首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40–64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.  相似文献   

2.
Connectivity of larvae among metapopulations in open marine systems can be a double-edged sword, allowing for the colonization and replenishment of both desirable and undesirable elements of interacting species-rich assemblages. This article studies the effect of recruitment by coral and macroalgae on the resilience of grazed reef ecosystems. In particular, we focus on how larval connectivity affects regime shifts between alternative assemblages that are dominated either by corals or by macroalgae. Using a model with bistability dynamics, we show that recruitment of coral larvae erodes the resilience of a macroalgae-dominated ecosystem when grazing is high, but has negligible effect when grazing is low. Conversely, recruitment by macroalgae erodes the resilience of a coral-dominated ecosystem when grazing is low, leading to a regime shift to macroalgae. Thus, spillover of coral recruits from highly protected areas will not restore coral cover or prevent flips to macroalgae in the surrounding seascape if grazing levels in these areas are depleted, but may be pivotal for re-building coral populations if grazing is high. Fishing restrictions and the re-introduction of herbivores should therefore be a prime conservation objective for preventing undesirable regime shifts. Connectivity by some components of coral reef assemblages (e.g., macroalgae, pathogens, crown-of-thorns starfish) may be detrimental to sustaining reefs, especially where overfishing and other drivers have eroded their resilience, making them more vulnerable to a regime shift.  相似文献   

3.
Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming.  相似文献   

4.
Connectivity, the demographic linking of local populations through the dispersal of individuals, is one of the most poorly understood processes in population dynamics, yet has profound implications for conservation and harvest strategies. For marine species with pelagic larvae, direct estimation of connectivity remains logistically challenging and has mostly been limited to single snapshots in time. Here, we document seasonal and interannual patterns of larval dispersal in a metapopulation of the coral reef fish Amphiprion polymnus. A 3‐year record of larval trajectories within and among nine discrete local populations from an area of approximately 35 km was established by determining the natal origin of settled juveniles through DNA parentage analysis. We found that spatial patterns of both self‐recruitment and connectivity were remarkably consistent over time, with a low level of self‐recruitment at the scale of individual sites. Connectivity among sites was common and multidirectional in all years and was not significantly influenced by seasonal variability of predominant surface current directions. However, approximately 75% of the sampled juveniles could not be assigned to parents within the study area, indicating high levels of immigrations from sources outside the study area. The data support predictions that the magnitude and temporal stability of larval connectivity decreases significantly with increasing distance between subpopulations, but increases with the size of subpopulations. Given the considerable effort needed to directly measure larval exchange, the consistent patterns suggest snapshot parentage analyses can provide useful dispersal estimates to inform spatial management decisions.  相似文献   

5.
We employed a multi-scale clustering methodology known as “data cloud geometry” to extract functional connectivity patterns derived from functional magnetic resonance imaging (fMRI) protocol. The method was applied to correlation matrices of 106 regions of interest (ROIs) in 29 individuals with autism spectrum disorders (ASD), and 29 individuals with typical development (TD) while they completed a cognitive control task. Connectivity clustering geometry was examined at both “fine” and “coarse” scales. At the coarse scale, the connectivity clustering geometry produced 10 valid clusters with a coherent relationship to neural anatomy. A supervised learning algorithm employed fine scale information about clustering motif configurations and prevalence, and coarse scale information about intra- and inter-regional connectivity; the algorithm correctly classified ASD and TD participants with sensitivity of and specificity of . Most of the predictive power of the logistic regression model resided at the level of the fine-scale clustering geometry, suggesting that cellular versus systems level disturbances are more prominent in individuals with ASD. This article provides validation for this multi-scale geometric approach to extracting brain functional connectivity pattern information and for its use in classification of ASD.  相似文献   

6.
Developing networks of no-take marine reserves is often hindered by uncertainty in the extent to which local marine populations are connected to one another through larval dispersal and recruitment (connectivity). While patterns of connectivity can be predicted by larval dispersal models and validated by empirical methods, biogeographic approaches have rarely been used to investigate connectivity at spatial scales relevant to reserve networks (10's–100's of km). Here, species assemblage patterns in coral reef fish were used together with an individual-based model of dispersal of reef fish larvae to infer patterns of connectivity in a ∼300 km wide region in the Philippines that included the Bohol Sea and adjacent bodies of water. A dominant current flows through the study region, which may facilitate connectivity among >100 no-take reserves. Connectivity was first investigated by analysing data on the presence/absence of 216 species of reef fish and habitat variables across 61 sites. Hierarchical clustering of sites reflecting species assemblage patterns distinguished a major group of sites in the Bohol Sea (Bray–Curtis similarity >70%) from sites situated in adjacent bodies of water (bays, channels between islands and a local sea). The grouping of sites could be partly explained by a combination of degree of embayment, % cover of sand and % cover of rubble (Spearman rank correlation, ρw = 0.42). The individual-based model simulated dispersal of reef fish larvae monthly for three consecutive years in the region. The results of simulations, using a range of pelagic larval durations (15–45 days), were consistent with the species assemblage patterns. Sites in the model that showed strongest potential connectivity corresponded to the majority of sites that comprised the Bohol Sea group suggested by hierarchical clustering. Most sites in the model that exhibited weak connectivity were groups of sites which had fish assemblages that were least similar to those in the Bohol Sea group. Concurrent findings from the two approaches suggest a strong influence of local oceanography and geography on broad spatial patterns of connectivity. The predictions can be used as an initial basis to organise existing reserves to form ecologically meaningful networks. This study showed that species assemblage patterns could be a viable supplementary indicator of connectivity if used together with predictions from a larval dispersal model and if the potential effect of habitat on the structuring of species assemblages is taken into consideration.  相似文献   

7.
A network of multiple brain regions is recruited in face perception. Our understanding of the functional properties of this network can be facilitated by explicating the structural white matter connections that exist between its functional nodes. We accomplished this using functional MRI (fMRI) in combination with fiber tractography on high angular resolution diffusion weighted imaging data. We identified the three nodes of the core face network: the “occipital face area” (OFA), the “fusiform face area” (mid-fusiform gyrus or mFus), and the superior temporal sulcus (STS). Additionally, a region of the anterior temporal lobe (aIT), implicated as being important for face perception was identified. Our data suggest that we can further divide the OFA into multiple anatomically distinct clusters – a partitioning consistent with several recent neuroimaging results. More generally, structural white matter connectivity within this network revealed: 1) Connectivity between aIT and mFus, and between aIT and occipital regions, consistent with studies implicating this posterior to anterior pathway as critical to normal face processing; 2) Strong connectivity between mFus and each of the occipital face-selective regions, suggesting that these three areas may subserve different functional roles; 3) Almost no connectivity between STS and mFus, or between STS and the other face-selective regions. Overall, our findings suggest a re-evaluation of the “core” face network with respect to what functional areas are or are not included in this network.  相似文献   

8.

Marine protected areas (MPAs) have the potential to conserve biodiversity and improve fishery sustainability, but their efficacy depends on sound design and implementation, which requires an understanding of connectivity among reserves and between reserves and fished areas. Most studies of connectivity involving reserves focus on fishes with characteristics atypical for exploited species, making the results less applicable to fisheries management. Here, patterns of genomic diversity were assessed within and among geographic samples of juvenile of silk snapper, Lutjanus vivanus, collected in protected and fished areas on the western coast of Puerto Rico. The results indicate significant variation in spatiotemporal genetic recruitment patterns, with the two MPAs located off the shelf having partially decoupled recruitment processes from sites on the shelf. Spatial autocorrelation was found at distances less than 20 km within years, but the degree and pattern of spatial structure differed across years, suggesting that recruitment along the west coast of Puerto Rico originates from semi-independent units of spawners whose contribution varies in space and time. The results suggest that while MPAs may work to supplement fisheries where recruitment is spatiotemporally predictable, in species for which adult contribution is variable in space and time, other management strategies should be explored as well.

  相似文献   

9.
A complete understanding of population connectivity via larval dispersal is of great value to the effective design and management of marine protected areas (MPA). However empirical estimates of larval dispersal distance, self-recruitment, and within season variability of population connectivity patterns and their influence on metapopulation structure remain rare. We used high-resolution otolith microchemistry data from the temperate reef fish Hypsypops rubicundus to explore biweekly, seasonal, and annual connectivity patterns in an open-coast MPA network. The three MPAs, spanning 46 km along the southern California coastline were connected by larval dispersal, but the magnitude and direction of connections reversed between 2008 and 2009. Self-recruitment, i.e. spawning, dispersal, and settlement to the same location, was observed at two locations, one of which is a MPA. Self-recruitment to this MPA ranged from 50–84%; within the entire 60 km study region, self-recruitment accounted for 45% of all individuals settling to study reefs. On biweekly time scales we observed directional variability in alongshore current data and larval dispersal trajectories; if viewed in isolation these data suggest the system behaves as a source-sink metapopulation. However aggregate biweekly data over two years reveal a reef network in which H. rubicundus behaves more like a well-mixed metapopulation. As one of the few empirical studies of population connectivity within a temperate open coast reef network, this work can inform the MPA design process, implementation of ecosystem based management plans, and facilitate conservation decisions.  相似文献   

10.
Understanding levels of connectivity among scleractinian coral populations over a range of temporal and spatial scales is vital for managing tropical coral reef ecosystems. Here, we use multilocus microsatellite genotypes to assess the spatial genetic structure of two molecular operational taxonomic units (MOTUs, types α and β) of the widespread coral Pocillopora damicornis on the Great Barrier Reef (GBR) and infer the extent of connectivity on spatial scales spanning from local habitat types to latitudinal sectors of the GBR. We found high genetic similarities over large spatial scales spanning > 1000 km from the northern to the southern GBR, but also strong genetic differentiation at local scales in both MOTUs. The presence of a considerable number of first‐generation migrants within the populations sampled (12% and 27% for types α and β, respectively) suggests that genetic differentiation over small spatial scales is probably a consequence of stochastic recruitment from different genetic pools into recently opened up spaces on the reef, for example, following major disturbance events. We explain high genetic similarity among populations over hundreds of kilometres by long competency periods of brooded zooxanthellate larvae and multiple larval release events each year, combined with strong longshore currents typical along the GBR. The lack of genetic evidence for predominantly clonal reproduction in adult populations of P. damicornis, which broods predominantly asexually produced larvae, further undermines the paradigm that brooded larvae settle close to parent colonies shortly after the release.  相似文献   

11.
Climate change and coral reef connectivity   总被引:3,自引:3,他引:0  
This review assesses and predicts the impacts that rapid climate change will have on population connectivity in coral reef ecosystems, using fishes as a model group. Increased ocean temperatures are expected to accelerate larval development, potentially leading to reduced pelagic durations and earlier reef-seeking behaviour. Depending on the spatial arrangement of reefs, the expectation would be a reduction in dispersal distances and the spatial scale of connectivity. Small increase in temperature might enhance the number of larvae surviving the pelagic phase, but larger increases are likely to reduce reproductive output and increase larval mortality. Changes to ocean currents could alter the dynamics of larval supply and changes to planktonic productivity could affect how many larvae survive the pelagic stage and their condition at settlement; however, these patterns are likely to vary greatly from place-to-place and projections of how oceanographic features will change in the future lack sufficient certainty and resolution to make robust predictions. Connectivity could also be compromised by the increased fragmentation of reef habitat due to the effects of coral bleaching and ocean acidification. Changes to the spatial and temporal scales of connectivity have implications for the management of coral reef ecosystems, especially the design and placement of marine-protected areas. The size and spacing of protected areas may need to be strategically adjusted if reserve networks are to retain their efficacy in the future.  相似文献   

12.
The use of marine protected area (MPA) networks to sustain fisheries and conserve biodiversity is predicated on two critical yet rarely tested assumptions. Individual MPAs must produce sufficient larvae that settle within that reserve's boundaries to maintain local populations while simultaneously supplying larvae to other MPA nodes in the network that might otherwise suffer local extinction. Here, we use genetic parentage analysis to demonstrate that patterns of self-recruitment of two reef fishes (Amphiprion percula and Chaetodon vagabundus) in an MPA in Kimbe Bay, Papua New Guinea, were remarkably consistent over several years. However, dispersal from this reserve to two other nodes in an MPA network varied between species and through time. The stability of our estimates of self-recruitment suggests that even small MPAs may be self-sustaining. However, our results caution against applying optimization strategies to MPA network design without accounting for variable connectivity among species and over time.  相似文献   

13.
Oceanographic features influence the transport and delivery of marine larvae, and physical retention mechanisms, such as eddies, can enhance self‐recruitment (i.e. the return of larvae to their natal population). Knowledge of exact locations of hatching (origin) and settlement (arrival) of larvae of reef animals provides a means to compare observed patterns of self‐recruitment ‘connectivity’ with those expected from water circulation patterns. Using parentage inference based on multiple sampling years in Moorea, French Polynesia, we describe spatial and temporal variation in self‐recruitment of the anemonefish Amphiprion chrysopterus, evaluate the consistency of net dispersal distances of self‐recruits against the null expectation of passive particle dispersal and test the hypothesis that larvae originating in certain reef habitats (lagoons and passes) would be retained and thus more likely to self‐recruit than those originating on the outer (fore) reef. Estimates of known self‐recruitment were consistent across the sampling years (~25–27% of sampled recruits). For most (88%) of these self‐recruits, the net distance between hatching and settlement locations was within the maximum dispersal distance expected for a neutrally buoyant passive particle based on the longest duration of the larval dispersive phase and the average direction and speed of current flow around Moorea. Furthermore, a parent of a given body size on the outer (fore) reef of Moorea was less likely to produce self‐recruits than those in passes. Our findings show that even a simple dispersal model based on net average flow and direction of alongshore currents can provide insight into landscape‐scale retention patterns of reef fishes.  相似文献   

14.
Marine protected areas (MPAs) are major tools to protect biodiversity and sustain fisheries. For species with a sedentary adult phase and a dispersive larval phase, the effectiveness of MPA networks for population persistence depends on connectivity through larval dispersal. However, connectivity patterns between MPAs remain largely unknown at large spatial scales. Here, we used a biophysical model to evaluate connectivity between MPAs in the Mediterranean Sea, a region of extremely rich biodiversity that is currently protected by a system of approximately a hundred MPAs. The model was parameterized according to the dispersal capacity of the dusky grouper Epinephelus marginatus, an archetypal conservation-dependent species, with high economic importance and emblematic in the Mediterranean. Using various connectivity metrics and graph theory, we showed that Mediterranean MPAs are far from constituting a true, well-connected network. On average, each MPA was directly connected to four others and MPAs were clustered into several groups. Two MPAs (one in the Balearic Islands and one in Sardinia) emerged as crucial nodes for ensuring multi-generational connectivity. The high heterogeneity of MPA distribution, with low density in the South-Eastern Mediterranean, coupled with a mean dispersal distance of 120 km, leaves about 20% of the continental shelf without any larval supply. This low connectivity, here demonstrated for a major Mediterranean species, poses new challenges for the creation of a future Mediterranean network of well-connected MPAs providing recruitment to the whole continental shelf. This issue is even more critical given that the expected reduction of pelagic larval duration following sea temperature rise will likely decrease connectivity even more.  相似文献   

15.
Reef-building species form discrete patches atop soft sediments, and reef restoration often involves depositing solid material as a substrate for larval settlement and growth. There have been few theoretical efforts to optimize the physical characteristics of a restored reef patch to achieve high recruitment rates. The delivery of competent larvae to a reef patch is influenced by larval behavior and by physical habitat characteristics such as substrate roughness, patch length, current speed, and water depth. We used a spatial model, the “hitting-distance” model, to identify habitat characteristics that will jointly maximize both the settlement probability and the density of recruits on an oyster reef (Crassostrea virginica). Modeled larval behaviors were based on laboratory observations and included turbulence-induced diving, turbulence-induced passive sinking, and neutral buoyancy. Profiles of currents and turbulence were based on velocity profiles measured in coastal Virginia over four different substrates: natural oyster reefs, mud, and deposited oyster and whelk shell. Settlement probabilities were higher on larger patches, whereas average settler densities were higher on smaller patches. Larvae settled most successfully and had the smallest optimal patch length when diving over rough substrates in shallow water. Water depth was the greatest source of variability, followed by larval behavior, substrate roughness, and tidal current speed. This result suggests that the best way to maximize settlement on restored reefs is to construct patches of optimal length for the water depth, whereas substrate type is less important than expected. Although physical patch characteristics are easy to measure, uncertainty about larval behavior remains an obstacle for predicting settlement patterns. The mechanistic approach presented here could be combined with a spatially explicit metapopulation model to optimize the arrangement of reef patches in an estuary or region for greater sustainability of restored habitats.  相似文献   

16.
Reef fish sustain populations on isolated reefs and show genetic diversity between nearby reefs even though larvae of many species are swept away from the natal site during pelagic dispersal. Retention or recruitment to natal reefs requires orientation capabilities that enable larvae to find their way. Although olfactory and acoustically based orientation has been implicated in homing when larvae are in the reef’s vicinity, it is still unclear how they cope with greater distances. Here we show evidence for a sun compass mechanism that can bring the larvae to the vicinity of their natal reef. In a circular arena, pre-settlement larvae and early settlers (<24 hours) of the cardinal fish, Ostorhinchus doederleini, showed a strong SSE directional swimming response, which most likely has evolved to compensate for the locally prevailing large scale NNW current drift. When fish were clock-shifted 6 hours, they changed their orientation by ca. 180° as predicted by the tropical sun curve at One Tree Island, i.e. they used a time-compensated sun compass. Furthermore, the fish oriented most consistently at times of the day when the sun azimuth is easy to determine. Microsatellite markers showed that the larvae that had just arrived at One Tree Island genetically belonged to either the local reef population or to Fitzroy Reef located 12 kilometers to the SSE. The use of a sun compass adds a missing long-distance link to the hierarchy of other sensory abilities that can direct larvae to the region of origin, including their natal reef. Predominant local recruitment, in turn, can contribute to genetic isolation and potential speciation.  相似文献   

17.

Coral cover and community structure in the Arabian Gulf have changed considerably in recent decades. Recurrent bleaching events have dramatically reduced the abundance of previously dominant Acropora corals and have given space to other more thermally resistant coral taxa. The loss of Acropora spp. has reduced reef structural complexity and associated biodiversity. Sir Bu Nair Island (SBN) is a nature reserve in the United Arab Emirates that sustains some of the last dense and extensive Acropora stands in the southern Gulf. This study investigated coral recruitment at a southern coral reef on SBN and examined larval dispersal and reef connectivity between SBN and other local and regional reefs through an agent-based model coupled with a 3D hydrodynamic model. Recruitment was surveyed with settlement tiles deployed from April to September 2019. Contrary to other reefs in the Gulf, we found that Acropora is indeed the major coral recruiter settling at SBN reefs, followed by Porites. The models indicate that SBN reefs are mostly self-seeding but also connected to other reefs in the Gulf. SBN can supply coral larvae to the neighbouring islands Siri and Abu Musa, and nearby reefs along with the north-eastern Emirates, Iranian coast and Strait of Hormuz. Findings highlight the importance of SBN to protect remnant populations of the locally almost extinct Acropora in a region where natural coral recovery is increasingly sparse.

  相似文献   

18.
Recruitment constraints on Singapore''s dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore''s reefs and other reefs in the region, 2) there is limited exchange within Singapore''s Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore''s Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1–68.6 settled individuals per 10,000 m2). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.  相似文献   

19.

Tropical coral reefs are subject to multiple pressures from both natural and anthropogenic sources. These pressures have caused widespread declines in reef health, resulting in the increased use of spatial management tools such as marine protected areas (MPAs). MPAs have proven generally effective if well designed and enforced, but there are limited long-term studies investigating how the presence of small-scale MPAs affects fish populations and reef communities. Using a 12-year time series, we found that small-scale (10–50 ha) community-managed MPAs along the Danajon Bank of the Philippines preserved average fish biomass within their boundaries over time relative to surrounding fished reefs. Unprotected areas are, however, showing significant long-term biomass decline. MPAs were also found to preserve more key trophic groups and larger-bodied commercially targeted reef fish families. Fish biomass of piscivore, scavenger and invertivore trophic groups inside individual MPAs is, however, still declining at a similar rate as outside. Surprisingly, long-term benthic cover and growth form composition were not significantly affected overall by MPA presence, despite the sporadic use of highly destructive dynamite fishing in this region. Coral cover has remained historically low (21–28%) throughout the study, following widespread bleaching mortality. While management tempered overall abundance declines, we found that irrespective of MPA presence, there was a generalised decline of both large- and small-bodied fish size groups across the study region, most steeply within the 20–30 cm length fish, and a shift towards proportionally higher abundances of small (5–10 cm) fish. This indicates a combination of over-exploitation, inadequate MPA size and coverage for larger fish, and the lingering effects of the 1998 bleaching event. Generalised shifts in body size and trophic structure reported here could lead to future reductions in fishery productivity and stability and will be further exacerbated unless broader fishery regulations and enforcement is instated.

  相似文献   

20.
The genetic population structure of the common branching vase sponge, Callyspongia vaginalis, was determined along the entire length (465 km) of the Florida reef system from Palm Beach to the Dry Tortugas based on sequences of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene. Populations of C. vaginalis were highly structured (overall ΦST = 0.33), in some cases over distances as small as tens of kilometers. However, nonsignificant pairwise ΦST values were also found between a few relatively distant sampling sites suggesting that some long distance larval dispersal may occur via ocean currents or transport in sponge fragments along continuous, shallow coastlines. Indeed, sufficient gene flow appears to occur along the Florida reef tract to obscure a signal of isolation by distance, but not to homogenize COI haplotype frequencies. The strong genetic differentiation among most of the sampling locations suggests that recruitment in this species is largely local source-driven, pointing to the importance of further elucidating general connectivity patterns along the Florida reef tract to guide the spatial scale of management efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号