首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid-protein interactions of pulmonary surfactant-associated protein SP-C in model DPPC/DPPG and DPPC/DPPG/eggPC vesicles were studied using steady-state and time-resolved fluorescence measurements of two fluorescent phospholipid probes, NBD-PC and NBD-PG. These fluorescent probes were utilized to determine SP-C-induced lipid perturbations near the bilayer surface, and to investigate possible lipid headgroup-specific interactions of SP-C. The presence of SP-C in DPPC/DPPG membrane vesicles resulted in (1) a dramatic increase in steady-state anisotropy of NBD-PC and NBD-PG at gel phase temperatures, (2) a broadening of the gel-fluid phase transition, (3) a decrease in self-quenching of NBD-PC and NBD-PG probes, and (4) a slight increase in steady-state anisotropy of NBD-PG at fluid phase temperatures. Time-resolved measurements, as well as steady-state intensity measurements indicate that incorporation of SP-C into DPPC/DPPG or DPPC/DPPG/eggPC vesicles results in a increase in the fraction of the long-lifetime species of NBD-PC. The results presented here indicate that SP-C orders the membrane bilayer surface, disrupts acyl chain packing, and may increase the lateral pressure within the bilayer.  相似文献   

2.
The effect of several synthetic peptides based on the sequence of human pulmonary surfactant-associated protein B (SPB) on the molecular packing of model membrane lipids (7:1 dipalmitoyl phosphatidylcholine (DPPC)/dipalmitoyl phosphatidylglycerol (DPPG)) was studied using fluorescence anisotropy. This information was then correlated with complementary biophysical data obtained on both a modified Wilhelmy-Langmuir balance and a pulsating bubble surfactometer. The SP-B peptides examined in these studies are synthetic human SP-B Phe1-Ser78 (SP-B 1-78, full-length sequence), synthetic human SP-B Phe1-Thr60 (SP-B 1-60), synthetic human SP-B Phe1-Ala20 (SP-B 1-20), synthetic human SP-B Ala20-Thr60 (SP-B 20-60), synthetic human SP-B Leu27-Ser78 (SP-B 27-78), synthetic human SP-B Leu40-Thr60 (SP-B 40-60) and synthetic human SP-B Tyr53-Ser78 (SP-B 53-78). trans-parinaric acid was utilized to detect changes in ordering of lipids within the interior upon incorporation of synthetic SP-B peptide, whereas 1-hexadecanoyl-2-[N-(7-nitro-2-benzoxa-1,3-diazol-4-yl)-a min ohexanoyl] phosphatidylcholine (6-NBD-PC) and 1-acyl-2-[N-(7-nitro-2-benzoxa-1,3-diazol-4-yl)aminohexanoyl ] phosphatidylglycerol (6-NBD-PG) were utilized to determine alterations in lipid order at the surface of the model membrane bilayer. With the exception of SP-B 40-60, which corresponds to the most hydrophobic segment of the full-length SP-B, none of the other peptide significantly perturbed the interior bilayer as determined by fluorescence anisotropy of trans-parinaric acid. Incorporation of any of the peptides with the exception of SP-B 40-60, resulted in an increase in anisotropy of NBD-PC. The most significant enhancements resulted from the addition of SP-B 1-78, SP-B 1-20, SP-B 27-78 or SP-B 53-78. The magnitude of anisotropy increase with these peptides is similar to that observed with an equivalent molar ratio of native SP-B isolated from a bovine source. These observations suggest that these four synthetic peptides have the structural and compositional characteristics required for surface ordering of the membrane bilayer in a manner similar to that observed with native SP-B, thereby facilitating the surfactant-like properties of phospholipid mixtures.  相似文献   

3.
Pyrethroid interactions with dipalmitoyl phosphatidylcholine (DPPC) vesicles have been characterized in bilayers having large and small radii of curvature. The abilities of pyrethroids to alter the gel-fluid phase transition profiles were determined by steady state fluorescence anisotropy and phase-modulation lifetime techniques using the fluorescent probes cis- and trans-parinaric acid. Using the geometric isomers of parinaric acid as membrane probes, pyrethroids were found to lower the phase transition temperature (Tc) of DPPC large multilamellar vesicles with the same order of comparative effectiveness as previously reported using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Permethrin had a greater depressive effect upon the Tc of DPPC in the small unilamellar vesicle (SUV) system than in the large multilamellar system. Conversely, allethrin was less effective in reducing the Tc of DPPC SUVs. The enhanced effect of permethrin in decreasing the Tc of DPPC SUVs was greatest in regions of more rigid lipid packing, as determined by trans-parinaric acid fluorescence parameters. The results indicate that changes in lipid packing configuration caused by differing bilayer radii of curvature may alter the interactive characteristics of pyrethroids with lipid membranes.  相似文献   

4.
The effects of pulmonary surfactant protein SP-B on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), and a mixture of DPPC:DPPG (7:3, mol:mol) were studied using spread films at the air-water interface. The addition of SP-B to the phospholipid monolayers gave positive deviations from additivity of the mean areas in the films. At low protein concentrations (less than 45% amino acid residues which corresponds to 0.5 mol% or 10 weight% SP-B) monolayers of SP-B/DPPC, SP-B/DPPG and SP-B/(DPPC:DPPG) collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At higher concentrations of SP-B in the protein-lipid monolayers, kink points appeared in the isotherms at about 40-45 mN.m-1, implying possible exclusion of material from the films, hence, changes in the original monolayer compositions. Calculated analyses of the monolayer compositions as a function of surface pressure indicated that nearly pure SP-B, associated with small amounts of phospholipid (2-3 lipid molecules per SP-B dimer), was lost from SP-B/DPPC, SP-B/DPPG, and SP-B/(DPPC:DPPG) films at surface pressures higher than 40-45 mN.m-1. The results are consistent with a low effectiveness of SP-B in removing saturated phospholipids, DPPC or DPPG, from the spread SP-B/phospholipid films.  相似文献   

5.
The spectroscopic properties of a new series of fatty acid analogs in which a dipyrrometheneboron difluoride fluorophore forms a segment of the acyl methylene chain are presented and their characteristics as fluorescent membrane probes are examined. When incorporated as a low mole fraction component in model phospholipid membranes, the probes retain the principal characteristics of the parent fluorophore: green fluorescence emission with high quantum yield, extensive spectral overlap, and low environmental sensitivity. The fluorescence quantum yield is typically two to three times that of comparable membrane probes based on the nitrobenzoxadiazole fluorophore. The spectral overlap results in a calculated F?rster energy transfer radius (Ro) of about 57 A. Consequently, increasing fluorescence depolarization and quenching are observed as the mole fraction of the probe species incorporated in the membrane is increased. Low environmental sensitivity is manifested by retention of high quantum yield emission in aqueous dispersions of fatty acids. Partition coefficient data derived from fluorescence anisotropy measurements and iodide quenching experiments indicate that in the presence of fluid phase phospholipid bilayers the aqueous fraction of fatty acid is very small. Fluorescence intensity and anisotropy responses to phospholipid phase transitions are examined and found to be indicative of nonrandom fluorophore distribution in the gel phase. It is concluded that the spectroscopic properties of the fatty acid probes and their phospholipid derivatives are particularly suited to applications in fluorescence imaging of cellular lipid distribution and membrane level studies of lateral lipid segregation.  相似文献   

6.
Interactions of pyrethroids with phosphatidylcholine liposomal membranes   总被引:2,自引:0,他引:2  
Interactions of several pyrethroids with membrane lipids in the form of dipalmitoylphosphatidylcholine (DPPC) liposomes have been studied using fluorescent membrane probes. Fluorescence anisotropy values and lifetimes (determined by phase-shift and demodulation techniques) of the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene, were decreased in gel phase liposomes by pyrethroids at concentrations on the order of 10 microM. The pyrethroids containing a cyano substituent were also observed to cause collisional quenching of diphenylhexatriene fluorescence. Pyrethroids differed in their effectiveness at lowering the phase transition temperature of DPPC, and in their ability to broaden the temperature range of this transition. The fluorescence intensity of DPPC-incorporated chlorophyll a was used to monitor the pretransition of DPPC and the lateral diffusion of a membrane component located in the polar headgroup region. Permethrin did not affect chlorophyll a fluorescence intensity at any temperature. It may be concluded from these results that pyrethroids are preferentially located in the interior hydrophobic regions of the lipid bilayer, and that these compounds can disorder hydrocarbon packing in the bilayer core. However, polar headgroups were not disordered, and diffusion of membrane components in the polar headgroup region was not altered.  相似文献   

7.
Nitro-2,1,3-benzoxadiazol-4-yl (NBD) group is a widely used, environment-sensitive fluorescent probe. The negatively charged dithionite rapidly reduces the accessible NBD-labeled lipids in liposomes to their corresponding nonfluorescent derivatives. In this study both the phospholipid headgroup and acyl chain NBD-labeled L-alpha-1,2-dipalmitoyl-sn-glycero-3-phospho-[N-(4-nitrobenz-2-oxa-1,3-diazole)-ethanolamine] (DPPN) and 1-acyl-2-[12-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC), respectively, were employed. The correlation of both the rate coefficient k(1) of the redox reaction and the fluorescence properties of the two probes with the membrane dipole potential Psi in fluid dipalmitoylglycerophosphocholine (DPPC) liposomes is demonstrated. When Psi of the bilayer was varied (decreased by phloretin or increased by 6-ketocholestanol), the value for k1 decreased for both DPPN and NBD-PC with increasing Psi. For both fluorophores a positive correlation to Psi was evident for the relative fluorescence emission intensity (RFI, normalized to the emission of the fluorophore in a DPPC matrix). The relative changes in emission intensity as a function of Psi were approximately equal for both NBD derivatives. Changes similar to those caused by phloretin were seen when dihexadecylglycerophosphocholine (DHPC) was added to DPPC liposomes, in keeping with the lower dipole potential for the former lipid compound compared with DPPC. These effects of Psi on NBD fluorescence should be taken into account when interpreting data acquired using NBD-labeled lipids as fluorescent probes.  相似文献   

8.
In this work, binary mixtures of phospholipid/ergosterol (erg) were studied using three fluorescent membrane probes. The phospholipid was either saturated (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) or monounsaturated (1-palmitoyl-2-dioleoyl-sn-glycero-3-phosphocholine, POPC) phosphatidylcholine, to evaluate the fluorescence properties of the probes in gel, liquid ordered (l(o)) and liquid disordered (l(d)) phases. The probes have been used previously to study cholesterol-enriched domains, but their photophysical properties in erg-enriched membranes have not been characterized. N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-DPPE) presents modest blue-shifts upon erg addition, and the changes in the fluorescence lifetime are mainly due to differences in the efficiency of its fluorescence dynamic self-quenching. However, the steady-state fluorescence anisotropy of NBD-DPPE presents well-defined values in each lipid phase. N-(lissamine rhodamine B sulfonyl)-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (Rhod-DOPE) presents a close to random distribution in erg-rich membranes. There are no appreciable spectral shifts and the steady-state fluorescence anisotropy presents complex behavior, as a result of different photophysical processes. The probe is mostly useful to label l(d) domains in yeast membranes. 4-(2-(6-(Dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)-pyridinium (di-4-ANEPPS) is an electrochromic dye with excitation spectra largely insensitive to the presence of erg, but presenting a strong blue-shift of its emission with increasing concentrations of this sterol. Its partition coefficient is favorable to l(o) domains in POPC/erg mixtures. Although the fluorescence properties of di-4-ANEPPS are less sensitive to erg than to chol, in both cases the fluorescence lifetime responds monotonically to sterol mole fraction, becoming significantly longer in the presence of sterol as compared to pure POPC or DPPC bilayers. The probe displays a unique sensitivity to sterol-lipid interaction due to the influence of hydration and H-bonding patterns at the membrane/water interface on its fluorescence properties. This makes di-4-ANEPPS (and possibly similar probes) potentially useful in the study of erg-enriched domains in more complex lipid mixtures and in the membranes of living yeast cells.  相似文献   

9.
Deuterium nuclear magnetic resonance was used to monitor lipid acyl-chain orientational order in suspensions of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) containing Ca(2+) and the lung surfactant proteins SP-A and SP-B separately and together. To distinguish between protein-lipid interactions involving the PC and PG lipid headgroups and to examine whether such interactions might influence spatial distribution of lipids within the bilayer, acyl chains on either the DPPC or the DPPG component of the mixture were deuterated. The lipid components of the resulting mixtures were thus either DPPC-d(62)/DPPG (7:3) or DPPC/DPPG-d(62) (7:3), respectively. SP-A had little effect on DPPC-d(62) chain order but did narrow the temperature range over which DPPG-d(62) ordered at the liquid-crystal-to-gel transition. No segregation of lipid components was seen for temperatures above or below the transition. Near the transition, though, there was evidence that SP-A promoted preferential depletion of DPPG from liquid crystalline domains in the temperature range over which gel and liquid crystal domains coexist. SP-B lowered average chain order of both lipids both above and below the main transition. The perturbations of chain order by SP-A and SP-B together were smaller than by SP-B alone. This reduction in perturbation of the lipids by the additional presence of SP-A likely indicated a strong interaction between SP-A and SP-B. The competitive lipid-lipid, lipid-protein, and protein-protein interactions suggested by these observations presumably facilitate the reorganization of surfactant material inherent in the transformation from lamellar bodies to a functional surfactant layer.  相似文献   

10.
J R Wiener  R Pal  Y Barenholz  R R Wagner 《Biochemistry》1985,24(26):7651-7658
In order to investigate the mode of interaction of peripheral membrane proteins with the lipid bilayer, the basic (pI approximately 9.1) matrix (M) protein of vesicular stomatitis virus was reconstituted with small unilamellar vesicles (SUV) containing phospholipids with acidic head groups. The lateral organization of lipids in such reconstituted membranes was probed by fluorescent phospholipid analogues labeled with pyrene fatty acids. The excimer/monomer (E/M) fluorescence intensity ratios of the intrinsic pyrene phospholipid probes were measured at various temperatures in M protein reconstituted SUV composed of 50 mol % each of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). The M protein showed relatively small effects on the E/M ratio either in the gel or in the liquid-crystalline phase. However, during the gel to liquid-crystalline phase transition, the M protein induced a large increase in the E/M ratio due to phase separation of lipids into a neutral DPPC-rich phase and DPPG domains presumably bound to M protein. Similar phase separation of bilayer lipids was also observed in the M protein reconstituted with mixed lipid vesicles containing one low-melting lipid component (1-palmitoyl-2-oleoylphosphatidylcholine or 1-palmitoyl-2-oleoylphosphatidylglycerol) or a low mole percent of cholesterol. The self-quenching of 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence, as a measure of lipid clustering in the bilayer, was also studied in M protein reconstituted DPPC-DPPG vesicles containing 5 mol % NBD-phosphatidylethanolamine (NBD-PE). The quenching of NBD-PE was enhanced at least 2-fold in M protein reconstituted vesicles at temperatures within or below the phase transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.  相似文献   

12.
 Suspensions of dipalmitoylphosphatidylcholine (DPPC) bilayers containing 5, 10 or 20% (w/w) surfactant protein SP-B have been reconstituted and spread at air-liquid interfaces. Compression isotherms of DPPC/SP-B monolayers spread from these preparations were qualitatively comparable to the isotherms of the corresponding DPPC/SP-B monolayers spread from solvents. SP-B was squeezed-out at higher pressures from vesicle-spread films than from solvent-spread monolayers. SP-B caused a marked decrease on the rate of relaxation of DPPC collapse phases to equilibrium pressures in all the lipid/protein films assayed. This stabilizing effect was higher in vesicle-spread than in solvent-spread monolayers. Inclusion in the films of traces of the fluorescent probe NBD-PC (1 mol%) and use of a fluorescent derivative of SP-B labeled with a rhodamine derivative, Texas Red, allowed for direct observation of protein and lipid domains at the interface by epifluorescence microscopy. Upon compression, SP-B altered the packing of phospholipids in the bilayer-spread films, observed as a SP-B-induced reduction of the area of liquid-condensed domains, in a way similar to its effect in solvent-spread monolayers. SP-B was not associated with condensed regions of the films. Fluorescence images from vesicle-spread films showed discrete fluorescent aggregates that could be consistent with the existence of lipid-protein vesicles in close association with the monolayer. Both the retention of SP-B at higher surface pressures and the greater stability of collapse phases of DPPC/SP-B films prepared by spreading from liposomes in comparison to those spread from solvents can be interpreted as a consequence of formation of complex bilayer-monolayer interacting systems. Received: 1 December 1999 / Revised version: 2 March 2000 / Accepted: 2 March 2000  相似文献   

13.
Spread binary monolayers of surfactant-associated proteins SP-B and SP-C were formed at the air-water interface. Surface pressure measurements showed no interactions between the hydrophobic proteins. The effects of a mixture of SP-B plus SP-C (2:1, w/w) on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and DPPC:DPPG (7:3, mol:mol) were studied. During compression of ternary and quaternary films, containing less than 0.4 mol% or 5 weight% total protein, the proteins were not squeezed out and appeared to remain associated with the film until collapse at surface pressures of about 65-70 mN.m-1. At initial concentrations of total protein of about 0.9 mol% or 10 weight%, exclusion of protein-lipid complexes was observed at 40-50 mN.m-1. Larger amounts of phospholipid were removed by proteins from (SP-B:SP-C)/DPPG films than from (SP-B:SP-C)/DPPC ones. Separate squeeze-out of SP-B (or SP-B plus DPPC) at about 40 mN.m-1, followed by exclusion of SP-C (or SP-C plus DPPC) at about 50 mN.m-1, was observed in (SP-B:SP-C)/DPPC films. This led to a conclusion that there was independent behavior of SP-B and SP-C in (SP-B:SP-C)/DPPC monolayers. The quaternary (SP-B:SP-C)/(DPPC:DPPG) films showed qualitatively similar process of squeeze-out of the proteins. In the ternary mixtures of SP-B plus SP-C with DPPG separate exclusion of SP-B was not detected; rather, the data was consistent with exclusion of a (SP-B:SP-C)/DPPG complex at about 50 mN.m-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
SP-C, the smallest pulmonary surfactant protein, is required for the formation and stability of surface-active films at the air-liquid interface in the lung. The protein consists of a hydrophobic transmembrane α-helix and a cationic N-terminal segment containing palmitoylated cysteines. Recent evidence suggests that the N-terminal segment is of critical importance for SP-C function. In the present work, the role of palmitoylation in modulating the lipid-protein interactions of the N-terminal segment of SP-C has been studied by analyzing the effect of palmitoylated and non-palmitoylated synthetic peptides designed to mimic the N-terminal segment on the dynamic properties of phospholipid bilayers, recorded by spin-label electron spin resonance (ESR) spectroscopy. Both palmitoylated and non-palmitoylated peptides decrease the mobility of phosphatidylcholine (5-PCSL) and phosphatidylglycerol (5-PGSL) spin probes in dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) bilayers. In zwitterionic DPPC membranes, both peptides have a greater effect at temperatures below than above the main gel-to-liquid-crystalline phase transition, the palmitoylated peptide inducing greater immobilisation of the lipid than does the non-palmitoylated form. In anionic DPPG membranes, both palmitoylated and non-palmitoylated peptides have similar immobilizing effects, probably dominated by electrostatic interactions. Both palmitoylated and non-palmitoylated peptides have effects comparable to whole native SP-C, as regards improving the gel phase solubility of phospholipid spin probes and increasing the polarity of the bilayer surface monitored by pK shifts of fatty acid spin probes. This indicates that a significant part of the perturbing properties of SP-C in phospholipid bilayers is mediated by interactions of the N-terminal segment. The effect of SP-C N-terminal peptides on the chain flexibility gradient of DPPC and DPPG bilayers is consistent with the existence of a peptide-promoted interdigitated phase at temperatures below the main gel-to-liquid-crystalline phase transition. The palmitoylated peptide, but not the non-palmitoylated version, is able to stably segregate interdigitated and non-interdigitated populations of phospholipids in DPPC bilayers. This feature suggests that the palmitoylated N-terminal segment stabilizes ordered domains such as those containing interdigitated lipids. We propose that palmitoylation may be important to promote and facilitate association of SP-C and SP-C-containing membranes with ordered lipid structures such as those potentially existing in highly compressed states of the interfacial surfactant film.  相似文献   

15.
The fluorophore 4-heptadecyl-7-hydroxycoumarin was used as a probe to study the properties of phospholipid bilayers at the lipid-water interface. To this end, the steady-state fluorescence anisotropy, the differential polarized phase fluorometry, and the emission lifetime of the fluorophore were measured in isotropic viscous medium, in lipid vesicles, and in the membrane of vesicular stomatitis virus. In the isotropic medium (glycerol), the probe showed an increase in the steady-state fluorescence anisotropy with a decrease in temperature, but the emission lifetime was unaffected by the change in temperature. In glycerol, the observed and predicted values for maximum differential tangents of the probe were identical, indicating that in isotropic medium 4-heptadecyl-7-hydroxycoumarin is a free rotator. Nuclear magnetic resonance and differential scanning calorimetric studies with lipid vesicles containing 1-2 mol % of the fluorophore indicated that the packaging density of the choline head groups was affected in the presence of the probe with almost no effect on the fatty acyl chains. The fluorophore partitioned equally well in the gel and liquid-crystalline phase of the lipids in the membrane, and the phase transition of the bilayer lipids was reflected in the steady-state fluorescence anisotropy of the probe. The presence of cholesterol in the lipid vesicles had a relatively small effect on the dynamics of lipids in the liquid-crystalline state, but a significant disordering effect was noted in the gel state. One of the most favorable properties of the probe is that its emission lifetime was unaffected by the physical state of the lipids or by the temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of hydrostatic pressure on the physical properties of large unilamellar vesicles of single lipids dipalmitoyl phosphatidylcholine (DPPC) and dimyristoyl phosphatidylcholine (DMPC) and lipid mixtures of DMPC/DPPC have been studied from time-resolved fluorescence of trans-parinaric acid. Additional experiments were carried out using diphenylhexatriene to compare the results extracted from both probes. Fluorescence decays were analyzed by the maximum entropy method. Pressure does not influence the fluorescence lifetime distribution of trans-parinaric acid in isotropic solvents. However, in pressurized lipid bilayers an abrupt change was observed in the lifetime distribution which was associated with the isothermal pressure-induced phase transition. The pressure to temperature equivalence values, dT/dP, determined from the midpoint of the phase transitions, were 24 and 14.5 degrees C kbar-1 for DMPC and POPC, respectively. Relatively moderate pressures of about 500 bar shifted the DMPC/DPPC phase diagram 11.5 degrees C to higher temperatures. The effects of pressure on the structural properties of these lipid vesicles were investigated from the anisotropy decays of both probes. Order parameters for all systems increased with pressure. In the gel phase of POPC the order parameter was smaller than that obtained in the same phase of saturated phospholipids, suggesting that an efficient packing of the POPC hydrocarbon chains is hindered.  相似文献   

17.
R A Parente  B R Lentz 《Biochemistry》1985,24(22):6178-6185
We have investigated the behavior of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3-sn -phosphatidylcholine (DPHpPC) in synthetic, multilamellar phosphatidylcholine vesicles. This fluorescent phospholipid has photophysical properties similar to its parent fluorophore, diphenylhexatriene (DPH). DPHpPC preferentially partitioned into fluid phase lipid (Kf/s = 3.3) and reported a lower phase transition temperature as detected by fluorescence anisotropy than that observed by differential scanning calorimetry. Calorimetric measurements of the bilayer phase transition in samples having different phospholipid to probe ratios demonstrated very slight changes in membrane phase transition temperature (0.1-0.2 degree C) and showed no measurable change in transition width. Nonetheless, measurements of probe fluorescence properties suggested that DPHpPC disrupts its local environment in the membrane and may even induce perturbed probe-rich local domains below the phospholipid phase transition. Temperature profiles of steady-state fluorescence anisotropy, limiting anisotropy, differential tangent, and rotational rate were similar to those of DPH below the main lipid phase transition but indicated more restricted rotational motion above the lipid phase transition temperature. As for DPH, the fluorescence decay of DPHpPC could be described by either a single or double exponential both above and below the DPPC phase transition. The choice seemed dependent on the treatment of the sample. The intensity-weighted average lifetime of DPHpPC was roughly 1.5 ns shorter than that of DPH. In summary, the measured properties of DPHpPC and its lipid-like structure make it a powerful probe of membrane structure and dynamics.  相似文献   

18.
Ege C  Lee KY 《Biophysical journal》2004,87(3):1732-1740
The amyloid beta (A beta) peptide is the major component found in the amyloid deposits in the brains of Alzheimer's disease patients. In vitro studies have demonstrated that the aggregation of A beta can take place at three orders of magnitude lower concentrations in the presence of phospholipid molecules compared to bulk peptide studies, suggesting that membrane lipids may mediate A beta toxicity. To understand the interaction of A beta with lipid membranes, we have examined A beta 40 with anionic dipalmitoylphosphatidylglycerol (DPPG), zwitterionic dipalmitoylphosphatidylcholine (DPPC), and cationic dipalmitoyltrimethylammonium propane (DPTAP) monolayers under different subphase conditions. We have used a constant surface pressure insertion assay to assess the degree of peptide insertion into the lipids. Simultaneously, we monitored the surface morphology of the monolayers with fluorescence microscopy. We have also performed dual-probe fluorescence measurements where both the peptide and lipid are tagged with chromophores. Isotherm measurements show that A beta inserts into both DPTAP and DPPG monolayers under physiologically relevant conditions. Insertion into DPPC occurs at lipid densities below that found in a bilayer. The level of insertion is inversely proportional to the lipid packing density. Our results indicate that lipids need not be anionic to interact with A beta. Electrostatic effects involved in A beta 40-lipid interaction are discussed.  相似文献   

19.
Laurdan is a fluorescent probe that detects changes in membrane phase properties through its sensitivity to the polarity of its environment in the bilayer. Variations in membrane water content cause shifts in the laurdan emission spectrum, which are quantified by calculating the generalized polarization (GP). We tested whether laurdan fluorescence could be used to distinguish differences in phospholipid order from changes in membrane fluidity by examining the temperature dependence of laurdan GP and fluorescence anisotropy in dipalmitoylphosphatidylcholine (DPPC) vesicles. The phase transition from the solid ordered phase to the liquid disordered phase was observed as a decrease in laurdan GP values from 0.7 to −0.14 and a reduction in anisotropy from 0.25 to 0.12. Inclusion of various amounts of cholesterol in the membranes to generate a liquid ordered phase caused an increase in the apparent melting temperature detected by laurdan GP. In contrast, cholesterol decreased the apparent melting temperature estimated from anisotropy measurements. Based on these results, it appeared that laurdan anisotropy detected changes in membrane fluidity while laurdan GP sensed changes in phospholipid order. Thus, the same fluorescent probe can be used to distinguish effects of perturbations on membrane order and fluidity by comparing the results of fluorescence emission and anisotropy measurements.  相似文献   

20.
Gidwani A  Holowka D  Baird B 《Biochemistry》2001,40(41):12422-12429
Specialized plasma membrane domains known as lipid rafts participate in signal transduction and other cellular processes, and their liquid ordered (L(o)) phase appears to be important for their function. To quantify ordered lipids in biological membranes, we investigated steady-state fluorescence anisotropy of two lipid probes, 2-[3-(diphenylhexatrienyl)propanoyl]-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-PC) and N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE). We show using model membranes with varying amounts of cholesterol that steady-state fluorescence anisotropy is a sensitive measure of cholesterol-dependent ordering. The results suggest that DPH-PC is a more sensitive probe than NBD-PE. In the presence of cholesterol, ordering also depends on the degree of saturation of the phospholipid acyl chains. Using DPH-PC, we find that the plasma membrane of RBL-2H3 mast cells is substantially ordered, roughly 40%, as determined by comparison with anisotropy values for model membranes entirely in a liquid ordered (L(o)) phase and in a liquid disordered (L(alpha)) phase. This result is consistent with the finding that approximately 30% of plasma membrane phospholipids are insoluble in 0.5% Triton X-100. Furthermore, detergent-resistant membranes isolated by sucrose gradient fractionation of Triton X-100 cell lysates are more ordered than plasma membrane vesicles, suggesting that they represent a more ordered subset of the plasma membrane. Treatment of plasma membrane vesicles with methyl-beta-cyclodextrin resulting in 75% cholesterol depletion leads to commensurate decreases in lipid order as measured by anisotropy of DPH-PC and NBD-PE. These results demonstrate that steady-state fluorescence anisotropy of DPH-PC is a useful way to measure the amount of lipid order in biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号