首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD.We urgently need to pioneer game-changing solutions to remedy a number of increasingly prevalent and fatal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD; Cushman et al., 2010 ; Jackrel and Shorter, 2015 ). These disorders relentlessly erode our morale and economic resources. Aging is the major risk factor for all of these diseases, which threaten public health on a global scale and represent a severe impediment to living longer lives. A number of promising drugs have emerged to treat cancer and heart disease, but, distressingly, this is not the case for these and other neurodegenerative diseases, for which drug pipelines lie dormant and empty. This situation is unacceptable, and an impending healthcare crisis looms worldwide as population demographics inexorably shift toward older age groups.ALS, PD, AD, and related neurodegenerative disorders are unified by a common underlying theme: the misfolding and aggregation of specific proteins (characteristic for each disease) in the CNS (Cushman et al., 2010 ; Eisele et al., 2015 ). Thus, in ALS, typically an RNA-binding protein with a prion-like domain, TDP-43, mislocalizes from the nucleus to cytoplasmic inclusions in degenerating motor neurons (Neumann et al., 2006 ; Gitler and Shorter, 2011 ; King et al., 2012 ; Robberecht and Philips, 2013 ; March et al., 2016 ). In PD, α-synuclein forms toxic soluble oligomers and cytoplasmic aggregates, termed Lewy bodies, in degenerating dopaminergic neurons (Dehay et al., 2015 ). By contrast, in AD, amyloid-β (Aβ) peptides form extracellular plaques and the microtubule-binding protein, tau, forms cytoplasmic neurofibrillary tangles in afflicted brain regions (Jucker and Walker, 2011 ). Typically, these disorders are categorized into ∼80–90% sporadic cases and ∼10–20% familial cases. Familial forms of disease often have clear genetic causes, which might one day be amenable to gene editing via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 therapeutics if critical safety and ethical concerns can be successfully addressed and respected (Doudna and Charpentier, 2014 ; Baltimore et al., 2015 ; Rahdar et al., 2015 ; Callaway, 2016 ). However, the more common sporadic forms of disease often have no clear underlying genetics, and wild-type proteins misfold (Cushman et al., 2010 ; Jucker and Walker, 2011 ; Robberecht and Philips, 2013 ; Dehay et al., 2015 ). Consequently, therapeutic agents that directly target and safely reverse deleterious protein misfolding are likely to have broad utility (Eisele et al., 2015 ).There are no treatments that directly target the reversal of the protein-misfolding phenomena that underlie these disorders (Jackrel and Shorter, 2015 ). Strategies that directly reverse protein misfolding and restore proteins to native form and function could, in principle, eradicate any severely damaging loss-of-function or toxic gain-of-function phenotypes caused by misfolded conformers (Figure 1; Jackrel and Shorter, 2015 ). Moreover, therapeutic disaggregases would dismantle self-templating amyloid or prion structures, which spread pathology and nucleate formation of neurotoxic, soluble oligomers (Figure 1; Cushman et al., 2010 ; Cohen et al., 2013 ; Guo and Lee, 2014 ; Jackrel and Shorter, 2015 ). My group has endeavored to engineer and evolve Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast (DeSantis and Shorter, 2012 ; Sweeny and Shorter, 2015 ), to more effectively disaggregate misfolded proteins connected with various neurodegenerative disorders, including ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). Although wild-type Hsp104 can disaggregate diverse amyloid and prion conformers, as well as toxic soluble oligomers (Lo Bianco et al., 2008 ; DeSantis et al., 2012 ), its activity against human neurodegenerative disease proteins is suboptimal. Is it even possible to improve on existing Hsp104 disaggregase activity, which has been wrought over the course of millions of years of evolution?Open in a separate windowFIGURE 1:Therapeutic protein disaggregases. Two malicious problems are commonly associated with protein misfolding into disordered aggregates, toxic oligomers, and cross–β amyloid or prion fibrils: 1) a toxic gain of function of the protein in various misfolded states; and 2) a loss of function of the protein in the various misfolded states. These problems can contribute to the etiology of diverse neurodegenerative diseases in a combinatorial or mutually exclusive manner. A therapeutic protein disaggregase would reverse protein misfolding and recover natively folded functional proteins from disordered aggregates, toxic oligomers, and cross–β amyloid or prion fibrils. In this way, any toxic gain of function or toxic loss of function caused by protein misfolding would be simultaneously reversed. Ideally, all toxic misfolded conformers would be purged. Therapeutic protein disaggregases could thus have broad utility for various fatal neurodegenerative diseases.Remarkably, the answer to this question is yes! We used nimble yeast models of neurodegenerative proteinopathies (Outeiro and Lindquist, 2003 ; Gitler, 2008 ; Johnson et al., 2008 ; Sun et al., 2011 ; Khurana et al., 2015 ) as a platform to isolate enhanced disaggregases from large libraries of Hsp104 variants generated by error-prone PCR (Jackrel et al., 2014b ). In this way, we reprogrammed Hsp104 to yield the first disaggregases that reverse TDP-43, FUS (another RNA-binding protein with a prion-like domain connected to ALS), and α-synuclein (connected to PD) aggregation and proteotoxicity (Jackrel et al., 2014a , 2015 ; Jackrel and Shorter, 2015 ; Torrente et al., 2016 ). Remarkably, a therapeutic gain of Hsp104 function could be elicited by a single missense mutation (Jackrel et al., 2014a , 2015 ; Jackrel and Shorter, 2015 ). Under conditions in which Hsp104 was ineffective, potentiated Hsp104 variants dissolved protein inclusions, restored protein localization (e.g., TDP-43 returned to the nucleus from cytoplasmic inclusions), suppressed proteotoxicity, and attenuated dopaminergic neurodegeneration in a Caenorhabditis elegans PD model (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). Remarkably, these therapeutic modalities originated from degenerate loss of amino acid identity at select positions of Hsp104 rather than specific mutation (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). Some of these changes were remarkably small (Jackrel et al., 2014a , 2015 ; Jackrel and Shorter, 2015 ). Thus, potentiated Hsp104 variants could be generated by removal of a methyl group from a single side chain or addition or removal of a single methylene bridge from a single side chain (Jackrel et al., 2014a , 2015 ; Jackrel and Shorter, 2015 ). Thus, small molecules that bind in accessible regions of Hsp104 rich in potentiating mutations might also be able to enhance activity. However, a small-scale screen for small-molecule modulators of Hsp104 revealed only inhibitors (Torrente et al., 2014 ). Nonetheless, our work has established that disease-associated aggregates and amyloid are tractable targets and that enhanced artificial disaggregases can restore proteostasis and mitigate neurodegeneration (Jackrel and Shorter, 2015 ).One surprising aspect of this work is just how many Hsp104 variants we could isolate with potentiated activity. We now have hundreds (Jackrel et al., 2014a ; Jackrel et al., 2015 ). Typically, potentiated Hsp104 variants displayed enhanced activity against several neurodegenerative disease proteins. For example, Hsp104A503S rescued the aggregation and toxicity of TDP-43, FUS, TAF15, and α-synuclein (Jackrel et al., 2014a ; Jackrel and Shorter, 2014 ). By contrast, some potentiated Hsp104 variants rescued only the aggregation and toxicity of a subset of disease proteins. For example, Hsp104D498V rescued only the aggregation and toxicity of FUS and α-synuclein (Jackrel et al., 2014a ). A challenge that lies ahead is to engineer potentiated Hsp104 variants that are highly substrate specific to mitigate any potential off-target effects, should they arise (Jackrel and Shorter, 2015 ).Very small changes in primary sequence yield potentiated Hsp104 variants. However, Hsp104 has no metazoan homologue (Erives and Fassler, 2015 ). Now comes the important point. Neuroprotection could be broadly achieved by making very subtle modifications to existing human chaperones with newly appreciated disaggregase activity—for example, Hsp110, Hsp70, and Hsp40 (Torrente and Shorter, 2013 ) and HtrA1 (Poepsel et al., 2015 ).Whether Metazoa even possess a powerful protein disaggregation and reactivation machinery had been a long-standing enigma (Torrente and Shorter, 2013 ). However, it has recently emerged that two metazoan chaperone systems—1) Hsp110, Hsp70, and Hsp40 (Torrente and Shorter, 2013 ) and 2) HtrA1 (Poepsel et al., 2015 )—possess disaggregase activity that could be therapeutically harnessed or stimulated to reverse deleterious protein misfolding in neurodegenerative disease. I suspect that Metazoa harbor additional disaggregase systems that remain to be identified (Guo et al., 2014 ). Whether due to vicissitudes of aging, environment, or genetic background, these disaggregase systems fail in the context of ALS, PD, and AD. Based on the surprising precedent of our potentiated versions of Hsp104 (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ), I hypothesize that it is possible to engineer and evolve potentiated variants of these human protein disaggregases to more effectively counter deleterious misfolding events in ALS, PD, and AD (Torrente and Shorter, 2013 ; Mack and Shorter, 2016 ).Using classical biochemical reconstitution, it was discovered that one mammalian protein-disaggregase system comprises three molecular chaperones—Hsp110, Hsp70, and Hsp40—which synergize to dissolve and reactivate model proteins trapped in disordered aggregates and can even depolymerize amyloid fibrils formed by α-synuclein from their ends (Shorter, 2011 ; Duennwald et al., 2012 ; Torrente and Shorter, 2013 ). Hsp110, Hsp70, and Hsp40 isoforms are found in the cytoplasm, nucleus, and endoplasmic reticulum, which suggest that protein disaggregation and reactivation can occur in several compartments (Finka et al., 2015 ). Subsequent studies suggest that this system may be more powerful than initially anticipated (Rampelt et al., 2012 ; Mattoo et al., 2013 ; Gao et al., 2015 ; Nillegoda et al., 2015 ). Nonetheless, this system must become overwhelmed in neurodegenerative disorders. Perhaps selectively vulnerable neurons display particular deficits in this machinery. Hence, potentiating the activity of this system via engineering could be extremely valuable. It is promising that directed evolution studies yielded DnaK (Hsp70 in Escherichia coli) variants with improved ability to refold specific substrates (Aponte et al., 2010 ; Schweizer et al., 2011 ; Mack and Shorter, 2016 ), but whether this can be extended to human Hsp70 and the disaggregation of neurodegenerative disease proteins is uncertain.It is exciting that recent studies have revealed that HtrA1, a homo-oligomeric PDZ serine protease, can dissolve and degrade AD-linked tau and Aβ42 fibrils in an ATP-independent manner (Tennstaedt et al., 2012 ; Poepsel et al., 2015 ). HtrA1 first dissolves tau and Aβ42 fibrils and then degrades them, as protease-defective HtrA1 variants dissolve fibrils without degrading them (Poepsel et al., 2015 ). HtrA1 is found in the cytoplasm (∼30%) but is also secreted (∼70%; Poepsel et al., 2015 ). Indeed, HtrA1 is known to degrade substrates in both the extracellular space and the cytoplasm (Chien et al., 2009 ; Campioni et al., 2010 ; Tiaden and Richards, 2013 ). Thus HtrA1 could dissolve Aβ42 fibrils in the extracellular space and tau fibrils in the cytoplasm and simultaneously destroy the two cardinal features of AD (Poepsel et al., 2015 ). I suspect that this system becomes overwhelmed or is insufficient in AD, and thus potentiating and tailoring HtrA1 disaggregase activity could be a valuable therapeutic strategy. For example, it might be advantageous to simply degrade Aβ42 after disaggregation if the peptide has no beneficial function. Thus HtrA1 variants with enhanced disaggregation and degradation activity against Aβ42 could be extremely useful. However, Aβ42 (and related Aβ peptides) may have physiological functions that are presently underappreciated (Soscia et al., 2010 ; Fedele et al., 2015 ), in which case HtrA1 variants with enhanced disaggregase activity but reduced proteolytic activity could be vital. HtrA1 variants with enhanced disaggregase activity but reduced proteolytic activity may also be particularly important to recover functional tau from neurofibrillary tangles to reverse loss of tau function in AD and various tauopathies (Santacruz et al., 2005 ; Trojanowski and Lee, 2005 ; Dixit et al., 2008 ).I suggest that relatively small changes in primary sequence will yield large increases in disaggregase activity for these systems as they do for Hsp104 (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). If true, this would further suggest that small molecules that bind in the appropriate regions of Hsp110, Hsp70, Hsp40, or HtrA1 might also enhance disaggregase activity. Thus, isolating small-molecule enhancers of the Hsp110, Hsp70, and Hsp40 or HtrA1 disaggregase systems could yield important therapeutics. Indeed, I hypothesize that enhancing the activity of the Hsp110, Hsp70, and Hsp40 or HtrA1 disaggregase system with specific small molecules will enable dissolution of toxic oligomeric and amyloid forms of various disease proteins and confer therapeutic benefits in ALS, PD, AD, and potentially other neurodegenerative disorders.It is intriguing that several small molecules are already known to enhance various aspects of Hsp70 chaperone activity (Pratt et al., 2015 ; Shrestha et al., 2016 ). These include MKT-077, JG-98, YM-1, YM-8, and 115-7c (Wisen et al., 2010 ; Pratt et al., 2015 ). It is not known whether any of these stimulates the disaggregase activity of the Hsp110, Hsp70, and Hsp40 system. MKT-077, JG-98, YM-1, and YM-8 are rhodocyanines that bind with low micromolar affinity to the nucleotide-binding domain of ADP- but not ATP-bound Hsp70, stabilizing the ADP-bound state (Pratt et al., 2015 ). The ADP-bound state of Hsp70 engages clients with higher affinity, and consequently MKT-077, JG-98, and YM-1 activate binding of Hsp70 to misfolded proteins (Wang et al., 2013 ; Pratt et al., 2015 ). Thus, under some conditions, these small molecules can promote folding of certain Hsp70 clients (Morishima et al., 2011 ; Pratt et al., 2015 ). However, prolonged interaction of clients with Hsp70 promotes their CHIP-dependent ubiquitylation and degradation in vivo (Morishima et al., 2011 ; Wang et al., 2013 ; Pratt et al., 2015 ). Intriguingly, YM-1 promotes clearance of polyglutamine oligomers and aggregates in cells (Wang et al., 2013 ; Pratt et al., 2015 ). MKT-0777, YM-1, JG-98, and YM-8 also promote clearance of tau and confer therapeutic benefit in tauopathy models (Abisambra et al., 2013 ; Miyata et al., 2013 ; Fontaine et al., 2015 ). Of importance, YM-8 is long lived in vivo and crosses the blood–brain barrier (Miyata et al., 2013 ). The dihydropyrimidine 115-7c activates Hsp70 ATPase turnover rate, promotes Hsp70 substrate refolding, and reduces α-synuclein aggregation in cell culture (Wisen et al., 2010 ; Kilpatrick et al., 2013 ). It binds to the IIA subdomain of Hsp70 and promotes the active Hsp70–Hsp40 complex (Wisen et al., 2010 ). Small-molecule enhancers of HtrA1 protease activity have also emerged (Jo et al., 2014 ). Thus it will be important to assess whether these small molecules enhance the activity of their respective disaggregases against various neurodegenerative substrates.Although small molecules that enhance disaggregase activity of endogenous human proteins might be the most immediately translatable, gene-, mRNA-, or protein-based therapies can also be envisioned. For example, adeno-associated viruses expressing enhanced disaggregases might be used to target degenerating neurons (Dong et al., 2005 ; Lo Bianco et al., 2008 ; Deverman et al., 2016 ). Alternatively, if viral vectors are undesirable, modified mRNAs might serve as an alternative to DNA-based gene therapy (Kormann et al., 2011 ). Protein-based therapeutics could also be explored. For example, intraperitoneal injection of human Hsp70 increased lifespan, delayed symptom onset, preserved motor function, and prolonged motor neuron viability in a mouse model of ALS (Gifondorwa et al., 2007 ; Gifondorwa et al., 2012 ). Several other studies suggest that exogenous delivery of Hsp70 can have beneficial, neuroprotective effects in mice (Nagel et al., 2008 ; Bobkova et al., 2014 ; Bobkova et al., 2015 ).Ultimately, if safety and ethical concerns can be overcome in a circumspect, risk-averse manner, CRISPR-Cas9–based therapeutics might even be used to genetically alter the underlying disaggregase to a potentiated form in selectively vulnerable neuronal populations. This approach might be particularly valuable if enhanced disaggregase activity is not detrimental in the long term. Moreover, stem cell–based therapies for replacing lost neurons could also be fortified to express enhanced disaggregase systems. Thus they would be endowed with resistance to potential infection by prion-like conformers that might have accumulated during disease progression (Cushman et al., 2010 ).Enhanced disaggregase activity is likely to be highly advantageous to neurons under circumstances in which protein misfolding has overwhelmed the system (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). However, inappropriate hyperactivity of protein disaggregases might also have detrimental, off-target effects under regular conditions in which protein misfolding is not an overwhelming issue (Jackrel et al., 2014a ; Jackrel and Shorter, 2015 ). Thus it may be advantageous to engineer enhanced protein disaggregases to be highly substrate specific. In this way, off-target effects would be readily avoided. There is strong precedent for directed evolution or engineering of specialized chaperone or protein activity from a generalist antecedent (Wang et al., 2002 ; Farrell et al., 2007 ; Smith et al., 2015 ). Thus, engineering specialist disaggregases for each disease substrate could be achieved. Alternatively, transient or intermittent doses of enhanced disaggregases at specific times or places where they are most needed would also minimize potentially toxic side effects. For example, enhanced disaggregase activity might be applied ephemerally to clear existing misfolded conformers and then be withdrawn once the endogenous proteostasis network regains control. Similarly, it is straightforward to envision administration of small-molecule enhancers of disaggregase activity in intermittent protocols that enable facile recovery from potential side effects (Fontaine et al., 2015 ). In this way, any adverse effects of enhanced protein-disaggregase activity under normal physiological conditions would be avoided. Many barriers will need to be safely overcome to implement a successful therapeutic disaggregase, including how to deliver enhanced disaggregase activity to exactly where it is needed. However, these obstacles are not a reason to be pessimistic. On the contrary, the isolation of engineered disaggregases that efficaciously reverse deleterious misfolding of neurodegenerative disease proteins directs our attention to considerably expand the environs in which they should be sought. My closing sentences, therefore, are intended to be provocative.I suspect that neuroprotection could be broadly actualized via precise but subtle alterations to existing protein-disaggregase modalities. The engineering and evolution of protein disaggregases could yield important solutions to avert an imminent plague of neurodegenerative disorders that promises to devastate our society. I strongly suspect that cures for various neurodegenerative disorders will be realized by pioneering as-yet-uncharted regions of disaggregase sequence space or chemical space to elucidate small-molecule enhancers of disaggregase activity.  相似文献   

2.
In vitro and in vivo studies implicate occludin in the regulation of paracellular macromolecular flux at steady state and in response to tumor necrosis factor (TNF). To define the roles of occludin in these processes, we established intestinal epithelia with stable occludin knockdown. Knockdown monolayers had markedly enhanced tight junction permeability to large molecules that could be modeled by size-selective channels with radii of ∼62.5 Å. TNF increased paracellular flux of large molecules in occludin-sufficient, but not occludin-deficient, monolayers. Complementation using full-length or C-terminal coiled-coil occludin/ELL domain (OCEL)–deficient enhanced green fluorescent protein (EGFP)–occludin showed that TNF-induced occludin endocytosis and barrier regulation both required the OCEL domain. Either TNF treatment or OCEL deletion accelerated EGFP-occludin fluorescence recovery after photobleaching, but TNF treatment did not affect behavior of EGFP-occludinΔOCEL. Further, the free OCEL domain prevented TNF-induced acceleration of occludin fluorescence recovery, occludin endocytosis, and barrier loss. OCEL mutated within a recently proposed ZO-1–binding domain (K433) could not inhibit TNF effects, but OCEL mutated within the ZO-1 SH3-GuK–binding region (K485/K488) remained functional. We conclude that OCEL-mediated occludin interactions are essential for limiting paracellular macromolecular flux. Moreover, our data implicate interactions mediated by the OCEL K433 region as an effector of TNF-induced barrier regulation.Tight junctions seal the paracellular space in simple epithelia, such as those lining the lungs, intestines, and kidneys (Anderson et al., 2004 ; Fanning and Anderson, 2009 ; Shen et al., 2011 ). In the intestine, reduced paracellular barrier function is associated with disorders in which increased paracellular flux of ions and molecules contributes to symptoms such as diarrhea, malabsorption, and intestinal protein loss. Recombinant tumor necrosis factor (TNF) can be used to model this barrier loss in vitro or in vivo (Taylor et al., 1998 ; Clayburgh et al., 2006 ), and TNF neutralization is associated with restoration of intestinal barrier function in Crohn''s disease (Suenaert et al., 2002 ). Further, in vivo and in vitro studies of intestinal epithelia show that TNF-induced barrier loss requires myosin light chain kinase (MLCK) activation (Zolotarevsky et al., 2002 ; Clayburgh et al., 2005 , 2006 ; Ma et al., 2005 ; Wang et al., 2005 ). The resulting myosin II regulatory light chain (MLC) phosphorylation drives occludin internalization, which is required for cytokine-induced intestinal epithelial barrier loss (Clayburgh et al., 2005 , 2006 ; Schwarz et al., 2007 ; Marchiando et al., 2010 ). In addition, transgenic EGFP-occludin expression in vivo limits TNF-induced depletion of tight junction–associated occludin, barrier loss, and diarrhea (Marchiando et al., 2010 ). Conversely, in vitro studies show that occludin knockdown limits TNF-induced barrier regulation (Van Itallie et al., 2010 ). The basis for this discrepancy is not understood.One challenge is that, despite being identified 20 yr ago (Furuse et al., 1993 ), the contribution of occludin to tight junction regulation remains incompletely defined. The observation that occludin-knockout mice are able to form paracellular barriers and do not have obvious defects in epidermal, respiratory, or bladder tight junction function (Saitou et al., 2000 ; Schulzke et al., 2005 ) led many to conclude that occludin is not essential for tight junction barrier function. It is important to note, however, that barrier regulation in response to stress has not been studied in occludin-deficient animals.We recently showed that dephosphorylation of occludin serine-408 promotes assembly of a complex composed of occludin, ZO-1, and claudin-2 that inhibits flux across size- and charge-selective channels termed the pore pathway (Anderson and Van Itallie, 2009 ; Turner, 2009 ; Raleigh et al., 2011 ; Shen et al., 2011 ). Although this demonstrates that occludin can serve a regulatory role, it does not explain the role of occludin in TNF-induced barrier loss, which increases flux across the size- and charge-nonselective leak pathway (Wang et al., 2005 ; Weber et al., 2010 ). In vitro studies, however, do suggest that occludin contributes to leak pathway regulation, as occludin knockdown in either Madin–Darby canine kidney (MDCK) or human intestinal (Caco-2) epithelial monolayers enhances leak pathway permeability (Yu et al., 2005 ; Al-Sadi et al., 2011 ; Ye et al., 2011 ). Taken as a whole, these data suggest that occludin organizes the tight junction to limit leak pathway flux, whereas occludin removal, either by knockdown or endocytosis, enhances leak pathway flux.To define the mechanisms by which occludin regulates the leak pathway, we analyzed the contributions of occludin, as well as specific occludin domains, to basal and TNF-induced barrier regulation. The data indicate that TNF destabilizes tight junction–associated occludin via interactions mediated by the C-terminal coiled-coil occludin/ELL domain (OCEL). Further, these OCEL-mediated events are required for TNF-induced barrier regulation. Thus these data provide new insight into the structural elements and mechanisms by which occludin regulates leak pathway paracellular flux.  相似文献   

3.
Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. Glut4 represents the major cell-specific component of the insulin-responsive vesicles (IRVs). It is not clear, however, whether the presence of Glut4 in the IRVs is essential for their ability to respond to insulin stimulation. We prepared two lines of 3T3-L1 cells with low and high expression of myc7-Glut4 and studied its translocation to the plasma membrane upon insulin stimulation, using fluorescence-assisted cell sorting and cell surface biotinylation. In undifferentiated 3T3-L1 preadipocytes, translocation of myc7-Glut4 was low regardless of its expression levels. Coexpression of sortilin increased targeting of myc7-Glut4 to the IRVs, and its insulin responsiveness rose to the maximal levels observed in fully differentiated adipocytes. Sortilin ectopically expressed in undifferentiated cells was translocated to the plasma membrane regardless of the presence or absence of myc7-Glut4. AS160/TBC1D4 is expressed at low levels in preadipocytes but is induced in differentiation and provides an additional mechanism for the intracellular retention and insulin-stimulated release of Glut4.Adipocytes, skeletal muscle cells, and some neurons respond to insulin stimulation by translocating intracellular glucose transporter 4 (Glut4) to the plasma membrane. In all these cells, the insulin-responsive pool of Glut4 is localized in small membrane vesicles, the insulin-responsive vesicles (IRVs; Kandror and Pilch, 2011 ; Bogan, 2012 ). The protein composition of these vesicles has been largely characterized (Kandror and Pilch, 2011 ; Bogan, 2012 ). The IRVs consist predominantly of Glut4, insulin-responsive aminopeptidase (IRAP), sortilin, low-density-lipoprotein receptor–related protein 1 (LRP1), SCAMPs, and VAMP2. Glut4, IRAP, and sortilin physically interact with each other, which might be important for the biogenesis of the IRVs (Shi and Kandror, 2007 ; Shi et al., 2008 ). In addition, the IRVs compartmentalize recycling receptors, such as the transferrin receptor and the IGF2/mannose 6-phosphate receptor, although it is not clear whether these receptors represent obligatory vesicular components or their presence in the IRVs is explained by mass action (Pilch, 2008 ), inefficient sorting, or other reasons.Deciphering of the protein composition of the IRVs is important because it is likely to explain their unique functional property: translocation to the plasma membrane in response to insulin stimulation. Even if we presume that IRV trafficking is controlled by loosely associated peripheral membrane proteins, the latter should still somehow recognize the core vesicular components that create the “biochemical individuality” of this compartment. In spite of our knowledge of the IRV protein composition, however, the identity of the protein(s) that confer insulin sensitivity to these vesicles is unknown.Insulin responsiveness of the IRVs was associated with either IRAP or Glut4. Thus it was shown that Glut4 interacted with the intracellular anchor TUG (Bogan et al., 2003 , 2012 ), whereas IRAP associated with other proteins implemented in the regulation of Glut4 translocation, such as AS160 (Larance et al., 2005 ; Peck et al., 2006 ), p115 (Hosaka et al., 2005 ), tankyrase (Yeh et al., 2007 ), and several others (reviewed in Bogan, 2012 ). Results of these studies, or at least their interpretations, are not necessarily consistent with each other, as the existence of multiple independent anchors for the IRVs is, although possible, unlikely.Ablation of the individual IRV proteins has also led to controversial data. Thus knockout of IRAP decreases total protein levels of Glut4 but does not affect its translocation in the mouse model (Keller et al., 2002 ). On the contrary, knockdown of IRAP in 3T3-L1 adipocytes has a strong inhibitory effect on translocation of Glut4 (Yeh et al., 2007 ). In yet another study, knockdown of IRAP in 3T3-L1 adipocytes did not affect insulin-stimulated translocation of Glut4 but increased its plasma membrane content under basal conditions (Jordens et al., 2010 ). By the same token, total or partial ablation of Glut4 had various effects on expression levels, intracellular localization, and translocation of IRAP (Jiang et al., 2001 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Gross et al., 2004 ; Yeh et al., 2007 ). Knockdown of either sortilin or LRP1 decreased protein levels of Glut4 (Shi and Kandror, 2005 ; Jedrychowski et al., 2010 ).One model that might explain these complicated and somewhat inconsistent results is that depletion of either major integral protein of the IRVs disrupts the network of interactions between vesicular proteins and thus decreases the efficiency of protein sorting into the IRVs (Kandror and Pilch, 2011 ). Correspondingly, the remaining IRV components that cannot be faithfully compartmentalized in the vesicles are either degraded (Jiang et al., 2001 ; Keller et al., 2002 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Shi and Kandror, 2005 ; Yeh et al., 2007 ; Jedrychowski et al., 2010 ) or mistargeted (Jiang et al., 2001 ; Jordens et al., 2010 ), depending on experimental conditions and types of cells used in these studies. In other words, knockdown of any major IRV component may decrease vesicle formation along with insulin responsiveness. Thus, in spite of a large body of literature, the identity of protein(s) that confer insulin responsiveness to the IRVs is unknown.Here we used a gain-of-function approach to address this question. Specifically, we attempted to “build” functional IRVs in undifferentiated 3T3-L1 preadipocytes by forced expression of the relevant proteins. Undifferentiated preadipocytes do not express Glut4 or sortilin and lack IRVs (ElJack et al., 1999 ; Shi and Kandror, 2005 ; Shi et al., 2008 ). Correspondingly, IRAP, which is expressed in these cells, shows low insulin response (Ross et al., 1998 ; Shi et al., 2008 ). We found that ectopic expression of increasing amounts of Glut4 in undifferentiated preadipocytes does not lead to its marked translocation to the plasma membrane upon insulin stimulation. On the contrary, sortilin expressed in undifferentiated preadipocytes was localized in the IRVs and was translocated to the plasma membrane in response to insulin stimulation. Moreover, upon coexpression with Glut4, sortilin dramatically increased its insulin responsiveness to the levels observed in fully differentiated adipocytes. Thus sortilin may represent the key component of the IRVs, which is responsible not only for the formation of vesicles (Shi and Kandror, 2005 ; Ariga et al., 2008 ; Hatakeyama and Kanzaki, 2011 ), but also for their insulin responsiveness. It is worth noting that sortilin levels are significantly decreased in obese and diabetic humans and mice (Kaddai et al., 2009 ). We thus suggest that sortilin may be a novel and important target in the fight against insulin resistance and diabetes.Our experiments also demonstrate that undifferentiated preadipocytes lack a mechanism for the full intracellular retention of Glut4 that can be achieved by ectopic expression of AS160/TBC1D4.  相似文献   

4.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

5.
6.
7.
Complex I (EC 1.6.99.3) of the bacterium Escherichia coli is considered to be the minimal form of the type I NADH dehydrogenase, the first enzyme complex in the respiratory chain. Because of its small size and relative simplicity, the E. coli enzyme has become a model used to identify and characterize the mechanism(s) by which cells regulate the synthesis and assembly of this large respiratory complex. To begin dissecting the processes by which E. coli cells regulate the expression of nuo and the assembly of complex I, we undertook a genetic analysis of the nuo locus, which encodes the 14 Nuo subunits comprising E. coli complex I. Here we present the results of studies, performed on an isogenic collection of nuo mutants, that focus on the physiological, biochemical, and molecular consequences caused by the lack of or defects in several Nuo subunits. In particular, we present evidence that NuoG, a peripheral subunit, is essential for complex I function and that it plays a role in the regulation of nuo expression and/or the assembly of complex I.

Complex I (NADH:ubiquinone oxidoreductase; EC 1.6.99.3), a type I NADH dehydrogenase that couples the oxidation of NADH to the generation of a proton motive force, is the first enzyme complex of the respiratory chain (2, 35, 47). The Escherichia coli enzyme, considered to be the minimal form of complex I, consists of 14 subunits instead of the 40 to 50 subunits associated with the homologous eukaryotic mitochondrial enzyme (17, 29, 30, 4850). E. coli also possesses a second NADH dehydrogenase, NDH-II, which does not generate a proton motive force (31). E. coli complex I resembles eukaryotic complex I in many ways (16, 17, 30, 49): it performs the same enzymatic reaction and is sensitive to a number of the same inhibitors, it consists of subunits homologous to those found in all proton-translocating NADH:ubiquinone oxidoreductases studied thus far, it is comprised of a large number of subunits relative to the number that comprise other respiratory enzymes, and it contains flavin mononucleotide and FeS center prosthetic groups. Additionally, it possesses an L-shaped topology (14, 22) like that of its Neurospora crassa homolog (27), and it consists of distinct fragments or subcomplexes. Whereas eukaryotic complex I can be dissected into a peripheral arm and a membrane arm, the E. coli enzyme consists of three subcomplexes referred to as the peripheral, connecting, and membrane fragments (29) (Fig. (Fig.1A).1A). The subunit composition of these three fragments correlates approximately with the organization of the 14 structural genes (nuoA to nuoN) (49) of the nuo (for NADH:ubiquinone oxidoreductase) locus (Fig. (Fig.1B),1B), an organization that is conserved in several other bacteria, including Salmonella typhimurium (3), Paracoccus denitrificans (53), Rhodobacter capsulatus (12), and Thermus thermophilus (54). The 5′ half of the locus contains a promoter (nuoP), previously identified and located upstream of nuoA (8, 49), and the majority of genes that encode subunits homologous to the nucleus-encoded subunits of eukaryotic complex I and to subunits of the Alcaligenes eutrophus NAD-reducing hydrogenase (17, 29, 30, 49). In contrast, the 3′ half contains the majority of the genes that encode subunits homologous to the mitochondrion-encoded subunits of eukaryotic complex I and to subunits of the E. coli formate-hydrogen lyase complex (17, 29, 30, 49). Whereas the nuclear homologs NuoE, NuoF, and NuoG constitute the peripheral fragment (also referred to as the NADH dehydrogenase fragment [NDF]), the nuclear homologs NuoB, NuoC, NuoD, and NuoI constitute the connecting fragment. The mitochondrial homologs NuoA, NuoH, NuoJ, NuoK, NuoL, NuoM, and NuoN constitute the membrane fragment (29). E. coli complex I likely evolved by fusion of preexisting protein assemblies constituting modules for electron transfer and proton translocation (1719, 30). Open in a separate windowFIG. 1Schematic of E. coli complex I and the nuo locus. Adapted with permission of the publisher (17, 29, 30, 49). (A) E. coli complex I is comprised of three distinct fragments: the peripheral (light gray), connecting (white), and membrane (dark gray) fragments (17, 29). The peripheral fragment (NDF) is comprised of the nuclear homologs NuoE, -F, and -G and exhibits NADH dehydrogenase activity that oxidizes NADH to NAD+; the connecting fragment is comprised of the nuclear homologs NuoB, -C, -D, and -I; and the membrane fragment is comprised of the mitochondrial homologs NuoA, -H, and -J to -N and catalyzes ubiquinone (Q) to its reduced form (QH2). FMN, flavin mononucleotide. (B) The E. coli nuo locus encodes the 14 Nuo subunits that constitute complex I. The 5′ half of the locus contains a previously identified promoter (nuoP) and the majority of genes that encode the peripheral and connecting subunits (light gray and white, respectively). The 3′ half of the locus contains the majority of the genes encoding the membrane subunits (dark gray). The 3′ end of nuoG encodes a C-Terminal region (CTR) of the NuoG subunit (hatched).Because of its smaller size and relative simplicity, researchers recently have begun to utilize complex I of E. coli, and that of its close relative S. typhimurium, to identify and characterize the mechanism(s) by which cells regulate the synthesis and assembly of this large respiratory complex (3, 8, 46) and to investigate the diverse physiological consequences caused by defects in this enzyme (4, 6, 10, 40, 59). Such defects affect the ability of cells to perform chemotaxis (40), to grow on certain carbon sources (4, 6, 10, 40, 57), to survive stationary phase (59), to perform energy-dependent proteolysis (4), to regulate the expression of at least one gene (32), and to maintain virulence (5).To begin dissecting the processes by which E. coli cells regulate the expression of nuo and the assembly of complex I, we undertook a genetic analysis of the nuo locus. Here, we present the results of studies, performed on an isogenic collection of nuo mutants, that focus on the physiological, biochemical, and molecular consequences caused by the lack of or defects in several Nuo subunits. In particular, we present evidence that NuoG, a peripheral subunit, is essential for complex I function and that it plays a role in the regulation of nuo expression and/or the assembly of complex I.  相似文献   

8.
9.
The U16 small nucleolar RNA (snoRNA) is encoded by the third intron of the L1 (L4, according to the novel nomenclature) ribosomal protein gene of Xenopus laevis and originates from processing of the pre-mRNA in which it resides. The U16 snoRNA belongs to the box C/D snoRNA family, whose members are known to assemble in ribonucleoprotein particles (snoRNPs) containing the protein fibrillarin. We have utilized U16 snoRNA in order to characterize the factors that interact with the conserved elements common to the other members of the box C/D class. In this study, we have analyzed the in vivo assembly of U16 snoRNP particles in X. laevis oocytes and identified the proteins which interact with the RNA by label transfer after UV cross-linking. This analysis revealed two proteins, of 40- and 68-kDa apparent molecular size, which require intact boxes C and D together with the conserved 5′,3′-terminal stem for binding. Immunoprecipitation experiments showed that the p40 protein corresponds to fibrillarin, indicating that this protein is intimately associated with the RNA. We propose that fibrillarin and p68 represent the RNA-binding factors common to box C/D snoRNPs and that both proteins are essential for the assembly of snoRNP particles and the stabilization of the snoRNA.One of the most interesting recent findings related to ribosome biogenesis has been the identification of a large number of small RNAs localized in the nucleolus (snoRNAs). So far, more than 60 snoRNAs have been identified in vertebrates (17), and more than 30 have been identified in yeast (2). The total number of snoRNAs is not known, but it is likely to be close to 200 (33, 38). These snoRNAs, with the exception of the mitochondrial RNA processing (MRP) species (38), can be grouped into two major families on the basis of conserved structural and sequence elements. The first group includes molecules referred to as box C/D snoRNAs, whereas the second one comprises the species belonging to the box H/ACA family (2, 15).The two families differ in many aspects. The box C/D snoRNAs are functionally heterogeneous. Most of them function as antisense RNAs in site-specific ribose methylation of the pre-rRNA (1, 10, 17, 26); a minority have been shown to play a direct role in pre-rRNA processing in both yeast and metazoan cells (11, 21). The box C/D snoRNAs play their role by means of unusually long (up to 21 contiguous nucleotides) regions of complementarity to highly conserved sequences of 28S and 18S rRNAs (1). In contrast, several members of the H/ACA RNA family have been shown to direct site-specific isomerization of uridines into pseudouridines and to display shorter regions of complementarity to rRNA (14, 24). Mutational analysis suggests that H/ACA snoRNAs can also play a role as antisense RNAs by base pairing with complementary regions on rRNA (15, 24).Another difference between the two families can be seen by comparison of secondary structures. A Y-shaped motif, where a 5′,3′-terminal stem adjoins the C and D conserved elements, has been proposed for many box C/D snoRNAs (16, 26, 40, 42), whereas box H/ACA snoRNAs have been proposed to fold into two conserved hairpin structures connected by a single-stranded hinge region, followed by a short 3′ tail (15).Despite these differences, analogies have been found in the roles played by the conserved box elements. Mutational analysis and competition experiments indicated that C/D and H/ACA boxes are required both for processing and stable accumulation of the mature snoRNA, suggesting that they represent binding sites for specific trans-acting factors (2, 3, 8, 15, 16, 28, 36, 41).All snoRNAs are associated with proteins to form specific ribonucleoparticles (snoRNPs). The study of these particles began only recently, and so far, very few aspects of their structure and biosynthesis have been clarified. The only detailed analysis performed was on the mammalian U3 (19) and the yeast snR30 (20) snoRNPs. Of the identified components, a few appear to be more general factors: fibrillarin, which was shown to be associated with C/D snoRNPs (3, 4, 8, 13, 28, 31, 39), and the nucleolar protein GAR1, which was found associated with H/ACA snoRNAs in yeast (20). Just as the study of small nuclear RNP (snRNP) particles was crucial to the understanding of the splicing process, a detailed structural and functional analysis of snoRNP particles will be essential to elucidate the complex process of ribosome biosynthesis.In this study, we have analyzed the snoRNP assembly of wild-type and mutant U16 snoRNAs by following the kinetics of complex formation in the in vivo system of the Xenopus laevis oocyte. By a UV cross-linking technique, we have identified two proteins, of 40- and 68-kDa apparent molecular mass, which require intact boxes C and D together with the terminal stem for their binding. The 40-kDa species is specifically recognized by fibrillarin antibodies, indicating that this protein is intimately associated with the RNA.  相似文献   

10.
We report the identification and characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE implicated in vesicular transport between the ER and the Golgi. ERS24 is incorporated into 20S docking and fusion particles and disassembles from this complex in an ATP-dependent manner. ERS-24 has significant sequence homology to Sec22p, a v-SNARE in Saccharomyces cerevisiae required for transport between the ER and the Golgi. ERS-24 is localized to the ER and to the Golgi, and it is enriched in transport vesicles associated with these organelles.Newly formed transport vesicles have to be selectively targeted to their correct destinations, implying the existence of a set of compartment-specific proteins acting as unique receptor–ligand pairs. Such proteins have now been identified (Söllner et al., 1993a ; Rothman, 1994): one partner efficiently packaged into vesicles, termed a v-SNARE,1 and the other mainly localized to the target compartment, a t-SNARE. Cognate pairs of v- and t-SNAREs, capable of binding each other specifically, have been identified for the ER–Golgi transport step (Lian and Ferro-Novick, 1993; Søgaard et al., 1994), the Golgi–plasma membrane transport step (Aalto et al., 1993; Protopopov et al., 1993; Brennwald et al., 1994) in Saccharomyces cerevisiae, and regulated exocytosis in neuronal synapses (Söllner et al., 1993a ; for reviews see Scheller, 1995; Südhof, 1995). Additional components, like p115, rab proteins, and sec1 proteins, appear to regulate vesicle docking by controlling the assembly of SNARE complexes (Søgaard et al., 1994; Lian et al., 1994; Sapperstein et al., 1996; Hata et al., 1993; Pevsner et al., 1994).In contrast with vesicle docking, which requires compartment-specific components, the fusion of the two lipid bilayers uses a more general machinery derived, at least in part, from the cytosol (Rothman, 1994), which includes an ATPase, the N-ethylmaleimide–sensitive fusion protein (NSF) (Block et al., 1988; Malhotra et al., 1988), and soluble NSF attachment proteins (SNAPs) (Clary et al., 1990; Clary and Rothman, 1990; Whiteheart et al., 1993). Only the assembled v–t-SNARE complex provides high affinity sites for the consecutive binding of three SNAPs (Söllner et al., 1993b ; Hayashi et al., 1995) and NSF. When NSF is inactivated in vivo, v–t-SNARE complexes accumulate, confirming that NSF is needed for fusion after stable docking (Søgaard et al., 1994).The complex of SNAREs, SNAPs, and NSF can be isolated from detergent extracts of cellular membranes in the presence of ATPγS, or in the presence of ATP but in the absence of Mg2+, and sediments at ∼20 Svedberg (20S particle) (Wilson et al., 1992). In the presence of MgATP, the ATPase of NSF disassembles the v–t-SNARE complex and also releases SNAPs. It seems likely that this step somehow initiates fusion.To better understand vesicle flow patterns within cells, it is clearly of interest to identify new SNARE proteins. Presently, the most complete inventory is in yeast, but immunolocalization is difficult in yeast compared with animal cells, and many steps in protein transport have been reconstituted in animal extracts (Rothman, 1992) that have not yet been developed in yeast. Therefore, it is important to create an inventory of SNARE proteins in animal cells. The most unambiguous and direct method for isolating new SNAREs is to exploit their ability to assemble together with SNAPs and NSF into 20S particles and to disassemble into subunits when NSF hydrolyzes ATP. Similar approaches have already been successfully used to isolate new SNAREs implicated in ER to Golgi (Søgaard et al., 1994) and intra-Golgi transport (Nagahama et al., 1996), in addition to the original discovery of SNAREs in the context of neurotransmission (Söllner et al., 1993a ).Using this method, we now report the isolation and detailed characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE that is localized to the ER and Golgi. ERS-24 is found in transport vesicles associated with the transitional areas of the ER and with the rims of Golgi cisternae, suggesting a role for ERS-24 in vesicular transport between these two compartments.  相似文献   

11.
SPA2 encodes a yeast protein that is one of the first proteins to localize to sites of polarized growth, such as the shmoo tip and the incipient bud. The dynamics and requirements for Spa2p localization in living cells are examined using Spa2p green fluorescent protein fusions. Spa2p localizes to one edge of unbudded cells and subsequently is observable in the bud tip. Finally, during cytokinesis Spa2p is present as a ring at the mother–daughter bud neck. The bud emergence mutants bem1 and bem2 and mutants defective in the septins do not affect Spa2p localization to the bud tip. Strikingly, a small domain of Spa2p comprised of 150 amino acids is necessary and sufficient for localization to sites of polarized growth. This localization domain and the amino terminus of Spa2p are essential for its function in mating. Searching the yeast genome database revealed a previously uncharacterized protein which we name, Sph1p (Spa2p homolog), with significant homology to the localization domain and amino terminus of Spa2p. This protein also localizes to sites of polarized growth in budding and mating cells. SPH1, which is similar to SPA2, is required for bipolar budding and plays a role in shmoo formation. Overexpression of either Spa2p or Sph1p can block the localization of either protein fused to green fluorescent protein, suggesting that both Spa2p and Sph1p bind to and are localized by the same component. The identification of a 150–amino acid domain necessary and sufficient for localization of Spa2p to sites of polarized growth and the existence of this domain in another yeast protein Sph1p suggest that the early localization of these proteins may be mediated by a receptor that recognizes this small domain.Polarized cell growth and division are essential cellular processes that play a crucial role in the development of eukaryotic organisms. Cell fate can be determined by cell asymmetry during cell division (Horvitz and Herskowitz, 1992; Cohen and Hyman, 1994; Rhyu and Knoblich, 1995). Consequently, the molecules involved in the generation and maintenance of cell asymmetry are important in the process of cell fate determination. Polarized growth can occur in response to external signals such as growth towards a nutrient (Rodriguez-Boulan and Nelson, 1989; Eaton and Simons, 1995) or hormone (Jackson and Hartwell, 1990a , b ; Segall, 1993; Keynes and Cook, 1995) and in response to internal signals as in Caenorhabditis elegans (Goldstein et al., 1993; Kimble, 1994; Priess, 1994) and Drosophila melanogaster (St Johnston and Nusslein-Volhard, 1992; Anderson, 1995) early development. Saccharomyces cerevisiae undergo polarized growth towards an external cue during mating and to an internal cue during budding. Polarization towards a mating partner (shmoo formation) and towards a new bud site requires a number of proteins (Chenevert, 1994; Chant, 1996; Drubin and Nelson, 1996). Many of these proteins are necessary for both processes and are localized to sites of polarized growth, identified by the insertion of new cell wall material (Tkacz and Lampen, 1972; Farkas et al., 1974; Lew and Reed, 1993) to the shmoo tip, bud tip, and mother–daughter bud neck. In yeast, proteins localized to growth sites include cytoskeletal proteins (Adams and Pringle, 1984; Kilmartin and Adams, 1984; Ford, S.K., and J.R. Pringle. 1986. Yeast. 2:S114; Drubin et al., 1988; Snyder, 1989; Snyder et al., 1991; Amatruda and Cooper, 1992; Lew and Reed, 1993; Waddle et al., 1996), neck filament components (septins) (Byers and Goetsch, 1976; Kim et al., 1991; Ford and Pringle, 1991; Haarer and Pringle, 1987; Longtine et al., 1996), motor proteins (Lillie and Brown, 1994), G-proteins (Ziman, 1993; Yamochi et al., 1994; Qadota et al., 1996), and two membrane proteins (Halme et al., 1996; Roemer et al., 1996; Qadota et al., 1996). Septins, actin, and actin-associated proteins localize early in the cell cycle, before a bud or shmoo tip is recognizable. How this group of proteins is localized to and maintained at sites of cell growth remains unclear.Spa2p is one of the first proteins involved in bud formation to localize to the incipient bud site before a bud is recognizable (Snyder, 1989; Snyder et al., 1991; Chant, 1996). Spa2p has been localized to where a new bud will form at approximately the same time as actin patches concentrate at this region (Snyder et al., 1991). An understanding of how Spa2p localizes to incipient bud sites will shed light on the very early stages of cell polarization. Later in the cell cycle, Spa2p is also found at the mother–daughter bud neck in cells undergoing cytokinesis. Spa2p, a nonessential protein, has been shown to be involved in bud site selection (Snyder, 1989; Zahner et al., 1996), shmoo formation (Gehrung and Snyder, 1990), and mating (Gehrung and Snyder, 1990; Chenevert et al., 1994; Yorihuzi and Ohsumi, 1994; Dorer et al., 1995). Genetic studies also suggest that Spa2p has a role in cytokinesis (Flescher et al., 1993), yet little is known about how this protein is localized to sites of polarized growth.We have used Spa2p green fluorescent protein (GFP)1 fusions to investigate the early localization of Spa2p to sites of polarized growth in living cells. Our results demonstrate that a small domain of ∼150 amino acids of this large 1,466-residue protein is sufficient for targeting to sites of polarized growth and is necessary for Spa2p function. Furthermore, we have identified and characterized a novel yeast protein, Sph1p, which has homology to both the Spa2p amino terminus and the Spa2p localization domain. Sph1p localizes to similar regions of polarized growth and sph1 mutants have similar phenotypes as spa2 mutants.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

20.
Protein–protein interactions (PPIs) are fundamental to the structure and function of protein complexes. Resolving the physical contacts between proteins as they occur in cells is critical to uncovering the molecular details underlying various cellular activities. To advance the study of PPIs in living cells, we have developed a new in vivo cross-linking mass spectrometry platform that couples a novel membrane-permeable, enrichable, and MS-cleavable cross-linker with multistage tandem mass spectrometry. This strategy permits the effective capture, enrichment, and identification of in vivo cross-linked products from mammalian cells and thus enables the determination of protein interaction interfaces. The utility of the developed method has been demonstrated by profiling PPIs in mammalian cells at the proteome scale and the targeted protein complex level. Our work represents a general approach for studying in vivo PPIs and provides a solid foundation for future studies toward the complete mapping of PPI networks in living systems.Protein–protein interactions (PPIs)1 play a key role in defining protein functions in biological systems. Aberrant PPIs can have drastic effects on biochemical activities essential to cell homeostasis, growth, and proliferation, and thereby lead to various human diseases (1). Consequently, PPI interfaces have been recognized as a new paradigm for drug development. Therefore, mapping PPIs and their interaction interfaces in living cells is critical not only for a comprehensive understanding of protein function and regulation, but also for describing the molecular mechanisms underlying human pathologies and identifying potential targets for better therapeutics.Several strategies exist for identifying and mapping PPIs, including yeast two-hybrid, protein microarray, and affinity purification mass spectrometry (AP-MS) (25). Thanks to new developments in sample preparation strategies, mass spectrometry technologies, and bioinformatics tools, AP-MS has become a powerful and preferred method for studying PPIs at the systems level (69). Unlike other approaches, AP-MS experiments allow the capture of protein interactions directly from their natural cellular environment, thus better retaining native protein structures and biologically relevant interactions. In addition, a broader scope of PPI networks can be obtained with greater sensitivity, accuracy, versatility, and speed. Despite the success of this very promising technique, AP-MS experiments can lead to the loss of weak/transient interactions and/or the reorganization of protein interactions during biochemical manipulation under native purification conditions. To circumvent these problems, in vivo chemical cross-linking has been successfully employed to stabilize protein interactions in native cells or tissues prior to cell lysis (1016). The resulting covalent bonds formed between interacting partners allow affinity purification under stringent and fully denaturing conditions, consequently reducing nonspecific background while preserving stable and weak/transient interactions (1216). Subsequent mass spectrometric analysis can reveal not only the identities of interacting proteins, but also cross-linked amino acid residues. The latter provides direct molecular evidence describing the physical contacts between and within proteins (17). This information can be used for computational modeling to establish structural topologies of proteins and protein complexes (1722), as well as for generating experimentally derived protein interaction network topology maps (23, 24). Thus, cross-linking mass spectrometry (XL-MS) strategies represent a powerful and emergent technology that possesses unparalleled capabilities for studying PPIs.Despite their great potential, current XL-MS studies that have aimed to identify cross-linked peptides have been mostly limited to in vitro cross-linking experiments, with few successfully identifying protein interaction interfaces in living cells (24, 25). This is largely because XL-MS studies remain challenging due to the inherent difficulty in the effective MS detection and accurate identification of cross-linked peptides, as well as in unambiguous assignment of cross-linked residues. In general, cross-linked products are heterogeneous and low in abundance relative to non-cross-linked products. In addition, their MS fragmentation is too complex to be interpreted using conventional database searching tools (17, 26). It is noted that almost all of the current in vivo PPI studies utilize formaldehyde cross-linking because of its membrane permeability and fast kinetics (1016). However, in comparison to the most commonly used amine reactive NHS ester cross-linkers, identification of formaldehyde cross-linked peptides is even more challenging because of its promiscuous nonspecific reactivity and extremely short spacer length (27). Therefore, further developments in reagents and methods are urgently needed to enable simple MS detection and effective identification of in vivo cross-linked products, and thus allow the mapping of authentic protein contact sites as established in cells, especially for protein complexes.Various efforts have been made to address the limitations of XL-MS studies, resulting in new developments in bioinformatics tools for improved data interpretation (2832) and new designs of cross-linking reagents for enhanced MS analysis of cross-linked peptides (24, 3339). Among these approaches, the development of new cross-linking reagents holds great promise for mapping PPIs on the systems level. One class of cross-linking reagents containing an enrichment handle have been shown to allow selective isolation of cross-linked products from complex mixtures, boosting their detectability by MS (3335, 4042). A second class of cross-linkers containing MS-cleavable bonds have proven to be effective in facilitating the unambiguous identification of cross-linked peptides (3639, 43, 44), as the resulting cross-linked products can be identified based on their characteristic and simplified fragmentation behavior during MS analysis. Therefore, an ideal cross-linking reagent would possess the combined features of both classes of cross-linkers. To advance the study of in vivo PPIs, we have developed a new XL-MS platform based on a novel membrane-permeable, enrichable, and MS-cleavable cross-linker, Azide-A-DSBSO (azide-tagged, acid-cleavable disuccinimidyl bis-sulfoxide), and multistage tandem mass spectrometry (MSn). This new XL-MS strategy has been successfully employed to map in vivo PPIs from mammalian cells at both the proteome scale and the targeted protein complex level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号