共查询到20条相似文献,搜索用时 15 毫秒
1.
Fabien Leprieur Patrice Descombes Michel Kulbicki David Mouillot Valeriano Parravicini Loïc Pellissier 《Ecology and evolution》2017,7(6):1996-2005
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present‐day distributions of coral reef fish species. We investigated whether species‐specific responses are associated with life‐history traits. We collected a database of coral reef fish distribution together with life‐history traits for the Indo‐Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo‐Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change. 相似文献
2.
Vicariance biogeography emerged several decades ago from the fusion of cladistics and plate tectonics, and quickly came to dominate historical biogeography. The field has since been largely constrained by the notion that only processes of vicariance and not dispersal offer testable patterns and refutable hypotheses, dispersal being a random process essentially adding only noise to a vicariant system. A consequence of this thinking seems to have been a focus on the biogeography of continents and continental islands, considering the biogeography of oceanic islands less worthy of scientific attention because, being dependent on stochastic dispersal, it was uninteresting. However, the importance of dispersal is increasingly being recognized, and here we stress its fundamental role in the generation of biodiversity on oceanic islands that have been created in situ , never connected to larger land masses. Historical dispersal patterns resulting in modern distributions, once considered unknowable, are now being revealed in many plant and animal taxa, in large part through the analysis of polymorphic molecular markers. We emphasize the profound evolutionary insights that oceanic island biodiversity has provided, and the fact that, although small in area, oceanic islands harbour disproportionately high biodiversity and numbers of endemic taxa. We further stress the importance of continuing research on mechanisms generating oceanic island biodiversity, especially detection of general, non-random patterns of dispersal, and hence the need to acknowledge oceanic dispersal as significant and worthy of research. 相似文献
3.
Sky islands are ideal systems for determining the effects of climatic oscillations on species distributions and genetic structure. Our study focused on montane stonefly populations in the Great Basin of western North America. We used niche-based distribution modelling, phylogeography and traditional species-based biogeography to test several hypotheses as follows: (i) genetic differentiation among Doroneuria baumanni populations will be independent of hydrologic connectivity (headwater model); (ii) Sky islands were colonized when habitat was more continuous and populations likely experienced multiple expansions and contractions; (iii) Colonization events were coincident with the late Pleistocene and Holocene; and (iv) Shared topography and climate history will result in concordant patterns of genetic differentiation in D. baumanni and occurrences of 32 stonefly species across the region. Overall, Φ(ST) 's and coalescent-based estimates of migration were consistent with the headwater model. Maximum likelihood and Bayesian gene trees identified three major nonoverlapping east-west clades. Distribution modelling indicated more suitable habitat in the Great Basin during the Last Glacial Maximum than at present, but none during the last interglacial period. Demographic analyses showed evidence of population expansion in one of the three major east-west clades. Intra-clade divergence times (60,000-183,000ybp) were well within the late Pleistocene while among-clade divergence times (499.000-719,000ybp) were deeper. Genetic differentiation in D. baumanni and distributions of stonefly species were significantly concordant. These results imply that climatic oscillations have played major roles in shaping the genetic structure and distributions of Great Basin stoneflies, but that divergence among clades occurred much earlier than our late Pleistocence/early Holocene predictions. 相似文献
4.
Islands of the Pacific Ocean have long fascinated evolutionists. Oceanic islands, generally the products of volcanic activity, provide natural experiments as biological populations are well delimited and the age of islands can be determined using radiometric dating. 'Continental islands', including New Caledonia and New Zealand, provide equally valuable opportunities for evolutionary study. For students of New Zealand biogeography, the peculiar composition of the biota coupled with a limited interpretation of geology has resulted in the widespread acceptance that the flora and fauna is primarily ancient and of vicariant Gondwanan origin. There is increasing evidence from molecular data that much of this biodiversity is the product of evolution following relatively recent colonization. Such data have prompted biologists to consider geological information on New Zealand in more detail. At the heart of the issue is the question of whether modern New Zealand has a terrestrial link through time with the continent Zealandia that split from Gondwanaland some 80 Ma. Zealandia, which includes New Caledonia, Lord Howe Island and several of the subantarctic islands, is now largely submerged, and New Zealand's present terrestrial existence is the product of tectonic activity initiated around 26 Ma. We argue that for the purposes of biogeographical interpretation, New Zealand can be treated as an oceanic island. 相似文献
5.
Although it has been suggested that Pleistocene climate changes drove population differentiation and speciation in many groups of organisms, population genetic evidence in support of this scenario has been ambiguous, and it has often been difficult to distinguish putative vicariance from simple isolation by distance. The sky island communities of the American Southwest present an ideal system in which to compare late Pleistocene range fragmentations documented by palaeoenvironmental studies with population genetic data from organisms within these communities. In order to elucidate the impact of Pleistocene climate fluctuations on these environments, biogeographic patterns in the flightless longhorn cactus beetle, Moneilema appressum were examined using mitochondrial DNA sequence data. Gene tree relationships between haplotypes were inferred using parsimony, maximum-likelihood, and Bayesian analysis. Nested clade analysis, Mantel tests, and coalescent modelling were employed to examine alternative biogeographic scenarios, and to test the hypothesis that Pleistocene climate changes drove population differentiation in this species. The program mdiv was used to estimate migration and divergence times between populations, and to measure the statistical support for isolation over ongoing migration. These analyses showed significant geographic structure in genetic relationships, and implicated topography as a key determinant of isolation. However, although the coalescent analyses suggested that a history of past habitat fragmentation underlies the observed geographic patterns, the nested clade analysis indicated that the pattern was consistent with isolation by distance. Estimated divergence times indicated that range fragmentation in M. appressum is considerably older than the end of the most recent glacial, but coincided with earlier interglacial warming events and with documented range expansions in other, desert-dwelling species of Moneilema. 相似文献
6.
M. Mairal J. J. Aldasoro V. Culshaw I. Manolopoulou M. Alarcón 《Molecular ecology》2015,24(15):3944-3963
Geographical isolation by oceanic barriers and climatic stability has been postulated as some of the main factors driving diversification within volcanic archipelagos. However, few studies have focused on the effect that catastrophic volcanic events have had on patterns of within‐island differentiation in geological time. This study employed data from the chloroplast (cpDNA haplotypes) and the nuclear (AFLPs) genomes to examine the patterns of genetic variation in Canarina canariensis, an iconic plant species associated with the endemic laurel forest of the Canary Islands. We found a strong geographical population structure, with a first divergence around 0.8 Ma that has Tenerife as its central axis and divides Canarian populations into eastern and western clades. Genetic diversity was greatest in the geologically stable ‘palaeo‐islands’ of Anaga, Teno and Roque del Conde; these areas were also inferred as the ancestral location of migrant alleles towards other disturbed areas within Tenerife or the nearby islands using a Bayesian approach to phylogeographical clustering. Oceanic barriers, in contrast, appear to have played a lesser role in structuring genetic variation, with intra‐island levels of genetic diversity larger than those between‐islands. We argue that volcanic eruptions and landslides after the merging of the palaeo‐islands 3.5 Ma played key roles in generating genetic boundaries within Tenerife, with the palaeo‐islands acting as refugia against extinction, and as cradles and sources of genetic diversity to other areas within the archipelago. 相似文献
7.
John Edward Terrell 《Journal of Biogeography》2006,33(12):2088-2098
Focusing on human biogeography as a research endeavour may make sense to biogeographers, but in the academic world generally this particular scholarly niche has long been filled by other rival disciplines such as sociology, human ecology, geography, anthropology and archaeology. It may be true that having so many ways of looking at ourselves as a species is a good thing, but it can also be argued that this academic fragmentation of effort has often nurtured the commonplace view that we as a species are 'above' or 'not part of' what plain folks call the 'natural world'. Here I review the historical and basic intellectual ingredients of what might be (but often isn't) called human biogeography. I offer a case study drawn from my research work on the Sepik coast of Papua New Guinea. This research illustrates how adopting an explicitly biogeographical approach to human diversity can lead to unexpected insights into the character and history of human settlement in this part of the world. One benefit of having a field with this explicit orientation might be that the conservation of biodiversity would make more sense to more people. 相似文献
8.
Climate‐induced changes in the physical, chemical, and biological environment are expected to increasingly stress marine ecosystems, with important consequences for fisheries exploitation. Here, we use the APECOSM‐E numerical model (Apex Predator ECOSystem Model ‐ Estimation) to evaluate the future impacts of climate change on the physiology, spatial distribution, and abundance of skipjack tuna, the worldwide most fished species of tropical tuna. The main novelties of our approach lie in the mechanistic link between environmental factors, metabolic rates, and behavioral responses and in the fully three dimensional representation of habitat and population abundance. Physical and biogeochemical fields used to force the model are provided by the last generation of the IPSL‐CM5 Earth System Model run from 1990 to 2100 under a ‘business‐as‐usual’ scenario (RCP8.5). Our simulations show significant changes in the spatial distribution of skipjack tuna suitable habitat, as well as in their population abundance. The model projects deterioration of skipjack habitat in most tropical waters and an improvement of habitat at higher latitudes. The primary driver of habitat changes is ocean warming, followed by food density changes. Our projections show an increase of global skipjack biomass between 2010 and 2050 followed by a marked decrease between 2050 and 2095. Spawning rates are consistent with population trends, showing that spawning depends primarily on the adult biomass. On the other hand, growth rates display very smooth temporal changes, suggesting that the ability of skipjack to keep high metabolic rates in the changing environment is generally effective. Uncertainties related to our model spatial resolution, to the lack or simplification of key processes and to the climate forcings are discussed. 相似文献
9.
Rushingisha George Martin Gullström Mwita M. Mangora Matern S. P. Mtolera Mats Björk 《Ecology and evolution》2018,8(9):4508-4517
The effect of repeated midday temperature stress on the photosynthetic performance and biomass production of seagrass was studied in a mesocosm setup with four common tropical species, including Thalassia hemprichii, Cymodocea serrulata, Enhalus acoroides, and Thalassodendron ciliatum. To mimic natural conditions during low tides, the plants were exposed to temperature spikes of different maximal temperatures, that is, ambient (29–33°C), 34, 36, 40, and 45°C, during three midday hours for seven consecutive days. At temperatures of up to 36°C, all species could maintain full photosynthetic rates (measured as the electron transport rate, ETR) throughout the experiment without displaying any obvious photosynthetic stress responses (measured as declining maximal quantum yield, Fv/Fm). All species except T. ciliatum could also withstand 40°C, and only at 45°C did all species display significantly lower photosynthetic rates and declining Fv/Fm. Biomass estimation, however, revealed a different pattern, where significant losses of both above‐ and belowground seagrass biomass occurred in all species at both 40 and 45°C (except for C. serrulata in the 40°C treatment). Biomass losses were clearly higher in the shoots than in the belowground root–rhizome complex. The findings indicate that, although tropical seagrasses presently can cope with high midday temperature stress, a few degrees increase in maximum daily temperature could cause significant losses in seagrass biomass and productivity. 相似文献
10.
11.
ANGÉLICA CIBRIÁN‐JARAMILLO A. C. DALY E. BRENNER R. DESALLE T. E. MARLER 《Molecular ecology》2010,19(12):2364-2379
Subject to environmental changes and recurrent isolation in the last ca. 250 Ma, cycads are often described as relicts of a previously common lineage, with populations characterized by low genetic variation and restricted gene flow. We found that on the island of Guam, the endemic Cycas micronesica has most of the genetic variation of 14 EST‐microsatellites distributed within each of 18 genetic populations, from 24 original sampling sites. There were high levels of genetic variation in terms of total number of alleles and private alleles, and moderate levels of inbreeding. Restricted but ongoing gene flow among populations within Guam reveals a genetic mosaic, probably more typical of cycads than previously assumed. Contiguous cycad populations in the north of Guam had higher self‐recruitment rates compared to fragmented populations in the south, with no substantial connection between them except for one population. Guam’s genetic mosaic may be explained by the influence of forest continuity, seed size, edaphic differences, and human transport of cycads. Also important are the extent of synchrony among flushes of reproductive female seed‐bearing sporophylls and restricted pollen movement by an obligate mutualist and generalist insects. An NADH EST‐locus under positive selection may reflect pressure from edaphic differences across Guam. This and three other loci are ideal candidates for ecological genomic studies. Given this species’ vulnerability due to the recent introduction of the cycad aulacaspis scale, we also identify priority populations for ex situ conservation, and provide a genetic baseline for understanding the effects of invasive species on cycads in the Western Pacific, and islands in general. 相似文献
12.
José L. Carballo Eric Bautista Héctor Nava José A. Cruz‐Barraza Jesus A. Chávez 《Ecology and evolution》2013,3(4):872-886
Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate‐change‐related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold. 相似文献
13.
Katharine Abernethy Emma R. Bush Pierre‐Michel Forget Irene Mendoza Leonor Patricia C. Morellato 《Biotropica》2018,50(3):477-482
We retrace the development of tropical phenology research, compare temperate phenology study to that in the tropics and highlight the advances currently being made in this flourishing discipline. The synthesis draws attention to how fundamentally different tropical phenology data can be to temperate data. Tropical plants lack a phase of winter dormancy and may grow and reproduce continually. Seasonal patterns in environmental parameters, such as rainfall, irradiance or temperature, do not necessarily coincide temporally, as they do in temperate climes. We review recent research on the drivers of phenophase cycles in individual trees, species and communities and highlight how significant innovations in biometric tools and approaches are being driven by the need to deal with circular data, the complexity of defining tropical seasons and the myriad growth and reproductive strategies used by tropical plants. We discuss how important the use of leaf phenology (or remotely‐sensed proxies of leaf phenophases) has become in tracking biome responses to climate change at the continental level and how important the phenophase of forests can be in determining local weather conditions. We also highlight how powerful analyses of plant responses are hampered at many tropical sites by a lack of contextual data on local environmental conditions. We conclude by arguing that there is a clear global benefit in increasing long term tropical phenology data collection and improving empirical collection of local climate measures, contemporary to the phenology data. Directing more resources to research in this sector will be widely beneficial. 相似文献
14.
William J. Sydeman Jarrod A. Santora Sarah Ann Thompson Baldo Marinovic Emanuele Di Lorenzo 《Global Change Biology》2013,19(6):1662-1675
Changes in variance are infrequently examined in climate change ecology. We tested the hypothesis that recent high variability in demographic attributes of salmon and seabirds off California is related to increasing variability in remote, large‐scale forcing in the North Pacific operating through changes in local food webs. Linear, indirect numerical responses between krill (primarily Thysanoessa spinifera) and juvenile rockfish abundance (catch per unit effort (CPUE)) explained >80% of the recent variability in the demography of these pelagic predators. We found no relationships between krill and regional upwelling, though a strong connection to the North Pacific Gyre Oscillation (NPGO) index was established. Variance in NPGO and related central Pacific warming index increased after 1985, whereas variance in the canonical ENSO and Pacific Decadal Oscillation did not change. Anthropogenic global warming or natural climate variability may explain recent intensification of the NPGO and its increasing ecological significance. Assessing non‐stationarity in atmospheric‐environmental interactions and placing greater emphasis on documenting changes in variance of bio‐physical systems will enable insight into complex climate‐marine ecosystem dynamics. 相似文献
15.
Sérgio P. Ávila Patrícia Madeira Nuno Mendes Ana Rebelo ré Medeiros Cidalina Gomes Francisco García-Talavera Carlos Marques da Silva Mário Cachão Claude Hillaire-Marcel António M. de Frias Martins 《Journal of Biogeography》2008,35(6):1123-1129
Aim The influence of the last glaciation on the shallow‐water marine malacofauna of the Azores Islands is reviewed. We test, for this fauna, the ‘Pleistocene temperature theory’ of J.C. Briggs, which hypothesizes that a (supposed) lack of endemics in the older (Azorean endemic) fauna resulted from extinctions caused by a severe drop in sea surface temperatures during the Pleistocene. Location Santa Maria Island, Azores, Portugal. Methods We compare the fossil mollusc fauna of Prainha, Praia do Calhau and Lagoinhas Pleistocene outcrops with the recent mollusc fauna of the Azores Islands. We dated the fossil fauna, using shells of Patella aspera Röding, 1798, by standard U/Th methodology at the GEOTOP laboratory (Université du Québec à Montreal, Canada). Results Dating of the shells of P. aspera indicates that the deposition of the lower unit of the Prainha outcrop corresponded to Marine Oxygen Isotope Substage 5e (MISS 5e). Not a single endemic Azorean species of mollusc that is present in the Pleistocene fossil record has since become extinct, and we found no signs of ‘mass extinctions’ in the littoral marine molluscs of the Azores. The only species that were extirpated from these islands were thermophilic molluscs and littoral bivalves living in fine sand. Main conclusions Our results do not support Briggs’‘Pleistocene temperature theory’. Nor did we find evidence supporting the hypothesis that most of the marine organisms now present in the Azores recolonized the islands after the last glacial maximum. 相似文献
16.
Relatively little is known about fish species interactions in offshore areas of the world’s oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high consumption rates and rapid growth, degree of diet overlap or consumption of lower trophic level prey, and early migration timing into the ocean. The consistent pattern of findings from multiple regions of the ocean provides evidence that interspecific competition can significantly influence salmon population dynamics and that pink salmon may be the dominant competitor among salmon in marine waters. 相似文献
17.
Srgio P. vila Carlos Melo Bjrn Berning Nuno S Rui Quartau Kenneth F. Rijsdijk Ricardo S. Ramalho Ricardo Cordeiro Nuno C. De S Adriano Pimentel Lara Baptista Antnio Medeiros Artur Gil Markes E. Johnson 《Biological reviews of the Cambridge Philosophical Society》2019,94(3):1116-1142
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed ‘Sea‐Level Sensitive’ dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio‐eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50‐m isobath) in response to sea‐level oscillations driven by glacial–interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio‐eustatic sea‐level oscillations, particularly those of the Pleistocene glacial–interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea‐level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea‐surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea‐level changes and their impact on the littoral marine biota; island marine species–area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in‐situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory. 相似文献
18.
19.
Paul P. A. Mazza 《Lethaia: An International Journal of Palaeontology and Stratigraphy》2014,47(4):494-499
Owing to their aquatic lifestyle, hippopotamuses are normally believed to have reached islands by swimming. Yet, some studies suggest they cannot swim due to their relatively high density. If so, this raises the question of how hippopotamuses would have reached some islands. Their immigration into the British Isles, Sicily, Malta, Zanzibar and Mafia can be accounted for, because these islands sit on continental shelves and were often linked to the mainland during the Pleistocene glacio‐eustatic sea‐level falls. In contrast, their occurrence in Crete, Cyprus and Madagascar would be more difficult to explain. Available geological evidence does not seem to rule out that the latter islands might have been connected with the nearest mainland areas in very recent times. This study intends to consider possibilities about how hippopotamuses reached islands and to show that more effective collaboration is required among specialists involved with the study of insular evolution, colonization and speciation. 相似文献
20.
Kiyoshi Fujimoto Akihiro Imaya Ryuichi Tabuchi Shigeo Kuramoto Hajime Utsugi Tamon Murofushi 《Ecological Research》1999,14(4):409-413
Belowground carbon storage was examined for mangrove forests on Pohnpei Island, Micronesia. Stored carbon in a coral reef-type mangrove habitat consisting of a 2 m thick mangrove peat layer, which is a type of mangrove habitat in tropical Pacific islands, was estimated at 1300 t C ha–1. The carbon burial rate during the phase of gradual sea-level rise, which was calculated at 93 g m–2 year–1 between 1800 and 1380 years bp using the medians of the radiocarbon ages, was significantly higher than that between 1380 years bp and present in a stable sea-level phase. 相似文献