首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applied Biochemistry and Microbiology - A biologically active composition of chitosan-selenium nanoparticles has been developed. Selenium nanoparticles are characterized by a clear bimodal size...  相似文献   

2.
Plasmonic circular dichroism (CD) responses of hybrid nanostructures containing noble metal nanoparticles and chiral molecules have received increasing interest with various applications in nanophotonics. Chiral biomolecules show strong CD signals typically found in the ultraviolet region, whereas, in the visible range, they produce a weak signal. Strengthening the CD signal in the visible region is of high importance, which could be achieved through fabrication of novel hybrid nanostructures. Herein, gold nanoparticles (GNPs) have been assembled via DNA linker to investigate the possibility of enhancing plasmonic CD signal in the visible range. DNA-linked assemblies with pre- and postannealed conditions were characterized by ultraviolet–visible spectroscopy, dynamic light scattering (DLS), and CD spectropolarimetry. In the presence of DNA linker with sticky ends, the aggregation phenomenon was traced by red shifts of surface plasmon resonance of nanoparticles. Time-dependent hybridization of single-stranded “sticky ends” with DNA-conjugated GNPs and increased probability of hydrogen bond formation lead to enhancement of CD signals in the ultraviolet region. Complexation of biomolecule and nanoparticle assemblies induced enhanced CD signals in the visible range, which was noticed both before and after purification. DLS characterization of the assemblies also confirmed the difference in the size of aggregates, which could be controlled by the linker molecules. This investigation encourages possibility of utilizing plasmonic CD technique as a tool for tracing fabricated nanostructure assemblies with enhanced characterization possibility.  相似文献   

3.
Nanotechnology is emerging as a field of applied science and technology. Synthesis of nanoparticles is done by various physical and chemical methods but the biological system is gaining attention as an eco-friendly technique. The biosynthetic method employing plant parts is proving as a simple and cost-effective method for the synthesis of nanoparticles. The present mini review focuses on the different systems utilized for the synthesis of nanoparticles with special emphasis on the use of plants for the synthesis process, its applications and future directions.  相似文献   

4.
Chitosan (CS) and dextran sulfate (DS) are charged polysaccharides (glycans), which form polyelectrolyte complex-based nanoparticles when mixed under appropriate conditions. The glycan nanoparticles are useful carriers for protein factors, which facilitate the in vivo delivery of the proteins and sustain their retention in the targeted tissue. The glycan polyelectrolyte complexes are also ideal for protein delivery, as the incorporation is carried out in aqueous solution, which reduces the likelihood of inactivation of the proteins. Proteins with a heparin-binding site adhere to dextran sulfate readily, and are, in turn, stabilized by the binding. These particles are also less inflammatory and toxic when delivered in vivo. In the protocol described below, SDF-1α (Stromal cell-derived factor-1α), a stem cell homing factor, is first mixed and incubated with dextran sulfate. Chitosan is added to the mixture to form polyelectrolyte complexes, followed by zinc sulfate to stabilize the complexes with zinc bridges. The resultant SDF-1α-DS-CS particles are measured for size (diameter) and surface charge (zeta potential). The amount of the incorporated SDF-1α is determined, followed by measurements of its in vitro release rate and its chemotactic activity in a particle-bound form.  相似文献   

5.

Background

Type I interferons (IFNs), including IFN-alpha (IFNA) and IFN-beta (IFNB), have anti-inflammatory properties and are used to treat patients with autoimmune and inflammatory disorders. However, little is known of the role of IFN-tau (IFNT), a type I IFN produced by ruminant animals for inflammation. Because IFNB has recently been shown to inhibit nucleotide-binding oligomerization domain-like receptor, pyrin domain-containing 3 (NLRP3) inflammasome activation and subsequent secretion of the potent inflammatory cytokine interleukin (IL)-1β, we examined the effects of ruminant IFNT on NLRP3 inflammasome-mediated IL-1β secretion in human THP-1 macrophages.

Methods and Results

IFNT dose-dependently inhibited IL-1β secretion induced by nano-silica, a well-known activators of NLRP3 inflammasomes, in human macrophages primed with lipopolysaccharide (LPS, TLR4 agonist) and Pam3CSK4 (TLR1/2 agonist). IFNT also suppressed phagocytosis of nano-silica and reactive oxygen species (ROS) generation. Western blot analysis showed that IFNT inhibited both pro-IL-1β and mature IL-1β. In addition, real-time RT-PCR analysis showed that IFNT suppressed IL-1β mRNA expression induced by LPS and Pam3CSK4. Although nano-silica particles did not induce IL-10 secretion, IFNT induced IL-10 secretion in a dose-dependent manner. Furthermore, IFNT-suppressed IL-1β secretion was restored by anti-IL-10 neutralizing antibody.

Conclusions

Ruminant IFNT inhibits NLRP3 inflammasome-driven IL-1β secretion in human macrophages via multiple pathways, including the uptake of nano-silica particles, generation of ROS, and IL-10-mediated inhibition of pro-IL-1β induction. It may be a therapeutic alternative to IFNA and IFNB.  相似文献   

6.
This is the first report of synthesis of silver nanoparticles by using callus extract of Carica papaya. MS medium supplemented with the growth hormones, 2.0 mg l?1 IBA and 0.5 mg l?1 BAP was found to be more suitable for the induction of callus and multiple shoots in papaya. The extract of callus obtained by grinding showed ability of synthesis of silver nanoparticles when treated with silver nitrate (1 mM). The formation of brown colour in the reaction mixture indicates the synthesis of silver nanoparticles. The further detection and characterization of these synthesized silver nanoparticles was carried by spectrophotometry. FTIR spectrum analysis showed peaks between 1000–2000 cm?1 which confirmed the presence of proteins and other ligands required for the synthesis and stabilization of silver nanoparticles. SEM micrograph confirmed the synthesis of spherical silver nanoparticles in the size range of 60–80 nm.  相似文献   

7.
This work investigates the localized surface plasmon resonance (LSPR) of β-Sn also known as white tin. Recently, studies on arrays of β-Sn nanoparticles have shown that these arrays possess strong optical features caused by diffractive effects in the particle grating (Johansen et al., Phys Rev B 84:113405–113408, 2011). In the presence of the grating, the LSPR could not clearly be distinguished in the spectra. To get a better understanding of the plasmonic properties of the particles, we have now eliminated the diffractive effects by placing the particles in a random distribution. The particles were fabricated by electron beam lithography on a fused silica substrate and investigated by optical transmission measurements. In the random configuration, a clear LSPR is observed at 530 nm for particles with a diameter of 155 nm and a height of 50 nm.  相似文献   

8.
Protein aggregation into amyloid fibrils is implicated in the pathogenesis of many neurodegenerative diseases. Engineered nanoparticles have emerged as a potential approach to alter the kinetics of protein fibrillation process. Yet, there are only a few reports describing the use of nanoparticles for inhibition of amyloid-β 40 (Aβ(40)) peptide aggregation, involved in Alzheimer's disease (AD). In the present study, we designed new uniform biocompatible amino-acid-based polymer nanoparticles containing hydrophobic dipeptides in the polymer side chains. The dipeptide residues were designed similarly to the hydrophobic core sequence of Aβ. Poly(N-acryloyl-l-phenylalanyl-l-phenylalanine methyl ester) (polyA-FF-ME) nanoparticles of 57 ± 6 nm were synthesized by dispersion polymerization of the monomer A-FF-ME in 2-methoxy ethanol, followed by precipitation of the obtained polymer in aqueous solution. Cell viability assay confirmed that no significant cytotoxic effect of the polyA-FF-ME nanoparticles on different human cell lines, e.g., PC-12 and SH-SY5Y, was observed. A significantly slow secondary structure transition from random coil to β-sheets during Aβ(40) fibril formation was observed in the presence of these nanoparticles, resulting in significant inhibition of Aβ(40) fibrillation kinetics. However, the polyA-FF-ME analogous nanoparticles containing the l-alanyl-l-alanine (AA) dipeptide in the polymer side groups, polyA-AA-ME nanoparticles, accelerate the Aβ(40) fibrillation kinetics. The polyA-FF-ME nanoparticles and the polyA-AA-ME nanoparticles may therefore contribute to a mechanistic understanding of the fibrillation process, leading to the development of therapeutic strategies against amyloid-related diseases.  相似文献   

9.
Jiang  Longwei  Wang  Peizhuang  Kou  Lvheng  Wei  Hongyuan  Ren  Lili  Zhou  Jiang 《Food biophysics》2021,16(3):317-324

Nano-size catechin/β-cyclodextrin inclusion complex (CA/β-CD IC) with 1:1 molar ratio was obtained by cooling precipitation at 4 °C. Physicochemical properties of the CA/β-CD IC nanoparticles were characterized. Results of dynamic light scattering and SEM observation showed that CA/β-CD IC molecules underwent a process of assembling and shaping nano-size particles. In the range of 10–14 mM, the higher the concentration of β-CD aqueous solution, the faster the CA/β-CD IC nanoparticles form and the larger the size of the nanoparticles (195.2–438.6 nm). The total recovery, inclusion ratio and loading capacity of the CA/β-CD IC nanoparticles were determined. Results of FT-IR and DSC indicated that stability of CA was enhanced after it was embedded into β-CD cavity. XRD results showed that the strongest three diffraction peaks (located at 2θ = 10.6°, 12.4° and 19.6°) of the CA/β-CD IC nanoparticles was different from that (located at 2θ = 6.6°, 11.7° and 17.7°) of micro-size CA/β-CD IC and the nanoparticles obtained from higher concentration solution possessed higher crystallinity.

  相似文献   

10.
This study is aimed to explore the toxicity of TiO2 nanoparticles at low concentrations (0.25, 0.50 & 1.00 μg/ml); on five bacterial isolates and their consortium in waste water medium both in dark and UVA conditions. To critically examine the toxic effects of nanoparticles and the response mechanism(s) offered by microbes, several aspects were monitored viz. cell viability, ROS generation, SOD activity, membrane permeability, EPS release and biofilm formation. A dose and time dependent loss in viability was observed for treated isolates and the consortium. At the highest dose, after 24h, oxidative stress was examined which conclusively showed more ROS generation & cell permeability and less SOD activity in single isolates as compared to the consortium. As a defense mechanism, EPS release was enhanced in case of the consortium against the single isolates, and was observed to be dose dependent. Similar results were noticed for biofilm formation, which substantially increased at highest dose of nanoparticle exposure. Concluding, the consortium showed more resistance against the toxic effects of the TiO2 nanoparticles compared to the individual isolates.  相似文献   

11.
Unprecedent usage of nanoparticles (NPs) over very large scale has raised concerns about their release into agro-environments. The effects of these emerging pollutants on staple food crops and contrasted soils are not very well documented. The main aim of present work was to investigate the exposure–response of 10 wheat cultivars to titanium dioxide (TiO2) NPs (0–1000 mg kg?1) in terms of early growth parameters followed by evaluation of the selected cultivar for complete growth cycle cultivated on contrasted soils in terms of various physicochemical characteristics. Among all the 10 tested wheat cultivars, only Galaxy cultivar sustained to the whole TiO2 NPs exposure range. TiO2 NPs exposure at 1000 mg kg?1 adversely affected the early growth response parameters in MH, Ujala, Uqab, Shafaq and FSD wheat cultivars which clearly indicated the toxic effects induced by NPs. Pot studies were performed using Galaxy cultivar cultivated in different textured soils (loam and sandy loam). At the highest tested concentration of TiO2 NPs, plant growth, biomass and phosphorus (P) concentration along with other tested parameters were not improved in both types of soils compared to their respective control groups. These results suggested the controlled use of NPs to avoid the NPs contamination in soil–plant ecosystems in the longer run.  相似文献   

12.
The interaction between adsorbates of different nature and plasmonic nanoparticles is reviewed here on the basis of the work done in our laboratory in the past few years. The paper is structured for analyzing the interaction of adsorbates with metal nanoparticles as function of the interacting atom (O, N, or S) and the adsorbate conformation. In the study of the adsorption of molecular species on metals, it is necessary to take into account that different interaction mechanisms are possible, leading to the existence of different molecular forms (isomers or conformers). These forms can be evidenced by changing the excitation wavelength, due to a resonant selection of these wavelengths. Charge-transfer complexes and electrostatic interactions are the usual driving forces involved in the interaction of adsorbates on metal surfaces when these metallic systems are used in wet conditions. The understanding of the metal–adsorbate interaction is crucial in the surface functionalization of metal surfaces, which has a growing importance in the development of sensing systems or optoelectronic devices. In relation to this, special attention is paid in this work to the study of the adsorption of calixarene host molecules on plasmonic nanoparticles.  相似文献   

13.
We have prepared heavy metal oxide glasses containing metallic copper nanoparticles with promising nonlinear optical properties which were determined by Z-scan and pump-probe measurements using femtosecond laser pulses. For the wavelengths within the plasmon band, we have observed saturable absorption and response times of 2.3 ps. For the other regions of the spectrum, reverse saturable absorption and lifetimes shorter than 200 fs were verified. The nonlinear refractive index is about 2.0?×?10?19 m2/W from visible to telecom region, thus presenting an enhancement effect at wavelengths near the plasmon and Cu+2 d–d band.  相似文献   

14.
The recent demonstration of the plasmonic-enhanced Förster resonance energy transfer (FRET) between two molecules in the vicinity of planar graphene monolayers is further investigated using graphene-coated nanoparticles (GNP). Due to the flexibility of these nanostructures in terms of their geometric (size) and dielectric (e.g., core material) properties, greater tunability of the FRET enhancement can be achieved employing the localized surface plasmons. It is found that while the typical characteristic graphene plasmonic enhancements are manifested from using these GNPs, even higher enhancements can be possible via doping and manipulating the core materials. In addition, the broadband characteristics are further expanded by the closely spaced multipolar plasmon resonances of the GNPs.  相似文献   

15.
The effect of the support size on the properties of enzyme immobilization was investigated by using chitosan macroparticles and nanoparticles. They were prepared by precipitation and ionotropic gelation, respectively, and were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), transmission electron microscopy (TEM), light scattering analysis (LSA), and N(2) adsorption-desorption isotherms. β-Galactosidase was used as a model enzyme. It was found that the different sizes and porosities of the particles modify the enzymatic load, activity, and thermal stability of the immobilized biocatalysts. The highest activity was shown by the enzyme immobilized on nanoparticles when 204.2 mg protein·(g dry support)(-1) were attached. On the other hand, the same biocatalysts presented lower thermal stability than macroparticles. β-Galactosidase immobilized on chitosan macro and nanoparticles exhibited excellent operational stability at 37 °C, because it was still able to hydrolyze 83.2 and 75.93% of lactose, respectively, after 50 cycles of reuse.  相似文献   

16.
A visualized assay for quercetin (QU) was first developed based on the formation of silver–gold alloy nanoparticles in this contribution. With the ability to reduce metal ions to metal substances, QU could reduce Ag+ absorbed on the surface of gold nanoparticles to metallic silver. The thickness of the formed Ag shell and the color change of the solution were proportional to the concentration of QU. Therefore, visualized detection of QU could be realized by studying the surface resonance plasmon absorption spectra of the analytical systems after addition of different concentration of QU. Under optimum conditions, trace amount of QU could be detected in the linear range 9.0?×?10?7–1.0?×?10?4 mol L?1 with a detection limit of 6.5?×?10?7 mol L?1. The present assay was applied in the determination of QU in human serum and satisfactory results were obtained. This assay is simple, rapid, and cost-effective, and it is a powerful complement for the spectroscopy assays for QU. Also, it is the first visualized spectroscopic assay of QU until now.  相似文献   

17.
Biswas  S.  Kole  A. K.  Tiwary  C. S.  Kumbhakar  P. 《Plasmonics (Norwell, Mass.)》2016,11(2):593-600
Plasmonics - Research studies on plasmonic properties of triangular-shaped silver nanoparticles might lead to several interesting applications. However, in this work, triangular-shaped silver...  相似文献   

18.
The extensive use of nanometal-based products increases the chance of their release into aquatic environments, raising the question whether they can pose a risk to aquatic biota and the associated ecological processes. Aquatic microbes, namely fungi and bacteria, play a key role in forested streams by decomposing plant litter from terrestrial vegetation. Here, we investigated the effects of nanocopper oxide and nanosilver on leaf litter decomposition by aquatic microbes, and the results were compared with the impacts of their ionic precursors. Alder leaves were immersed in a stream of Northwest Portugal to allow microbial colonization before being exposed in microcosms to increased nominal concentrations of nanometals (CuO, 100, 200 and 500 ppm; Ag, 100 and 300 ppm) and ionic metals (Cu2+ in CuCl2, 10, 20 and 30 ppm; Ag+ in AgNO3, 5 and 20 ppm) for 21 days. Results showed that rates of leaf decomposition decreased with exposure to nano- and ionic metals. Nano- and ionic metals inhibited bacterial biomass (from 68.6% to 96.5% of control) more than fungal biomass (from 28.5% to 82.9% of control). The exposure to increased concentrations of nano- and ionic metals decreased fungal sporulation rates from 91.0% to 99.4%. These effects were accompanied by shifts in the structure of fungal and bacterial communities based on DNA fingerprints and fungal spore morphology. The impacts of metal nanoparticles on leaf decomposition by aquatic microbes were less pronounced compared to their ionic forms, despite metal ions were applied at one order of magnitude lower concentrations. Overall, results indicate that the increased release of nanometals to the environment may affect aquatic microbial communities with impacts on organic matter decomposition in streams.  相似文献   

19.
20.
In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag+ (in the form of AgNO3). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号