首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Geostatistical techniques were used to assess the spatial patterns of spores of arbuscular mycorrhizal fungi (AMF) in soils from two contrasting plant communities: a salt marsh containing only arbuscular mycorrhizal and non-mycorrhizal plants in a distinct clumped distribution pattern and a maquis with different types of mycorrhiza where most plants were relatively randomly distributed. Also evaluated was the relationship between the spatial distribution of spores and AM plant distribution and soil properties. A nested sampling scheme was applied in both sites with sample cores taken from nested grids. Spores of AMF and soil characteristics (organic matter and moisture) were quantified in each core, and core sample location was related to plant location. Semivariograms for spore density indicated strong spatial autocorrelation and a patchy distribution within both sites for all AM fungal genera found. However, the patch size differed between the two plant communities and AM fungal genera. In the salt marsh, AM fungal spore distribution was correlated with distance to AM plants and projected stand area of AM plants. In maquis, spatial AM fungal spore distribution was correlated with organic matter. These results suggest that spore distribution of AMF varied between the two plant communities according to plant distribution and soil properties.  相似文献   

2.
3.
虽然大量研究已利用模型拟合的方法对植物群落的物种多度分布(SAD)进行了不同数学模型拟合,但对SAD形状(曲线的偏斜度)如何在环境梯度上连续变化的研究仍然不足; 尤其是森林群落,同一地区不同植被类型群落SAD的模型拟合和形状变化是否一致,仍无明确定论。该研究针对安吉小鲵国家级自然保护区中分布的主要森林植被类型,采用样方调查法,记录了28个20 m × 20 m样方中的物种组成及其个体多度。通过对数级数和对数正态模型对样方中的SAD曲线进行拟合,选择最优模型,并通过Gambin模型中的α值和Weibull模型中的η值反映SAD的形状,以及Weibull模型中λ值反映SAD的变化尺度(物种间个体多度的差异程度),分析海拔高度与SAD的形状和变化尺度之间的关系。结果表明:(1)该地区的森林群落物种多度分布主要符合对数级数模型。(2)当包含所有样方时,α值和η值与海拔高度无显著相关性,λ值与海拔呈显著正相关。(3)针对不同的植被类型,常绿与落叶阔叶混交林中α值和η值与海拔高度呈负相关,但在落叶阔叶林中λ值与海拔高度之间具有正相关关系,而α值和η值与海拔高度之间均无显著相关性。该研究结果表明,不同植被类型SAD的形状变化与海拔之间的关系存在差异,说明海拔对不同植被类型中各物种多度分布具有不同影响。因此,在关于植物群落的物种多度分布及其与影响因子关系的研究中,需要考虑区分不同的植被类型。  相似文献   

4.

Aim

This study investigated the effects of environmental variables on the bacterial and fungal communities of the Beilu River (on the Tibetan Plateau) permafrost soils with different vegetation types.

Methods and Results

Microbial communities were sampled from meadow, steppe and desert steppe permafrost soils during May, June, August and November, and they were analysed by both pyrosequencing and the use of Biolog EcoPlates. The dominant bacterial and fungal phyla in meadow and steppe soils were Proteobacteria and Ascomycota, whereas Actinobacteria and Basidiomycota predominated in desert steppe soils. The bacterial communities in meadow soils degraded amines and amino acids very rapidly, while polymers were degraded rapidly by steppe communities. The RDA patterns showed that the microbial communities differed greatly between meadow, steppe and desert steppe, and they were related to variations in the soil moisture, C/N ratio and pH. A UniFrac analysis detected clear differences between the desert steppe bacterial community and others, and seasonal shifts were observed. The fungal UniFrac patterns differed significantly between meadow and steppe soils. There were significant correlations between the bacterial diversity (H′) and soil moisture (= 0·506) and C/N (= 0·527). The fungal diversity (Hf′) was significantly correlated with the soil pH (= 0·541).

Conclusion

The soil moisture, C/N ratio and pH were important determinants of the microbial community structure in Beilu River permafrost soils.

Significance and Impact of the Study

These results may provide a useful baseline for predicting the variation in microbial communities in response to climate changes.  相似文献   

5.
Understanding crop resilience to environmental stress is critical in predicting the consequences of global climate change for agricultural systems worldwide, but to date studies addressing crop resiliency have focused primarily on plant physiological and molecular responses. Arbuscular mycorrhizal fungi (AMF) form mutualisms with many crop species, and these relationships are key in mitigating the effects of abiotic stress in many agricultural systems. However, to date there is little research examining whether (1) fungal community structure in agroecosystems is resistant to changing environmental conditions, specifically water limitation and (2) resilience of fungal community structure is moderated by agricultural management systems, namely the integration of trees into cropping systems. Here, we address these uncertainties through a rainfall reduction field experiment that manipulated short‐term water availability in a soybean‐based (Glycine max L. Merr.) agroforest in Southern Ontario, Canada. We employed terminal restriction fragment length polymorphism analysis to determine the molecular diversity of both general fungal and AMF communities in soybean roots under no stress, stress (rainfall shelters added), and poststress (rainfall shelters removed). We found that general fungal and AMF communities sampled from soybean roots were resistant to rainfall reduction in a monoculture, but not in an agroforest. While AMF communities were unchanged after stress removal, general fungal communities were significantly different poststress in the agroforest, indicating a capacity for resiliency. Our study indicates that generalist fungi and AMF are responsive to changes in environmental conditions and that agroecosystem management plays a key role in the resistance and resilience of fungal communities to water limitation.  相似文献   

6.
东北黑土区不同纬度农田土壤真菌分子生态网络比较   总被引:2,自引:0,他引:2  
为了解东北黑土南部、中部和北部3个农田土壤真菌网络结构的异同以及物种之间的相互作用关系,本研究采用Illumina MiSeq技术对东北黑土农田3个长期肥料管理定位试验土壤真菌群落进行测序,并基于随机矩阵理论构建真菌分子生态网络.结果表明: 子囊菌、担子菌和接合菌为优势菌门,肉座菌目、腔菌目和粪壳菌目为优势菌目,但不同地区土壤中一些菌门和菌目的相对丰度存在显著差异.3个地区真菌分子生态网络结构显著不同,北部地区真菌网络更加复杂且物种之间存在更多竞争关系,南部地区真菌网络更不稳定,易受外界环境扰动.3个真菌网络仅有7个共有节点,且共有节点在各地区的连通度存在很大差异.通过亚网络的构建发现,从南到北肉座菌目网络趋于复杂,腔菌网络恰好相反.南部、中部和北部地区真菌网络的关键物种分别为毛壳菌、腔菌和青霉菌.土壤pH值和土壤全氮含量是同时影响3个真菌网络的主要土壤理化因子.  相似文献   

7.
Natural ecosystems provide services to agriculture such as pest control, soil nutrients, and key microbial components. These services and others in turn provide essential elements that fuel biomass productivity. Responsible agricultural management and conservation of natural habitats can enhance these ecosystem services. Vineyards are currently driving land‐use changes in many Mediterranean ecosystems. These land‐use changes could have important effects on the supporting ecosystems services related to the soil properties and the microbial communities associated with forests and vineyard soils. Here, we explore soil bacterial and fungal communities present in sclerophyllous forests and organic vineyards from three different wine growing areas in central Chile. We employed terminal restriction fragment length polymorphisms (T‐RFLP) to describe the soil microbial communities inhabiting native forests and vineyards in central Chile. We found that the bacterial community changed between the sampled growing areas; however, the fungal community did not differ. At the local scale, our findings show that fungal communities differed between habitats because fungi species might be more sensitive to land‐use change compared to bacterial species, as bacterial communities did not change between forests and vineyards. We discuss these findings based on the sensitivity of microbial communities to soil properties and land‐use change. Finally, we focus our conclusions on the importance of naturally derived ecosystem services to vineyards.  相似文献   

8.
The effects of short‐term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community composition, richness, and function of soil bacterial and fungal communities. The sites encompassed different grassland ecosystems spanning a wide range of climatic and soil properties. Drought significantly altered the community composition of soil bacteria and, to a lesser extent, fungi in grasslands from two continents. The magnitude of the fungal community change was directly proportional to the precipitation gradient. This greater fungal sensitivity to drought at more mesic sites contrasts with the generally observed pattern of greater drought sensitivity of plant communities in more arid grasslands, suggesting that plant and microbial communities may respond differently along precipitation gradients. Actinobateria, and Chloroflexi, bacterial phyla typically dominant in dry environments, increased their relative abundance in response to drought, whereas Glomeromycetes, a fungal class regarded as widely symbiotic, decreased in relative abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic species, decreased and increased along the precipitation gradient, respectively. Soil enzyme activity consistently increased under drought, a response that was attributed to drought‐induced changes in microbial community structure rather than to changes in abundance and diversity. Our results provide evidence that drought has a widespread effect on the assembly of microbial communities, one of the major drivers of soil function in terrestrial ecosystems. Such responses may have important implications for the provision of key ecosystem services, including nutrient cycling, and may result in the weakening of plant–microbial interactions and a greater incidence of certain soil‐borne diseases.  相似文献   

9.
10.
Shifts in precipitation regimes are an inherent component of climate change, but in low‐energy systems are often assumed to be less important than changes in temperature. Because soil moisture is the hydrological variable most proximally linked to plant performance during the growing season in arctic‐alpine habitats, it may offer the most useful perspective on the influence of changes in precipitation on vegetation. Here we quantify the influence of soil moisture for multiple vegetation properties at fine spatial scales, to determine the potential importance of soil moisture under changing climatic conditions. A fine‐scale data set, comprising vascular species cover and field‐quantified ecologically relevant environmental parameters, was analysed to determine the influence of soil moisture relative to other key abiotic predictors. Soil moisture was strongly related to community composition, species richness and the occurrence patterns of individual species, having a similar or greater influence than soil temperature, pH and solar radiation. Soil moisture varied considerably over short distances, and this fine‐scale heterogeneity may contribute to offsetting the ecological impacts of changes in precipitation for species not limited to extreme soil moisture conditions. In conclusion, soil moisture is a key driver of vegetation properties, both at the species and community level, even in this low‐energy system. Soil moisture conditions represent an important mechanism through which changing climatic conditions impact vegetation, and advancing our predictive capability will therefore require a better understanding of how soil moisture mediates the effects of climate change on biota.  相似文献   

11.
Aim During recent and future climate change, shifts in large‐scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress‐gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad‐scale environmental data. We evaluated the variation of species co‐occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates. Location Europe. Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co‐occurrence patterns. Results Correlation analyses supported the stress‐gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co‐occurrence patterns may play a major role. Main conclusions Our results demonstrate the importance of species co‐occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate‐induced spatial segregation of the major tree species could have ecological and economic consequences.  相似文献   

12.
13.
14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号