首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have purified pectin methylesterase (PME; EC 3.1.11) from mature green (MG) tomato (Lycopersicon esculentum Mill. cv Rutgers) pericarp to an apparent homogeneity, raised antibodies to the purified protein, and isolated a PME cDNA clone from a λgtll expression library constructed from MG pericarp poly(A)+ RNA. Based on DNA sequencing, the PME cDNA clone isolated in the present study is different from that cloned earlier from cv Ailsa Craig (J Ray et al. [1989] Eur J Biochem 174:119-124). PME antibodies and the cDNA clone are used to determine changes in PME gene expression in developing fruits from normally ripening cv Rutgers and ripening-impaired mutants ripening inhibitor (rin), nonripening (nor), and never ripe (Nr). In Rutgers, PME mRNA is first detected in 15-day-old fruit, reaches a steady-state maximum between 30-day-old fruit and MG stage, and declines thereafter. PME activity is first detectable at day 10 and gradually increases until the turning stage. The increase in PME activity parallels an increase in PME protein; however, the levels of PME protein continue to increase beyond the turning stage while PME activity begins to decline. Patterns of PME gene expression in nor and Nr fruits are similar to the normally ripening cv Rutgers. However, the rin mutation has a considerable effect on PME gene expression in tomato fruits. PME RNA is not detectable in rin fruits older than 45 days and PME activity and protein begin showing a decline at the same time. Even though PME activity levels comparable to 25-day-old fruit were found in root tissue of normal plants, PME protein and mRNA are not detected in vegetative tissues using PME antibodies and cDNA as probes. Our data suggest that PME expression in tomato pericarp is highly regulated during fruit development and that mRNA synthesis and stability, protein stability, and delayed protein synthesis influence the level of PME activity in developing fruits.  相似文献   

2.
Polygalacturonase (PG) is the major enzyme responsible for pectin disassembly in ripening fruit. Despite extensive research on the factors regulating PG gene expression in fruit, there is conflicting evidence regarding the role of ethylene in mediating its expression. Transgenic tomato (Lycopersicon esculentum) fruits in which endogenous ethylene production was suppressed by the expression of an antisense 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene were used to re-examine the role of ethylene in regulating the accumulation of PG mRNA, enzyme activity, and protein during fruit ripening. Treatment of transgenic antisense ACC synthase mature green fruit with ethylene at concentrations as low as 0.1 to 1 μL/L for 24 h induced PG mRNA accumulation, and this accumulation was higher at concentrations of ethylene up to 100 μL/L. Neither PG enzyme activity nor PG protein accumulated during this 24-h period of ethylene treatment, indicating that translation lags at least 24 h behind the accumulation of PG mRNA, even at high ethylene concentrations. When examined at concentrations of 10 μL/L, PG mRNA accumulated within 6 h of ethylene treatment, indicating that the PG gene responds rapidly to ethylene. Treatment of transgenic tomato fruit with a low level of ethylene (0.1 μL/L) for up to 6 d induced levels of PG mRNA, enzyme activity, and protein after 6 d, which were comparable to levels observed in ripening wild-type fruit. A similar level of internal ethylene (0.15 μL/L) was measured in transgenic antisense ACC synthase fruit that were held for 28 d after harvest. In these fruit PG mRNA, enzyme activity, and protein were detected. Collectively, these results suggest that PG mRNA accumulation is ethylene regulated, and that the low threshold levels of ethylene required to promote PG mRNA accumulation may be exceeded, even in transgenic antisense ACC synthase tomato fruit.  相似文献   

3.
4.
5.
Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA showed <10% of wild-type PME enzyme activity and undetectable levels of PME protein and mRNA. Lower PME enzyme activity in fruits from transgenic plants was associated with an increased molecular weight and methylesterification of pectins and decreased levels of total and chelator soluble polyuronides in cell walls. The fruits of transgenic plants also contained higher levels of soluble solids than wild-type fruits. This trait was maintained in subsequent generations and segregated in normal Mendelian fashion with the antisense PME gene. These results indicate that reduction in PME enzyme activity in ripening tomato fruits had a marked influence on fruit pectin metabolism and increased the soluble solids content of fruits, but did not interfere with the ripening process.  相似文献   

6.
The potential of different house-keeping genes for their use as internal standards of gene expression under changing environmental conditions and in different organs of plants was assessed. Using real-time PCR mRNA levels were precisely quantified for preselected actin and ribosomal protein genes in Arabidopsis thaliana (L.) Heinh. and Nicotiana tabacum L. grown at normal temperature and following heat stress. In tobacco leaves the mRNA levels of the constitutively expressed ribosomal protein gene Nt-L25 and the actin genes Nt-ACT9 and At-ACT66 were strongly reduced (to approximately 10%) during heat stress. Heat stress applied at the temperature optimum (37 degrees C) for elicitation of a heat stress response to Arabidopsis leaves resulted in a strong induction (several thousand-fold) of the mRNA heat shock protein genes, At-HSP17.6 and At-HSP18.2. Concomitantly, the mRNA levels of constitutively expressed actin 2 (At-ACT2) and ribosomal protein L23 (At-L23a) genes were reduced to approximately 50% of the levels in leaves incubated at room temperature. Conversely, under severe heat stress conditions (44 degrees C), the induction of At-HSP17.6 and At-HSP18.2 mRNAs was insignificant, the mRNA levels of At-ACT2 remained at approximately the same levels as in leaves incubated at room temperature, whereas the mRNA level of At-L23 declined. The mRNA levels of At-ACT2 and At-L23a examined in stem, flower and siliques of Arabidopsis plants grown under non-stress condition showed differential alterations; the mRNA level of ribosomal protein L23 correlates with the metabolic activity of tissues. The potential use of house-keeping gene expression as standards in expression profiling and the mechanisms modulating the mRNA levels are discussed.  相似文献   

7.
High temperatures cause a variety of physiological stress responses in insects, including increased generation of reactive oxygen species (ROS), which can cause oxidative damage. This study investigated the effects of thermal stress on ROS generation, the expression of heat shock protein 70 (Hsp70) at the mRNA and protein levels, the activity of antioxidant enzymes (SOD, CAT), and apoptosis in hemocytes of Chilo suppressalis larvae. Results indicated that thermal stress significantly elevated the level of ROS and antioxidant enzyme activity in C. suppressalis larvae. Real-time quantitative PCR showed that hsp70 gene expression was induced by heat stress. Flow cytometric results revealed that the expression profile of Hsp70 at the protein level was in agreement with that at the mRNA level. The expression of Hsp70 at both the mRNA and protein levels reached a maximum at 36 °C in larval hemocytes. Exposure to tested temperatures did not cause any significant change in the rate of apoptosis in larval hemocytes. These results suggest that thermal stress leads to oxidative stress and that antioxidant enzymes and the Hsp70 play an important role in reducing oxidative damage in C. suppressalis larvae.  相似文献   

8.
Yu J  Bao E  Yan J  Lei L 《Cell stress & chaperones》2008,13(3):327-335
The objective of this study was to investigate the kinetics of Hsp60, Hsp70, Hsp90 protein, and messenger RNA (mRNA) expression levels and to correlate these heat shock protein (Hsp) levels with tissue damage resulting from exposure to high temperatures for varying amounts of time. One hundred broilers were heat-stressed for 0, 2, 3, 5, and 10 h, respectively, by rapidly increasing the ambient temperature from 22 +/- 1 degrees C to 37 +/- 1 degrees C. Obvious elevations of plasma creatine kinase indicate damage to myocardial cells after heat stress. Hsp70 and Hsp90, and their corresponding mRNAs in the heart tissue of heat-stressed broilers, elevated significantly after 2 h of heat exposure and decreased quickly with continued heat stress. However, the levels of hsp60 mRNA in the heart of heat-stressed broilers increased sharply (P < 0.01) at 2 h of heat stress but then decreased quickly after 3 h, while the level of Hsp60 protein in the heart increased (P < 0.01) at 2 h of heat stress and maintained a high level throughout heat exposure. The results indicate that the elevation of the three Hsps, especially Hsp60 in heart, may be important markers at the beginning of heat stress and act as protective proteins in adverse environments. The reduction of Hsp signals in the cytoplasm of myocardial cells implies that myocardial cell lesions may have an adverse impact on the function of Hsps during heat stress. Meanwhile, the localization of Hsp70 in blood vessels of broiler hearts suggests another possible mechanism for protection of the heart after heat exposure.  相似文献   

9.
10.
Temperature stress during kernel development affects maize (Zea mays L.) grain growth and yield stability. Maize kernels (hybrid A619 x W64A) were cultured in vitro at 3 d after pollination and either maintained at 25[deg]C or transferred to 35[deg]C for 4 or 8 d, then returned to 25[deg]C until physiological maturity. Kernel fresh and dry matter accumulation was severely disrupted by the long-term heat stress (8 d at 35[deg]C) and did not recover when transferred back to 25[deg]C, resulting in abortion of 97% of the kernels. Kernels exposed to 35[deg]C for 4 d (short-term heat stress) exhibited a recovery in kernel growth and water content at about 18 d after pollination and kernel abortion was reduced to about 23%. During the cell division phase, abscisic acid (ABA) levels showed a steady decline in the control but maintained a moderate level in the heat-stressed kernels. However, later in development heat-stressed kernels had significantly higher levels of ABA than the control. Cytokinin analysis confirmed a peak in zeatin riboside and zeatin levels in control kernels at 10 to 12d after pollination. In contrast, kernels subjected to 4 d of heat stress had no detectable levels of zeatin and the zeatin riboside peak was reduced by 70% and delayed until 18 d after pollination. The long-term heat-stressed kernels showed low to nondetectable levels of either zeatin riboside or zeatin. Regression analysis of ABA level against cytokinin level during the endosperm cell division phase revealed a highly significant negative correlation in nonstressed kernels but no correlation in kernels exposed to short-term or long-term heat stress. Application of benzyladenine to heat-stressed, growth-chamber-grown plants increased thermotolerance in part by reducing kernel abortion at the tip and middle positions on the ear. These results confirm that shift in hormone balance of kernels is one mechanism by which heat stress disrupts maize kernel development. The maintenance of high levels of cytokinins in the kernels during heat stress appears to be important in increasing thermotolerance and providing yield stability of maize.  相似文献   

11.
12.
Ambient temperature is a critical factor that affects biological organisms in many ways. In this study, the authors investigated gene expression changes in rat small intestine in response to heat stress. Male Sprague-Dawley rats were randomly divided into control and heat-stressed groups. Both groups were housed at 25 °C, although the heat-stressed group was also subjected to 40 °C for 2 h each day for 10 successive days. Rats were sacrificed 1, 3, 6, and 10 days after heat treatment, and sections of their small intestine epithelial tissue were excised for morphological examination and microarray analyses. The rat rectal and body surface temperatures and serum cortisol levels were all significantly increased after heat treatment (p < 0.05). The jejuna were significantly damaged by 3 days after heat treatment began. Microarray analysis showed that 422 genes were differentially expressed, of which 290 genes were significantly upregulated and 132 genes were significantly downregulated. Subsequent bioinformatics analyses revealed that the differentially expressed genes were mainly related to stress, immune regulation, and metabolism processes. The bioinformatics analysis of the differentially expressed genes should be beneficial to further investigations on the underlying mechanisms involved in heat stress-induced damage in the small intestine.  相似文献   

13.
14.
15.
16.
17.
Awad M  Young RE 《Plant physiology》1979,64(2):306-308
Cellulase, polygalacturonase (PG), pectinmethylesterase (PME), respiration, and ethylene production were determined in single “Fuerte” avocado fruits from the day of harvest through the start of fruit breakdown. PME declined from its maximum value at the time of picking to a low level early in the climacteric. PG activity was not detectable in the preclimacteric stage, increased during the climacteric, and continued to increase during the postclimacteric phase to a level three times greater than when the fruit reached the edible soft stage. Cellulase activity was low in the preclimacteric fruit, started to increase just as respiration increased, and reached a level two times greater than at the edible soft stage. Cellulase activity started to increase 3 days before PG activity could be detected. Increased production of ethylene followed the increase in respiration and cellulase activity by about 1.5 days. These results indicate that a close relation exists between the rapid increase in the cell wall-depolymerizing enzymes and the rise in respiration and ethylene production and refocused attention on the role of the cell wall and the associated plasma membrane in the early events of fruit ripening.  相似文献   

18.
Heat stress causes a decrease of fertility in roosters. Yet, the way acute heat stress affects protein expression remains poorly understood. This study investigated differential protein expression in testes of the L2 strain of Taiwan country chickens following acute heat stress. Twelve 45-week-old roosters were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2 hours of recovery, and with 6 hours of recovery. Testis samples were collected for morphologic assay and protein analysis. Some of the differentially expressed proteins were validated by Western blot and immunohistochemistry. Abnormal and apoptotic spermatogenic cells were observed at 2 hours of recovery after acute heat stress, especially among the spermatocytes. Two-dimensional difference gel electrophoresis revealed that 119 protein spots were differentially expressed in chicken testes following heat stress, and peptide mass fingerprinting revealed that these spots contained 92 distinct proteins. In the heat-stressed samples, the heat shock proteins, chaperonin containing t-complex, and proteasome subunits were downregulated, and glutathione S-transferase, transgelin, and DJ-1 were upregulated. Our results demonstrate that acute heat stress impairs the processes of translation, protein folding, and protein degradation, and thus results in apoptosis and interferes with spermatogenesis. On the other hand, the increased expression of antioxidant enzymes, including glutathione S-transferase and DJ-1, may attenuate heat-induced damage. These findings may have implications for breeding chickens that can tolerate more extreme conditions.  相似文献   

19.
The effect of low concentrations of O2 (1%) with or without the application of exogenous ethylene (10 l/l) on the production of endogenous ethylene, the activity of polygalacturonase (PG), and the ripening of tomato fruits during storage for three weeks at 20°C and four weeks at 10°C, followed by one week under ambient conditions (25°C) was studied. The internal ethylene concentration in the fruits stored under low O2 at 10 or 20°C was low during storage and increased only when fruits were transferred to ambient conditions. The application of exogenous ethylene to fruits stored under low O2 at 10 or 20°C did not induce autocatalytic ethylene synthesis. By contrast, the internal ethylene concentration of fruits stored in air was high at 20°C and somewhat lower at 10°C. Under low O2 conditions, PG activity was low and the fruits remained firm and green throughout storage, whereas, during storage in the air, PG activity increased and the fruits softened and developed their characteristic red color.  相似文献   

20.
In an effort to understand whether heat shock protein 70 (Hsp70) participates in the environmental 5 °C signal reception/transduction toward breaking embryonic diapause of the silkworm Bombyx mori, we isolated a cDNA for Hsp70a and examined the expression of Hsp70a mRNA in B. mori diapause and nondiapause eggs by quantitative real-time PCR. Hsp70a mRNA gradually increased in diapause eggs continuously kept at 25 °C after oviposition to maintain diapause. When diapause eggs were exposed to the diapause-terminating condition of 5 °C beginning at 2 days post-oviposition, Hsp70a mRNA increased beginning at 5 days post-cold treatment. Even in nondiapause eggs, Hsp70a mRNA increased slightly with exposure to 5 °C. These results suggest that Hsp70a is involved in reception/transduction of the diapause-terminating (5 °C) signal via gene activation. The expression patterns of Hsp70a mRNA are discussed in relation to those of the cold-response gene Samui.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号