首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to understand the cellular mechanisms responsible for defects in the insulin-stimulated signal transduction pathway in a type 2 diabetic animal model. We examined the in vitro PC-1 phosphodiesterase activity and glucose uptake in adipose tissue of streptozotocin (STZ)-induced type 2 diabetic rats. The PC-1 activity was significantly increased in adipose tissue of diabetic rats (0.54 ± 0.08 nmol PNTP hydrolyzed/mg protein/min) compared with controls (0.29 ± 0.05 nmol PNTP hydrolyzed/mg protein/min, p < 0.05). Upon insulin stimulation (100 nM), glucose uptake in the adipose tissue of the controls (4.17 ± 1.28×10−8 μmol/mg/min) was significantly higher than that in the diabetic rats (1.26 ± 0.35×10−8; p < 0.05). These results suggest that elevated PC-1 phosphodiesterase activity and decreased glucose uptake in adipose tissues may be acquired characteristics contributing to the development of type 2 diabetes mellitus.  相似文献   

2.
《Chronobiology international》2013,30(4-5):521-538
Hypertension and noninsulin-dependent diabetes mellitus are usually associated with marked glucose intolerance. Hypertensive and even nonhypertensive diabetic individuals display disturbances of the normal circadian blood pressure rhythm. However, little is known about circadian changes of the glucose uptake in muscle and fat cells, the major glucose utilizing tissues. Therefore, we investigated circadian rhythms of glucose uptake in primary muscle and fat cell cultures of hypertensive and type II diabetic rats and their respective control strains. 2-Deoxy-d-(1-3H)glucose uptake was measured over 48 h after synchronization of cells by means of medium change with and without addition of insulin, phloretine, and/or staurosporine. The circadian changes of glucose uptake were assessed by fitting cosine curves to the uptake values. Insulin stimulation of deoxyglucose uptake was only present in control animals, not in hypertensive and diabetic rats. Deoxyglucose uptake displayed a circadian rhythm in control animals, and was markedly disturbed in hypertensive and diabetic animals. Blocking of glucose transporters by phloretine abolished the circadian pattern of deoxyglucose uptake indicating a role of glucose transporters in its generation. Inhibition of kinases by staurosporine inhibited the insulin-stimulated deoxyglucose uptake, but did not dampen the circadian rhythmicity of basal deoxyglucose uptake. The generation of the circadian rhythm of glucose uptake in muscle and fat cell cultures is therefore probably insulin independent and independent of protein kinases. In summary, our results show for the first time: (a) a circadian rhythm of deoxyglucose uptake in glucose utilizing muscle and fat cells in vitro, (b) a disruption of this rhythm in cells of hypertensive and diabetic rats.  相似文献   

3.
Exercise can increase skeletal muscle sensitivity to insulin, improve insulin resistance and regulate glucose homeostasis in rat models of type 2 diabetes. However, the potential mechanism remains poorly understood. In this study, we established a male Sprague–Dawley rat model of type 2 diabetes, with insulin resistance and β cell dysfunction, which was induced by a high-fat diet and low-dose streptozotocin to replicate the pathogenesis and metabolic characteristics of type 2 diabetes in humans. We also investigated the possible mechanism by which chronic and acute exercise improves metabolism, and the phosphorylation and expression of components of AMP-activated protein kinase (AMPK) and downstream components of phosphatidylinositol 3-kinase (PI3K) signaling pathways in the soleus. As a result, blood glucose, triglyceride, total cholesterol, and free fatty acid were significantly increased, whereas insulin level progressively declined in diabetic rats. Interestingly, chronic and acute exercise reduced blood glucose, increased phosphorylation and expression of AMPKα1/2 and the isoforms AMPKα1 and AMPKα2, and decreased phosphorylation and expression of AMPK substrate, acetyl CoA carboxylase (ACC). Chronic exercise upregulated phosphorylation and expression of AMPK upstream kinase, LKB1. But acute exercise only increased LKB1 expression. In particular, exercise reversed the changes in protein kinase C (PKC)ζ/λ phosphorylation, and PKCζ phosphorylation and expression. Additionally, exercise also increased protein kinase B (PKB)/Akt1, Akt2 and GLUT4 expression, but AS160 protein expression was unchanged. Chronic exercise elevated Akt (Thr308) and (Ser473) and AS160 phosphorylation. Finally, we found that exercise increased peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1) mRNA expression in the soleus of diabetic rats. These results indicate that both chronic and acute exercise influence the phosphorylation and expression of components of the AMPK and downstream to PIK3 (aPKC, Akt), and improve GLUT4 trafficking in skeletal muscle. These data help explain the mechanism how exercise regulates glucose homeostasis in diabetic rats.  相似文献   

4.

Aims

Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury.

Methods

Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by 18F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay.

Results

IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05).

Conclusions

The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK and Akt in reperfused myocardium is essential to IPC-alleviated reperfusion injury. This intrinsic metabolic modulation and cardioprotective capacity are present in STZ-treated hearts and can be triggered by insulin.  相似文献   

5.

Background

Diminished calcium (Ca2+) transients in response to physiological agonists have been reported in vascular smooth muscle cells (VSMCs) from diabetic animals. However, the mechanism responsible was unclear.

Methodology/Principal Findings

VSMCs from autoimmune type 1 Diabetes Resistant Bio-Breeding (DR-BB) rats and streptozotocin-induced rats were examined for levels and distribution of inositol trisphosphate receptors (IP3R) and the SR Ca2+ pumps (SERCA 2 and 3). Generally, a decrease in IP3R levels and dramatic increase in ryanodine receptor (RyR) levels were noted in the aortic samples from diabetic animals. Redistribution of the specific IP3R subtypes was dependent on the rat model. SERCA 2 was redistributed to a peri-nuclear pattern that was more prominent in the DR-BB diabetic rat aorta than the STZ diabetic rat. The free intracellular Ca2+ in freshly dispersed VSMCs from control and diabetic animals was monitored using ratiometric Ca2+ sensitive fluorophores viewed by confocal microscopy. In control VSMCs, basal fluorescence levels were significantly higher in the nucleus relative to the cytoplasm, while in diabetic VSMCs they were essentially the same. Vasopressin induced a predictable increase in free intracellular Ca2+ in the VSMCs from control rats with a prolonged and significantly blunted response in the diabetic VSMCs. A slow rise in free intracellular Ca2+ in response to thapsigargin, a specific blocker of SERCA was seen in the control VSMCs but was significantly delayed and prolonged in cells from diabetic rats. To determine whether the changes were due to the direct effects of hyperglycemica, experiments were repeated using cultured rat aortic smooth muscle cells (A7r5) grown in hyperglycemic and control conditions. In general, they demonstrated the same changes in protein levels and distribution as well as the blunted Ca2+ responses to vasopressin and thapsigargin as noted in the cells from diabetic animals.

Conclusions/Significance

This work demonstrates that the previously-reported reduced Ca2+ signaling in VSMCs from diabetic animals is related to decreases and/or redistribution in the IP3R Ca2+ channels and SERCA proteins. These changes can be duplicated in culture with high glucose levels.  相似文献   

6.
Organic anion transporter 3 (Oat3) is a major renal Oats expressed in the basolateral membrane of renal proximal tubule cells. We have recently reported decreases in renal Oat3 function and expression in diabetic rats and these changes were recovered after insulin treatment for four weeks. However, the mechanisms by which insulin restored these changes have not been elucidated. In this study, we hypothesized that insulin signaling mediators might play a crucial role in the regulation of renal Oat3 function. Experimental diabetic rats were induced by a single intraperitoneal injection of streptozotocin (65 mg/kg). One week after injection, animals showing blood glucose above 250 mg/dL were considered to be diabetic and used for the experiment in which insulin-treated diabetic rats were subcutaneously injected daily with insulin for four weeks. Estrone sulfate (ES) uptake into renal cortical slices was examined to reflect the renal Oat3 function. The results showed that pre-incubation with insulin for 30 min (short term) stimulated [3H]ES uptake into the renal cortical slices of normal control rats. In the untreated diabetic rats, pre-incubation with insulin for 30 min failed to stimulate renal Oat3 activity. The unresponsiveness of renal Oat3 activity to insulin in the untreated diabetic rats suggests the impairment of insulin signaling. Indeed, pre-incubation with phosphoinositide 3-kinase (PI3K) and protein kinase C zeta (PKCζ) inhibitors inhibited insulin-stimulated renal Oat3 activity. In addition, the expressions of PI3K, Akt and PKCζ in the renal cortex of diabetic rats were markedly decreased. Prolonged insulin treatment in diabetic rats restored these alterations toward normal levels. Our data suggest that the decreases in both function and expression of renal Oat3 in diabetes are associated with an impairment of renal insulin-induced Akt/PKB activation through PI3K/PKCζ/Akt/PKB signaling pathway.  相似文献   

7.
Placental transfer of lactate, glucose and 2-deoxyglucose was examined employing the in situ perfused placenta. Control and streptozotocin induced diabetic Wistar rats were infused with [U14C]-glucose and [3H]-2-deoxyglucose (2DG). The fetal side of the placenta was perfuseci with a cell free medium and glucose uptake was calculated in the adjacent fetuses. Despite the 5-fold higher maternal plasma glucose concentration in the diabetic dams the calculated fetal glucose metabolic index was not significantly different between the 2 groups. Placental blood flow was reduced in the diabetic animals compared with controls but reduction of transfer of [U14C]-glucose and [3H]-2-deoxyglucose and endogenously derived [14C]-Lactate to the fetal compartment, could not be accounted for by reduced placental blood flow alone. There was no significant net production or uptake of lactate into the perfusion medium that had perfused the fetal side of the placenta in either group. The plasma lactate levels in the fetuses adjacent to the perfused placenta were found to be higher than in the maternal plasma and significantly higher in the fetuses of the diabetic group compared with control group. In this model the in situ perfused placenta does not secrete significant quantities of lactate into the fetal compartment in either the control or diabetic group.  相似文献   

8.
Previous studies have demonstrated antidiabetic effects for rooibos (Aspalathus linearis) and aspalathin (ASP), one of its main polyphenols. Rooibos, an endemic plant of South Africa, is well-known for its use as herbal tea. Green (‘unfermented’) rooibos has been shown to contain more ASP than ‘fermented’ rooibos tea, currently the major product. In the present study, we investigated the antidiabetic effect of green rooibos extract (GRE) through studies on glucose uptake in L6 myotubes and on pancreatic β-cell protective ability from reactive oxygen species (ROS) in RIN-5F cells. Its in vivo effect was also examined using obese diabetic KK-Ay mice. GRE increased glucose uptake under insulin absent condition and induced phosphorylation of 5′-adenosine monophosphate-activated protein kinase (AMPK) in L6 myotubes as previously demonstrated for ASP. In addition to AMPK, GRE also promoted phosphorylation of Akt, another promoter of glucose transporter 4 (GLUT4) translocation, in L6 myotubes unlike ASP, suggesting an involvement of GRE component(s) other than ASP in Akt phosphorylation. Promotion of GLUT4 translocation to the plasma membrane by GRE in L6 myotubes was demonstrated by Western blotting analysis. GRE suppressed the advanced glycation end products (AGEs)-induced increase in ROS levels in RIN-5F pancreatic β-cells. Subchronic feeding with GRE suppressed the increase in fasting blood glucose levels in type 2 diabetic model KK-Ay mice. These in vitro and in vivo results strongly suggest that GRE has antidiabetic potential through multiple modes of action.  相似文献   

9.

Background

There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells.

Methodology/Principal Findings

Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally) once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin), plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium.

Conclusions/Significance

Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.  相似文献   

10.
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2−/− mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.  相似文献   

11.
Insulin secretion and glucose transport are the major mechanisms to balance glucose homeostasis. Recently, we found that the death effector domain-containing DEDD inhibits cyclin-dependent kinase-1 (Cdk1) function, thereby preventing Cdk1-dependent inhibitory phosphorylation of S6 kinase-1 (S6K1), downstream of phosphatidylinositol 3-kinase (PI3K), which overall results in maintenance of S6K1 activity. Here we newly show that DEDD forms a complex with Akt and heat-shock protein 90 (Hsp90), and supports the stability of both proteins. Hence, in DEDD−/− mice, Akt protein levels are diminished in skeletal muscles and adipose tissues, which interferes with the translocation of glucose-transporter 4 (GLUT4) upon insulin stimulation, leading to inefficient incorporation of glucose in these organs. Interestingly, as for the activation of S6K1, suppression of Cdk1 is involved in the stabilization of Akt protein by DEDD, since diminishment of Cdk1 in DEDD−/− cells via siRNA expression or treatment with a Cdk1-inhibitor, increases both Akt and Hsp90 protein levels. Such multifaceted involvement of DEDD in glucose homeostasis by supporting both insulin secretion (via maintenance of S6K1 activity) and glucose uptake (via stabilizing Akt protein), may suggest an association of DEDD-deficiency with the pathogenesis of type 2 diabetes mellitus.  相似文献   

12.
The sphingomyelin derivative ceramide is a signaling molecule implicated in numerous physiological events. Recently published reports indicate that ceramide levels are elevated in insulin-responsive tissues of diabetic animals and that agents which trigger ceramide production inhibit insulin signaling. In the present series of studies, the short-chain ceramide analog C2-ceramide inhibited insulin-stimulated glucose transport by ~50% in 3T3-L1 adipocytes, with similar reductions in hormone-stimulated translocation of the insulin-responsive glucose transporter (GLUT4) and insulin-responsive aminopeptidase. C2-ceramide also inhibited phosphorylation and activation of Akt, a molecule proposed to mediate multiple insulin-stimulated metabolic events. C2-ceramide, at concentrations which antagonized activation of both glucose uptake and Akt, had no effect on the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) or the amounts of p85 protein and phosphatidylinositol kinase activity that immunoprecipitated with anti-IRS-1 or antiphosphotyrosine antibodies. Moreover, C2-ceramide also inhibited stimulation of Akt by platelet-derived growth factor, an event that is IRS-1 independent. C2-ceramide did not inhibit insulin-stimulated phosphorylation of mitogen-activated protein kinase or pp70 S6-kinase, and it actually stimulated phosphorylation of the latter in the absence of insulin. Various pharmacological agents, including the immunosuppressant rapamycin, the protein synthesis inhibitor cycloheximide, and several protein kinase C inhibitors, were without effect on ceramide’s inhibition of Akt. These studies demonstrate ceramide’s capacity to inhibit activation of Akt and imply that this is a mechanism of antagonism of insulin-dependent physiological events, such as the peripheral activation of glucose transport and the suppression of apoptosis.  相似文献   

13.
Muscle is the largest tissue in our body and plays an important role in glucose homeostasis and hence diabetes. In the present study, we examined the effects of taxifolin (TXF) on glucose metabolism in cultured L6 muscle cells (myotubes) and in type 2 diabetic (T2D) model KK-Ay/Ta mice. TXF dose-dependently increased glucose uptake (GU) in L6 myotubes under the condition of insulin absence. This increase in GU was partially, but significantly canceled by TXF treatment in combination with either LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), which phosphorylates protein kinase B (Akt) or Compound C, an inhibitor of 5’-adenosine monophosphate-activated protein kinase (AMPK). Furthermore, TXF was demonstrated to activate (=phosphorylate) both Akt and AMPK, and promote glucose transporter 4 (GLUT4) translocation to the plasma membrane from cytosol of L6 myotubes via both PI3K/Akt and AMPK signaling pathways. Based on these in vitro findings, we conducted an in vivo experiment in KK-Ay/Ta mice with hyperglycemia and hyperuricemia. Fasting plasma glucose, insulin, uric acid levels and an index of insulin resistance (HOMA-IR) increased significantly in the T2D model mice compared with normal ones. Such rises in the T2D state were significantly suppressed by oral administration of TXF for four weeks. These results suggest that TXF is a potent antihyperglycemic and antihyperuricemic phytochemical in the T2D state.  相似文献   

14.
Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1Tyr632, p-AktSer473, β-arrestin-2, c-Src, p-AS160Thr642, and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.  相似文献   

15.
Diabetic nephropathy is one of the most serious complications of diabetes and the major cause of end-stage renal failure. Consequences of diabetic nephropathy include increased kidney size and glomerular volume, thickening of basement membranes and progressive accumulation of extracellular matrix. Reports in the literature support an association between increased secretion of inflammatory molecules, such as cytokines, growth factors and metalloproteinases, and development of diabetic nephropathy. We investigated the potential of granulocyte colony- stimulating factor (G-CSF) as a therapeutic candidate for preventing diabetic nephropathy. We used 21 8-week-old male rats; 14 were administered a single dose of 60 mg/kg streptozotocin (STZ) to induce diabetes. The rats were divided into three groups of seven: group 1, control; group 2, diabetic; group 3, diabetic plus G-CSF treatment. After 4 weeks, immunoexpressions of transforming growth factor β1 (TGF-β1), Akt and CD34 levels were measured in the kidney tissue. Blood glucose, urine protein and the glomerular area also were measured for each group. We found that G-CSF treatment decreased TGF-β1 immunoexpression, urine protein and glomerular area in kidneys of diabetic rats, and increased CD 34 and Akt immunoexpression in kidneys of diabetic rats. The effects of G-CSF were independent of blood glucose levels. G-CSF may be a useful therapeutic agent for preventing diabetic nephropathy.  相似文献   

16.
Hypertension and noninsulin-dependent diabetes mellitus are usually associated with marked glucose intolerance. Hypertensive and even nonhypertensive diabetic individuals display disturbances of the normal circadian blood pressure rhythm. However, little is known about circadian changes of the glucose uptake in muscle and fat cells, the major glucose utilizing tissues. Therefore, we investigated circadian rhythms of glucose uptake in primary muscle and fat cell cultures of hypertensive and type II diabetic rats and their respective control strains. 2-Deoxy-D-(1-3H)glucose uptake was measured over 48 h after synchronization of cells by means of medium change with and without addition of insulin, phloretine, and/or staurosporine. The circadian changes of glucose uptake were assessed by fitting cosine curves to the uptake values. Insulin stimulation of deoxyglucose uptake was only present in control animals, not in hypertensive and diabetic rats. Deoxyglucose uptake displayed a circadian rhythm in control animals, and was markedly disturbed in hypertensive and diabetic animals. Blocking of glucose transporters by phloretine abolished the circadian pattern of deoxyglucose uptake indicating a role of glucose transporters in its generation. Inhibition of kinases by staurosporine inhibited the insulin-stimulated deoxyglucose uptake, but did not dampen the circadian rhythmicity of basal deoxyglucose uptake. The generation of the circadian rhythm of glucose uptake in muscle and fat cell cultures is therefore probably insulin independent and independent of protein kinases. In summary, our results show for the first time: (a) a circadian rhythm of deoxyglucose uptake in glucose utilizing muscle and fat cells in vitro, (b) a disruption of this rhythm in cells of hypertensive and diabetic rats.  相似文献   

17.
Post-menopausal women exhibit decreases in circulating estrogen levels and whole body insulin sensitivity, suggesting that estrogen regulates skeletal muscle glucose disposal. Thus, we assessed whether estrogen stimulates glucose uptake or enhances insulin sensitivity in skeletal muscle. Ex vivo muscle stimulation with 17β-estradiol (10 nM) resulted in a rapid (?10 min) increase in the phosphorylation of Akt, AMP-activated protein kinase (AMPK), and TBC1D1/4, key signaling proteins that regulate glucose uptake in muscle. Treatment with the estrogen receptor antagonist, ICI 182,780, only partly inhibited signaling, suggesting both an estrogen receptor-dependent and independent mechanism of estradiol action. 17β-Estradiol did not stimulate ex vivo muscle [3H]-2-deoxyglucose uptake or enhance insulin-induced glucose uptake, demonstrating discordance between the estradiol-induced stimulation of signaling proteins and muscle glucose uptake. This study is the first to demonstrate that estradiol stimulates Akt, AMPK, and TBC1D1/4 in intact skeletal muscle, but surprisingly, estradiol does not stimulate muscle glucose uptake.  相似文献   

18.
The elucidation of factors that support human mesenchymal stem cells (hMSCs) growth has remained unresolved partly because of the reliance of many researchers on ill‐defined, proprietary medium formulation. Thus, we investigated the effects of high glucose (D ‐glucose, 25 mM) on hMSCs proliferation. High glucose significantly increased [3H]‐thymidine incorporation and cell‐cycle regulatory protein expression levels compared with 5 mM D ‐glucose or 25 mM L ‐glucose. In addition, high glucose increased transforming growth factor‐β1 (TGF‐β1) mRNA and protein expression levels. High glucose‐induced cell‐cycle regulatory protein expression levels and [3H]‐thymidine incorporation, which were inhibited by TGF‐β1 siRNA transfection and TGF‐β1 neutralizing antibody treatment. High glucose‐induced phosphorylation of protein kinase C (PKC), p44/42 mitogen‐activated protein kinases (MAPKs), p38 MAPK, Akt, and mammalian target of rapamycin (mTOR) in a time‐dependent manner. Pretreatment of PKC inhibitors (staurosporine, 10?6 M; bisindolylmaleimide I, 10?6 M), LY 294002 (PI3 kinase inhibitor, 10?6 M), Akt inhibitor (10?5 M), PD 98059 (p44/42 MAPKs inhibitor, 10?5 M), SB 203580 (p38 MAPK inhibitor, 10?6 M), and rapamycin (mTOR inhibitor, 10?8 M) blocked the high glucose‐induced cellular proliferation and TGF‐β1 protein expression. In conclusion, high glucose stimulated hMSCs proliferation through TGF‐β1 expression via Ca2+/PKC/MAPKs as well as PI3K/Akt/mTOR signal pathways. J. Cell. Physiol. 224:59–70, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Heat shock proteins (HSPs) play an important role in insulin resistance and improve the cellular stress response via HSP induction by exercise to treat type 2 diabetes. In this study, the effects of exercise-induced HSP72 expression levels on whole-body insulin resistance in type 2 diabetic rats were investigated. Male 25-week-old Otsuka Long-Evans Tokushima Fatty rats were divided into three groups: sedentary (Sed), trained in a thermal-neutral environment (NTr: 25 °C), and trained in a cold environment (CTr: 4 °C). Exercise training was conducted 5 days/week for 10 weeks. Rectal temperature was measured following each bout of exercise. An intraperitoneal glucose tolerance test (IPGTT) was performed after the training sessions. The serum, gastrocnemius muscle, and liver were sampled 48 h after the final exercise session. HSP72 and heat shock cognate protein 73 expression levels were analyzed by Western blot, and serum total cholesterol, triglyceride (TG), and free fatty acid (FFA) levels were measured. NTr animals exhibited significantly higher body temperatures following exercise, whereas, CTr animals did not. Exercise training increased HSP72 levels in the gastrocnemius muscle and liver, whereas, HSP72 expression was significantly lower in the CTr group than that in the NTr group (p < 0.05). Glucose tolerance improved equally in both trained animals; however, insulin levels during the IPGTT were higher in CTr animals than those in NTr animals (p < 0.05). In addition, the TG and FFA levels decreased significantly only in NTr animals compared with those in Sed animals. These results suggest that attenuation of exercise-induced HSP72 expression partially blunts improvement in whole-body insulin resistance and lipid metabolism in type 2 diabetic rats.  相似文献   

20.
Di-(2-ethylhexyl)phthalate (DEHP), a distinctive endocrine-disrupting chemical, is widely used as a plasticizer in a variety of consumer products. It can easily cross the placenta and enter breast milk and then it is rapidly absorbed by offspring. Since it is generally accepted that individuals are more sensitive to chemical exposure during vital developmental periods, we investigated whether DEHP exposure during lactation affects cardiac insulin signaling and glucose homeostasis in the F1 male rat offspring at postnatal day 22 (PND22). Lactating Wistar rats were administered with DEHP (1, 10, and 100 mg/kg/d) or olive oil from lactation day 1 to 21 by oral gavage. All the male pups were perfused and killed on PND22. On the day before the killing, they were kept for fasting overnight and blood was collected. The cardiac muscle was dissected out, washed in ice-cold physiological saline repeatedly and used for the assay of various parameters. DEHP-exposed offspring had significantly lower body weight than the control. DEHP-exposed offspring showed elevated blood glucose, decreased 14C-2-deoxyglucose uptake and 14C-glucose oxidation in cardiac muscle at PND22. The concentration of upstream insulin signaling molecules such as insulin receptor subunit β (InsRβ) and insulin receptor substrate 1 (IRS1) were downregulated in DEHP-exposed offspring. However, no significant alterations were observed in protein kinase B (Akt) and Akt substrate of 160 kDa (AS160). Surprisingly, phosphorylation of IRS1 Tyr632 and Akt Ser473 were diminished. Low levels of glucose transporter type 4 (GLUT4) protein and increased GLUT4 Ser488 phosphorylation which decreases its intrinsic activity and translocation towards plasma membrane were also recorded. Lactational DEHP exposure predisposes F 1 male offspring to cardiac glucometabolic disorders at PND22, which may impair cardiac function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号