprotein, and soluble recombinant human CD48 without GPI glycan bound to IL-18Ralpha, indicating that CD48 is associated with IL-18Ralpha via both the peptide portion and the GPI glycan. To investigate whether the carbohydrate recognition of IL-18 is involved in physiological activities, KG-1 cells were digested with phosphatidylinositol-specific phospholipase C before IL-18 stimulation. Phosphatidylinositol-specific phospholipase C treatment inhibited the phosphorylation of tyrosine kinases and the following IL-18-dependent interferon-gamma production. These observations suggest that the complex formation of IL-18.IL-18Ralpha. CD48 via both the peptide portion and GPI glycan triggers the binding to IL-18Rbeta, and the IL-18.IL-18Ralpha.CD48.IL-18Rbeta complex induces cellular signaling.  相似文献   

7.
Processing and transport of lysosomal enzymes in human monocyte line U937   总被引:1,自引:0,他引:1  
Precursors of cathepsin D and beta-hexosaminidase synthesized in the U937 monocyte line are processed to mature forms with similar kinetics as in fibroblasts. In U937 cells the processing of the precursor of the beta-chain of beta-hexosaminidase, however, results in a larger fragment that resembles a processing intermediate in fibroblasts. This difference is explained by differences in the equipment of the cells with proteinases, since cross-feeding of the precursors to the cells results in a processing characteristic for the recipient cell type. In sucrose gradients the precursors are found partly in a low- and partly in a high-density region. Mature polypeptides and activity of lysosomal enzymes fractionate mainly in the higher density region. In U937 cells the transport and maturation of endogenous lysosomal enzymes are less sensitive to bases (NH4Cl, chloroquine, tilorone) and to antibody against the mannose 6-phosphate specific receptors than in fibroblasts. A small portion of enzymes released from U937 cells contains the markers recognized by the mannose-6-phosphate specific receptors. U937 cells express these receptors and utilize them for transport of endogenous and exogenous lysosomal enzymes. It appears, however, that a fraction of lysosomal enzymes is transported in U937 cells independent of the mannose-6-phosphate-specific receptors.  相似文献   

8.
The folate binding protein (FBP), also known as the folate receptor (FR), is a glycoprotein which binds the vitamin folic acid and its analogues. FBP contains multiple N-glycosilation sites, is selectively expressed in tissues and body fluids, and mediates targeted therapies in cancer and inflammatory diseases. Much remains to be understood about the structure, composition, and the tissue specificities of N-glycans bound to FBP. Here, we performed structural characterization of N-linked glycans originating from bovine and human milk FBPs. The N-linked glycans were enzymatically released from FBPs, purified, and permethylated. Native and permethylated glycans were further analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry (MS), while tandem MS (MS/MS) was used for their structural characterization. The assignment of putative glycan structures from MS and MS/MS data was achieved using Functional Glycomics glycan database and SimGlycan software, respectively. It was found that FBP from human milk contains putative structures that have composition consistent with high-mannose (Hex(5-6)HexNAc(2)) as well as hybrid and complex N-linked glycans (NeuAc(0-1)Fuc(0-3)Hex(3-6)HexNAc(3-5)). The FBP from bovine milk contains putative structures corresponding to high-mannose (Hex(4-9)HexNAc(2)) as well as hybrid and complex N-linked glycans (Hex(3-6)HexNAc(3-6)), but these glycans mostly do not contain fucose and sialic acid. Glycomic characterization of FBP provides valuable insight into the structure of this pharmacologically important glycoprotein and may have utility in tissue-selective drug targeting and as a biomarker.  相似文献   

9.
Recent evidence has implicated natural killer cytotoxic factors (NKCF) as the lytic mediators of NK cell-mediated cytotoxicity reactions. The objective of this study was to examine and compare some of the biochemical and functional characteristics of human, rat, and murine NKCF. Supernatants containing NKCF were generated by stimulating effector cells with Con A or U937 (for human PBL) or YAC-1 (for rodent spleen cells) and tested for cytotoxic activity in a 20-hour (rodent) or 24-hour (human) 51Cr release assay. NKCF activity was inactivated by heating to 63 degrees C, 8 M urea, pH 2, and reduction and alkylation. These factors were highly sensitive to trypsin, moderately sensitive to papain and resistant to neuraminidase. Adsorption of human NKCF to U937 cells is inhibited by mannose-6-phosphate and adsorption of rodent NKCF to YAC-1 cells is inhibited by alpha-methyl-D-mannoside and fructose-6-phosphate. Oxidation of NKCF with sodium periodate abolished lytic activity. Pretreatment of NKCF with Con A but not pretreatment of target cells inhibited lytic activity. NKCF activity eluted in a single broad band of apparent MW of 15,000-40,000 after fractionation by HPLC gel permeating chromatography. Pooled fractions containing NKCF activity were subjected to some of the same tests performed on whole supernatants. Test result with semipurified NKCF confirmed that these factors are inactivated by trypsin or sodium periodate and that mannose-6-phosphate inhibits their binding to target cells. There were no major differences observed in NKCF produced by the three different species whether stimulated by Con A or NK-sensitive tumor cells. The evidence indicates that NKCF are glycoproteins in which disulfide bonding is essential for lytic activity. Furthermore, it appears that carbohydrate residues expressed on NKCF molecules are involved in the binding of these factors to the target cell membrane.  相似文献   

10.
We report that prosaposin binds to U937 and is active as a protective factor on tumor necrosis factor alpha (TNFalpha)-induced cell death. The prosaposin-derived saposin C binds to U937 cells in a concentration-dependent manner, suggesting that prosaposin behaves similarly. Prosaposin binding induces U937 cell death prevention, reducing both necrosis and apoptosis. This effect was inhibited by mitogen-activated protein ERK kinase (MEK) and sphingosine kinase (SK) inhibitors, indicating that prosaposin prevents cell apoptosis by activation of extracellular signal-regulated kinases (ERKs) and sphingosine kinase. Prosaposin led to rapid ERK phosphorylation in U937 cells as detected by anti-phospho-p44/42 mitogen-activated protein (MAP) kinase and anti-phosphotyrosine reactivity on ERK immunoprecipitates. It was partially prevented by apo B-100 and pertussis toxin (PT), suggesting that both lipoprotein receptor-related protein (LRP) receptor and Go-coupled receptor may play a role in the prosaposin-triggered pathway. Moreover, sphingosine kinase activity was increased by prosaposin treatment as demonstrated by the enhanced intracellular formation of sphingosine-1-phosphate (S-1-P). The observation that the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin prevented the prosaposin effect on cell apoptosis suggests that sphingosine kinase exerts its anti-apoptotic activity by the PI3K-Akt pathway. Thus, cell apoptosis prevention by prosaposin occurs through ERK phosphorylation and sphingosine kinase. The biological effect triggered by prosaposin might be extended to primary cells because it triggers Erk phosphorylation in peripheral blood mononuclear cells (PBMCs). This is the first evidence of a biological effect consequent to a signal transduction pathway triggered by prosaposin in cells of non-neurological origin.  相似文献   

11.
Recently, the sequence of the human receptor for insulin-like growth factor II (IGF-II) was found to be 80% identical [Morgan et al., (1987) Nature 329, 301-307] to the sequence of a partial clone of the bovine cation-independent mannose-6-phosphate receptor [Lobel et al., (1987) Proc. Natl. Acad. Sci. USA 84, 2233-2237]. In the present study, the purified receptor for insulin-like growth factor II (IGF-II) was found to react with two different polyclonal antibodies to the purified mannose-6-phosphate receptor. Moreover, mannose-6-phosphate was found to stimulate the binding of labeled IGF-II to the IGF-II receptor by two-fold. This effect had the same specificity and affinity as the reported binding of mannose-6-phosphate to its receptor; mannose-1-phosphate and mannose had no effect on the binding of labeled IGF-II to its receptor, and the half-maximally effective concentration of mannose-6-phosphate was 0.3 mM. Also, mannose-6-phosphate did not affect labeled IGF-II binding to the insulin receptor. These results support the hypothesis that a single protein of Mr-250,000 binds both IGF-II and mannose-6-phosphate. Furthermore, they indicate that mannose-6-phosphate can modulate the interaction of IGF-II to its receptor.  相似文献   

12.
A variety of cytokines have been reported to be able to recognize specific carbohydrate moieties. To date, the role of carbohydrate recognition in cytokine function has been analyzed for several cytokines, including fibroblast growth factor (FGF), tumor necrosis factor (TNF)-alpha, and interleukin (IL)-2. The FGF family and their receptors have been found to recognize a heparan sulfate proteoglycan, which generates rigid complexes that induce signal transduction. We have found that IL-2 recognizes a high-mannose type glycan on the alpha subunit of the IL-2 receptor as well as a peptide portion of this subunit. Blocking this carbohydrate-IL-2 interaction diminished IL-2-induced signaling and T-cell proliferation. We have also shown that TNF-alpha recognizes the second mannose 6-phosphate diester of the glycan portion of glycosylphosphatidylinositol (GPI)-anchored glycoproteins. Blocking this GPI-anchored glycan-TNF-alpha interaction abrogates TNF-alpha-induced apoptosis. We aim to increase the number of cytokines which modulate their functions through the unique carbohydrate recognition, and open the way to systematically elucidate the biological functions of cytokine-carbohydrate interaction in immune system.  相似文献   

13.
Monocyte adhesion to endothelium represents the first step in the emigration of this leukocyte from blood to tissue during such pathologic and physiologic processes as atherosclerotic plaque development, wound healing, and inflammation. We have examined the role of carbohydrate moieties in the binding of mononuclear cells to endothelium in vitro. Wheat germ agglutinin (WGA) completely inhibited binding of the human monocytic cell line U937 to pig or human endothelial cells (EC). The inhibition was abolished by the presence of N-acetyl glucosamine, a preferred ligand for WGA. This sugar itself, however, had no effect on monocytic cell binding to EC, suggesting that WGA is inhibiting the cell-cell interaction by binding to a distinct sugar moiety. We tested a series of simple and phosphorylated sugars for the ability to inhibit U937 cell binding to EC. Two phosphorylated disaccharides, lactose-1-phosphate and maltose-1-phosphate, but not 14 other sugars, caused complete suppression of monocyte adhesion to EC. Among the inactive sugars were mannose-6-phosphate and fructose-1-phosphate, which have been shown by others to markedly suppress lymphocyte adhesion to EC. A nonionic detergent, n-octyl-beta-D-glucopyranoside (octyl glucoside), which contains a sugar group as a hydrophilic moiety, also inhibited U937 cell or human monocyte binding to human or porcine EC. The inhibition was observed at a nontoxic concentration of octyl glucoside and appeared to be due to an effect on the monocytic cell rather than the EC. When suboptimal doses of WGA and octyl glucoside were added in combination to the U937 cell-EC adhesion assay, the level of inhibition was greatly reduced when compared with either of the inhibitors alone, suggesting an interaction between these two blocking agents. Lactose-1-phosphate, but not octyl glucoside or WGA, blocked neutrophil adhesion to EC. In summary, our results indicate that specific cell surface carbohydrate groups are required for the adhesion of monocytes to the endothelium.  相似文献   

14.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

15.
Mannose-6-phosphate (M-6-P) glycan analysis is important for quality control of therapeutic enzymes for lysosomal storage diseases. Here, we found that the analysis of glycans containing two M-6-Ps was highly affected by the hydrophilicity of the elution solvent used in high-performance liquid chromatography (HPLC). In addition, the performances of three fluorescent tags—2-aminobenzoic acid (2-AA), 2-aminobenzamide (2-AB), and 3-(acetyl-amino)-6-aminoacridine (AA-Ac)—were compared with each other for M-6-P glycan analysis using HPLC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The best performance for analyzing M-6-P glycans was shown by 2-AA labeling in both analyses.  相似文献   

16.
Arf regulates interaction of GGA with mannose-6-phosphate receptor   总被引:1,自引:0,他引:1  
The role of ADP-ribosylation factor (Arf) in Golgi associated, γ-adaptin homologous, Arf-interacting protein (GGA)-mediated membrane traffic was examined. GGA is a clathrin adaptor protein that binds Arf through its GAT domain and the mannose-6-phosphate receptor through its VHS domain. The GAT and VHS domains interacted such that Arf and mannose-6-phosphate receptor binding to GGA were mutually exclusive. In vivo , GGA bound membranes through either Arf or mannose-6-phosphate receptor. However, mannose-6-phosphate receptor excluded Arf from GGA-containing structures outside of the Golgi. These data are inconsistent with predictions based on the model for Arf's role in COPI veside coat function. We propose that Arf recruits GGA to a membrane and then, different from the current model, 'hands-off' GGA to mannose-6-phosphate receptor. GGA and mannose-6-phosphate receptor are then incorporated into a transport intermediate that excludes Arf .  相似文献   

17.
Seko A  Ohkura T  Ideo H  Yamashita K 《Glycobiology》2012,22(2):181-195
Human serum Krebs von den Lugen-6 (KL-6) antigen is a MUC1 glycoprotein (KL-6/MUC1) recognized by anti-KL-6 monoclonal antibody (KL-6/mAb) and has been utilized as a diagnostic marker for interstitial pneumonia. KL-6/mAb is thought to recognize the specific glycopeptides sequence of MUC1, but the precise glycan structure of the epitope is unclear. In this study, we determined the carbohydrate structures of KL-6/MUC1 to search the carbohydrate epitopes for KL-6/mAb. KL-6/MUC1 was purified from the culture medium of human breast cancer YMB-S cells by KL-6/mAb-affinity chromatography; the O-linked glycan structures were determined in combination with paper electrophoresis, several lectin column chromatographies, sialidase digestion and methanolysis. KL-6/MUC1 contained core 1 and extended core 1 glycans modified with one or two sialic acid/sulfate residues. Based on these structures, several synthetic glycans binding to anti-KL-6/mAb were compared with one another by surface plasmon resonance. Sequentially, related radiolabeled oligosaccharides were enzymatically synthesized and analyzed for binding to a KL-6/mAb-conjugated affinity column. 3'-sialylated, 6'-sulfated LNnT [Neu5Acα2-3(SO(3)(-)-6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc], 3'-sialylated, 6-sulfated core 1 [Neu5Acα2-3Galβ1-3(SO(3)(-)-6)GalNAc] and disulfated core 1 SO(3)(-)-3Galβ1-3(SO(3)(-)-6)GalNAc exhibited substantial affinity for KL-6/mAb, and 3'-sulfated core 1 derivatives [SO(3)(-)-3Galβ1-3(±Neu5Acα2-6)GalNAc] and 3'-sialylated core 1 weakly interacted with KL-6/mAb. These results indicated that the possible carbohydrate epitopes of KL-6/mAb involve not only 3'-sialylated core 1 but also novel core 1 and extended core 1 with sulfate and sialic acid residues. Epitope expressing changes with suppression or over-expression of the Gal6ST (Gal 6-O-sulfotransferase) gene, suggesting that Gal6ST is involved in the biosynthesis of the unique epitopes of KL-6/mAb.  相似文献   

18.
Specificity of DC-SIGN for mannose- and fucose-containing glycans   总被引:1,自引:0,他引:1  
The dendritic cell specific C-type lectin dendritic cell specific ICAM-3 grabbing non-integrin (DC-SIGN) binds to "self" glycan ligands found on human cells and to "foreign" glycans of bacterial or parasitic pathogens. Here, we investigated the binding properties of DC-SIGN to a large array of potential ligands in a glycan array format. Our data indicate that DC-SIGN binds with K(d)<2muM to a neoglycoconjugate in which Galbeta1-4(Fucalpha1-3)GlcNAc (Le(x)) trisaccharides are expressed multivalently. A lower selective binding was observed to oligomannose-type N-glycans, diantennary N-glycans expressing Le(x) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LacdiNAc-fucose), whereas no binding was observed to N-glycans expressing core-fucose linked either alpha1-6 or alpha1-3 to the Asn-linked GlcNAc of N-glycans. These results demonstrate that DC-SIGN is selective in its recognition of specific types of fucosylated glycans and subsets of oligomannose- and complex-type N-glycans.  相似文献   

19.
It is commonly assumed that ceramide is a second messenger that transduces signaling leading to apoptosis. We tested this hypothesis by investigating the role of ceramide in TNF-alpha-initiated apoptotic signaling using the histiocytic lymphoma cell line U937. We found considerable differences between cell killing by TNF-alpha and by ceramide. U937 cells treated with TNF-alpha are committed early and irreversibly to the apoptotic pathway and start to die 90 min after treatment. U937 cells treated with ceramide start to die 12 h after the initial treatment. The cell death signaling initiated by TNF-alpha is transduced within minutes of exposure to TNF-alpha and it is irreversible. Exogenous ceramide increases the intracellular level of ceramide rapidly, significantly, and well above the physiological levels, within minutes, but cellular commitment to death does not occur until after the first 6 h of incubation. Furthermore, the endogenous ceramide in U937 cells treated with TNF-alpha increases well after the commitment to the apoptotic pathway. The differences between ceramide and TNF-alpha in the kinetics and the commitment to the apoptotic pathway suggest that, (a) ceramide is not a second messenger in the apoptotic signaling of TNF-alpha, (b) ceramide elevations, in TNF-alpha treated cells, are a consequence rather than a cause of apoptosis and (c) exogenously added ceramide and TNF-alpha kill cells via different pathways.  相似文献   

20.
Dolichyl phosphate, an essential carrier lipid in the biosynthesis of N-linked glycoprotein, has been found to induce apoptosis in rat glioma C6 cells and human monoblastic leukemia U937 cells. In the present study, dolichyl phosphate and structurally related compounds were examined regarding their apoptosis-inducing activities in U937 cells. Dihydroheptaprenyl and dihydrodecaprenyl phosphates, of which isoprene units are shorter than that of dolichyl phosphate, induced apoptosis in U937 cells. This phenomenon occurred in a dose- and time-dependent manner, as seen with dolichyl phosphate-induced apoptosis. Derivatives of the same isoprene units of dolichyl phosphate, such as dolichol, dolichal or dolichoic acid, did not induce DNA fragmentation. Farnesyl phosphate and geranylgeranyl phosphate also failed to induce apoptosis. During apoptosis, the caspase family of cysteine proteases play important roles. We observed that apoptosis induced by dihydroprenyl phosphate was mediated by caspase-3-like (CPP32-like) activation but not by caspase-1-like (ICE-like) activation. This caspase-3-like activation was inhibited by a specific inhibitor of caspase-3, DEVD-CHO, but not by an caspase-1 inhibitor YVAD-CHO. We interpret these results to mean that dihydroprenyl phosphates with more than seven isoprene units have apoptosis-inducing activity and that their signal is mediated by caspase-3-like activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号