首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boneseed, Chrysanthemoides monilifera ssp. monilifera (Asteraceae) is concentrated in and near cities and towns on the north and east coasts of Tasmania. Its absence from intervening rural and bushland areas cannot be attributed to environmental conditions or a lack of time for dispersal from introduction points. The hypothesis tested in the present paper is that the range of boneseed in Tasmania is limited by biotic resistance through herbivory. Cafeteria experiments and field observations showed that sheep (Ovis aries), cattle (Bos taurus), Tasmanian pademelons (Thylogale billardierii), Bennett's wallabies (Macropus rufogriseus), garden weevils (Phlyctinus callosus) and native invertebrates all consumed boneseed, while common brushtail possums (Trichosurus vulpecula) did not. A boneseed population subjected to sheep grazing for 168 days suffered high mortality, while an adjacent ungrazed population survived intact. A replicated exclosure experiment showed that 75 days of grazing by cattle reduced the size of boneseed plants. Observations of a population subject to Bennett's wallaby and Tasmanian pademelon grazing over 1 year and 2 months showed consistently high leaf damage to foliage within pademelon reach and a decline in population, with high mortality rates in the driest and coldest times. Leaf loss attributable to invertebrates did not prevent a nearby population without wallabies from growing. The distributions of the taxa were consistent with biotic resistance, with those demonstrating no severe effect on boneseed individuals widespread, while those with evidence of severe effects more common in rural areas than in urban areas. Boneseed seemed unlikely to survive for very long at normal stocking levels. Macropod grazing, particularly that of T. billardierii, may also inhibit the invasion of boneseed. Thus, the recent introduction of foxes to Tasmania may not only cause the extinction of species such as T. billardierii, but also may cause an expansion of the range of boneseed.  相似文献   

2.
Chemical interference is increasingly suggested as a mechanism facilitating exotic plant invasion and plant community composition. In order to explore this further, we employed a comprehensive extract-bioassay technique that facilitated detection and demarcation of phytotoxicity, direct allelopathy and indirect allelopathy of bitou bush (Chrysanthemoides monilifera spp. rotundata) compared to an indigenous dominant of the invaded system, acacia (Acacia longifolia var. sophorae). Extracts of the leaves and roots of both species exhibited phytotoxic effects against five indigenous plant species. Evidence for allelopathy between co-evolved indigenous plants was detected between acacia and Isolepis nodosa. Allelopathy between bitou bush and four indigenous plant species was also detected. Therefore we propose that both the acacia and bitou bush have the potential to chemically inhibit the establishment of indigenous plants. Eventual dominance of bitou bush is predicted, however, based on more ubiquitous effects on seedling growth.  相似文献   

3.
In coastal areas of Australia, there are extensive infestations of the environmental weed Chrysanthemoides monilifera ssp. rotundata (bitou bush). This study looked at the impact of long-term infestations on the abundance and assemblage composition of leaf litter invertebrates. Assemblages were compared in weed infested and native shrublands along the New South Wales coastline over 12 months. The total abundance was not significantly reduced in the weedy habitat but the abundance of mites, thrips, spiders, ants, and centipedes was reduced at many sites. The invertebrate assemblages also differed between habitats, with the C. monilifera supporting a lower diversity of beetles. However, the millipedes, amphipods, earthworms, pseudoscorpions and isopods appeared to respond positively to the invasion, occurring in higher abundance and detected more frequently in the weedy areas. This has been partially attributed to a change in microclimate within the C. monilifera infestations. It is generally moister and darker, which these invertebrates tend to prefer. Secondly, C. monilifera produces less leaf litter of higher quality, and possibly higher palatability than the native sclerophyllous vegetation, which may encourage species that consume litter.  相似文献   

4.
Allelopathy has been suggested as a mechanism promoting the monoculture formation of some invasive exotic plants. Previous studies have shown that hydrophobic extracts of the roots and soil of exotic bitou bush (Chrysanthemoides monilifera spp. rotundata (DC.) T. Norl.) inhibited the seedling growth of five Australian native plants, including the dominant acacia (Acacia longifolia var. sophorae (Labill.) F. Muell.). Based on this finding, we compared the hydrophobic root and soil chemical profiles of bitou bush and acacia to determine whether bitou bush roots release allelopathic compounds that are novel to the invaded system. We detected three compounds that were exclusive to the bitou bush root and soil, and seven compounds that were common to the bitou bush and acacia roots but only present in the bitou bush soil. The compounds unique to the bitou bush invaded soil were all sesqui- and diterpenes. Several of these compounds were found to inhibit the seedling growth of a native sedge, Isolepis nodosa (Rott.) R. Br. Of particular interest are the sesquiterpenes: β-maaliene, α-isocomene, β-isocomene, δ-cadinene, 5-hydroxycalamenene and 5-methoxycalamenene which were found in high concentrations in the bitou bush root and soil extracts and exhibited phytotoxic activity. Therefore, we present evidence to suggest that bitou bush exudes low molecular weight volatile compounds into the soil which inhibit native plant seedling growth. The reduced establishment of native plants via allelopathy is likely to create space and contribute to the invasion of bitou bush on the eastern Australian coast.  相似文献   

5.
We coordinated biogeographical comparisons of the impacts of an exotic invasive tree in its native and non-native ranges with a congeneric comparison in the non-native range. Prosopis juliflora is taxonomically complicated and with P. pallida forms the P. juliflora complex. Thus we sampled P. juliflora in its native Venezuela, and also located two field sites in Peru, the native range of Prosopis pallida. Canopies of Prosopis juliflora, a native of the New World but an invader in many other regions, had facilitative effects on the diversity of other species in its native Venezuela, and P. pallida had both negative and positive effects depending on the year, (overall neutral effects) in its native Peru. However, in India and Hawaii, USA, where P. juliflora is an aggressive invader, canopy effects were consistently and strongly negative on species richness. Prosopis cineraria, a native to India, had much weaker effects on species richness in India than P. juliflora. We carried out multiple congeneric comparisons between P. juliflora and P. cineraria, and found that soil from the rhizosphere of P. juliflora had higher extractable phosphorus, soluble salts and total phenolics than P. cineraria rhizosphere soils. Experimentally applied P. juliflora litter caused far greater mortality of native Indian species than litter from P. cineraria. Prosopis juliflora leaf leachate had neutral to negative effects on root growth of three common crop species of north-west India whereas P. cineraria leaf leachate had positive effects. Prosopis juliflora leaf leachate also had higher concentrations of total phenolics and L-tryptophan than P. cineraria, suggesting a potential allelopathic mechanism for the congeneric differences. Our results also suggest the possibility of regional evolutionary trajectories among competitors and that recent mixing of species from different trajectories has the potential to disrupt evolved interactions among native species.  相似文献   

6.
The effect of allelopathy from invasive alien plants (IAPs) on native species is one of the main factors for their adaptation and diffusion. IAPs can have different degrees of invasion under natural succession and are distributed in numerous regions. Seed germination and seedling growth (SGe-SGr) play a crucial role in population recruitment. Thus, it is critical to illustrate the differences in the allelopathy caused by an IAP with different degrees of invasion in numerous regions on SGe-SGr of native species to describe the primary force behind their adaptation and diffusion. This study assessed the allelopathy of the notorious IAP horseweed (Conyza canadensis (L.) Cronq.) on SGe-SGr of the native lettuce species (Lactuca sativa L.) under different degrees of invasion (light degree of invasion and heavy degree of invasion) in three provinces (Jiangsu, Anhui, and Hubei) along the Yangtze River in China. The allelopathy of horseweed leaf extract on lettuce SGe-SGr remarkably increased with the increased degree of invasion, which may be due to the buildup of allelochemicals generated by horseweed with a heavy degree of invasion compared with a light degree of invasion. A high concentration of horseweed leaf extract resulted in noticeably stronger allelopathy on lettuce SGe-SGr compared to the extract with a low concentration. There are noticeable differences in the allelopathy of the extract of horseweed leaves from different provinces on lettuce SGe-SGr with the following order i.e. Jiangsu > Hubei > Anhui. This may be due to the high latitudes for the three sampling sites in Jiangsu compared with the latitudes for the collection sites in Hubei and Anhui. There are certain differences in the environments among the three provinces. Thus, the allelopathy of horseweed on SGe-SGr of lettuce may have a greater negative impact in Jiangsu compared to the other two provinces.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00962-y.  相似文献   

7.
Summary An allelopathic interaction of a pasture-forest intercropping system was evaluated by experiments conducted in field and by laboratory assays. A study site was situated in the farm of Hoshe Forestry Experiment Station at Nantou County, Taiwan. After deforestation of Chinese fir (Cunninghamia lanceolata), a split plot design of 4 treatments, namely litter removed, litter removed and kikuyu grass (Pennisetum clandestinum) planted, litter left, and litter left and grass planted, was composed. Field meaurements showed that the fir litter left on the ground did not significantly inhibit the growth of weeds, kikuyu grass, and fir seedlings in the first four months following deforestation, while kikuyu grass significantly suppressed the growth of weeds longer than four months but did not reduce growth of fir seedlings. The aqueous extracts of fresh fir leaves, fir litter, and kikuyu leaves were bioassayed by using lettuce and rice seeds and stolon cuttings ofBrachiaria mutica. Bioassays showed that fresh fir leaves produced significant phytotoxicity while fir litter and kikuyu grass gave limited toxicity. Nine phytotoxic phenolics and many unidentified flavonoids were found in the leaf and litter of Chinese fir and kikuyu leaves. A good correlation between the degree of phytotoxicity and phytotoxins was obtained, indicating an allelopathy was involved. This finding suggests that allelopathy may contribute benefits in the intercropping system to reduce the need for herbicides and to lessen the labor cost for weed control. Paper No. 304 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan, Republic of China. This study was supported in part by grants of Academia Sinica, Taipei, and Council of Agriculture, Executive Yuan of the Republic of China.  相似文献   

8.
Allochthonous leaf litter is often the main resource base for invertebrate communities in ephemeral water-filled containers, and detritus quality can be affected by hydrologic conditions. The invasive mosquito Aedes albopictus utilizes container habitats for its development where it competes as larvae for detritus and associated microorganisms with the native Aedes triseriatus. Different hydrologic conditions that containers are exposed to prior to mosquito utilization affect litter decay and associated water quality. We tested the hypothesis that larval competition between A. albopictus and A. triseriatus would be differentially affected by prior hydrologic conditions. Experimental microcosms provisioned with Quercus alba L. litter were subjected to one of three different hydrologic treatments prior to the addition of water and mosquito larvae: dry, flooded, and a wet/dry cycle. Interspecific competition between A. albopictus and A. triseriatus was mediated by hydrologic treatment, and was strongest in the dry treatment vs. the flooded or wet/dry treatments. Aedes triseriatus estimated rate of population change (λ'') was lowest in the dry treatment. Aedes albopictus λ'' was unaffected by hydrologic treatment, and was on average always increasing (i.e., > 1). Aedes triseriatus λ'' was affected by the interaction of hydrologic treatment with interspecific competition, and was on average declining (i.e., < 1.0), at the highest interspecific densities in the dry treatment. Dry treatment litter had the slowest decay rate and leached the highest concentration of tannin-lignin, but supported more total bacteria than the other treatments. These results suggest that dry conditions negatively impact A. triseriatus population performance and may result in the competitive exclusion of A. triseriatus by A. albopictus, possibly by reducing microbial taxa that Aedes species browse. Changing rainfall patterns with climate change are likely to affect competition between A. triseriatus and A. albopictus, probably enhancing negative competitive effects of A. albopictus on A. triseriatus in areas that experience drought.  相似文献   

9.
Plant exposure to enhanced UV-B radiation typically induces changes in leaf secondary metabolite profiles which will be inherited in litter, affecting litter breakdown and the carbon (C) dynamics of sensitive plant communities. A key enzyme in the decomposition process is phenol oxidase which is influenced by litter quality and, hence, a decomposition bioindicator. Here we investigated dwarf shrub litter decomposition following experimental community exposure to enhanced UV-B over two decades in the Swedish sub-Arctic. We examined the hypothesis that foliar UV-B exposure would alter litter quality to elevate phenol oxidase activity. This was tested in the field by measuring phenol oxidase activity in freshly collected mixed-community litter from under our experimental vegetation. A laboratory mesocosm was next used in a decomposition assay to investigate individual species responses over eight weeks, with an emphasis on the quality of leachate outputs from decomposing litter (from Empetrum hermaphroditum, Vaccinium vitis-idaea, Vaccinium uliginosum). In the assay bi-weekly collections of leachate were analysed for phenol oxidase activity, together with total phenolics and dissolved organic C (DOC). At the end of the assay litter mass loss and respired C were also determined. The initial assessment on field mixed-community litter found no enhanced UV-B treatment (henceforth: ‘UV-B treatment’) effect on phenol oxidase activity. However, in the controlled laboratory mesocosm assay, significant species-specific effects of the UV-B treatment were evident, with increased phenol oxidase activity in V. vitis-idaea leachate (P < 0.001) and a significant reduction (P = 0.05) in respired C. Leachate DOC release from the UV-B treatment was greater in both Vaccinium species and the effect on V. uliginosum was significant (P < 0.05). The UV-B treatment had no effect on the total phenolic concentration of litter or leachates for any species, but there were significant differences in leachate total phenolics, both over time and between species. Also the initial phenolic concentration in leachates from the decomposing litter of E. hermaphroditum was greater than both Vaccinum species. Results suggest a species specific role for UV-B in influencing enzyme function and decomposition, dependent on individual traits. This has implications for decomposition dynamics in this system and more widely. Our study highlights the value of using a laboratory assay to gain a mechanistic understanding the species level impacts of a global change factor (UV-B) on decomposition, which are otherwise obscured by community-level responses and difficult to determine under field conditions.  相似文献   

10.
Two field-growing silver birch (Betula pendula Roth) clones (clone 4 and 80) were exposed to elevated CO2 and O3 for three growing seasons (1999–2001). The phenolic compounds of naturally abscised leaf litter were analyzed in order to determine the possible CO2- and O3-induced changes in the litter quality. The potential litter-mediated CO2 and O3 effects on litter-feeding soil macrofauna (detritivore) performance were assessed in microcosm experiments, i.e., the relative growth rates (RGR) of Lumbricus terrestris and Porcellio scaber, the relative consumption rates (RCR) of P. scaber, and mortality of the test animals were measured. The leaf litter grown under elevated CO2 had increased concentrations (weight per mass unit) and contents (weight per leaf) of phenolic acids, flavonol glycosides, condensed tannins and total measured phenolics. Elevated O3 increased the concentrations of 3,4’-dihydroxypropiophenone 3-β-d-glucoside (DHPPG) and flavonoid aglycones but only under ambient CO2. However, elevated O3 effects on the content of some low-molecular-weight phenolic (LMWP) compounds (i.e. phenolic acids, DHPPG, flavonoid aglycones) and total LMWP changed over time emphasizing the importance of conducting long-term (>3 years) exposure studies. In general, RGR of young L. terrestris was affected by the litter quality changes induced by elevated CO2 and O3, as the animal growth rates were reduced when they were fed with CO2- and O3-exposed leaf litter of clone 80 in Experiment 1. P. scaber RCR or RGR responses to CO2- and O3-induced changes in litter quality were more variable and inconsistent, and neither were there any litter-mediated CO2 and O3 effects on animal mortality in these microcosm experiments. In conclusion, elevated CO2 has the potential to alter silver birch leaf litter quality, but the possible O3 effects on phenolic compounds and litter-mediated CO2 and O3 effects on detritivores are more difficult to validate.  相似文献   

11.
Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders’ web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe’s architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.  相似文献   

12.
The present study investigates the effect of soil amended with sugarcane straw leachate and its constituents on root elongation of weed and crop plants. The influence of soil biotic and abiotic factors on plant growth were also evaluated through assays in both autoclaved soil and sand. In unsterile soil, straw leachates stimulated root growth of some test plants at 6 g dry straw ls−1 and inhibited root elongation at higher concentrations. A bioassay guided process of the bioactive leachate constituents led to the isolation of vanillic, syringic and ferulic acids. These compounds were also assayed on the test plants in the three mentioned substrates. In unsterile soil, phenolics stimulated the growth of some species at 19 mg l−1. Higher phenolics concentrations were inhibitory. The concentration needed to inhibit 25% root elongation (EC25) was calculated from the dose–response curves. The concentration of phenolics in the leachate (64 g dry straw l−1) was estimated to be 187 mg l−1 (ferulic acid), 131 mg l−1 (vanillic acid) and 20 mg l−1 (Syringic acid). In general, these concentrations were below the EC25 values determined in unsterile soil indicating that these compounds cannot completely explain the strong inhibitory activity of sugarcane straw leachates. The role of soil factors on phytotoxicity of sugarcane straw leachate and its identified growth regulators is also discussed.  相似文献   

13.
When organisms interact in multi‐species groups, the direct effects of facilitation and competition can be modified by indirect interactions. We explored multispecies interactions among the native Pinus ponderosa, the invasive annual grass Bromus tectorum, and the invasive forb Centaurea stoebe in intermountain prairie of the northern Rocky Mountains. Centaurea is much less abundant under Pinus than in surrounding open grassland and Bromus is more abundant under Pinus. We found that the more fertile soil associated with Pinus facilitated both invasive species and did not alter competitive outcomes. Pinus litter and litter leachate inhibited both species, but litter also shifted competitive outcomes in favor of Bromus and against Centaurea. The effects of Pinus litter leachate were also strong and leachate eliminated the competitive effect of Centaurea on Bromus while not changing the competitive effect of Bromus on Centaurea. There are many other ways that Pinus may affect understory composition, but by altering the competitive playing field through leaf litter Pinus appears to indirectly facilitate Bromus by more strongly inhibiting Centaurea chemically, an unusual case of a native inhibiting an invader through allelopathy. Our results also provide an unexpected and novel perspective on indirect interactions among competitors, but not through intransitive competitive relationships. Instead, one species (Pinus) strongly ‘modified’ interactions between two other species in addition to disproportionately affecting one species more than another.  相似文献   

14.
Bitou bush (Chrysanthemoides monilifera ssp. rotundata; Asteraceae) is a major woody weed that competes with the native legume Acacia sophorae in coastal ecosystems of eastern Australia. Three glasshouse experiments examined whether litter or soil from beneath bitou bush or Acacia plants could influence seed germination and seedling growth of A. sophorae. The presence of litter decreased seed germinability and this effect was greater for bitou bush litter than for Acacia litter. Shoot growth was increased by the addition of Rhizobium after 40 days, irrespective of soil type. After 78 days, shoot and root biomass were significantly lower for seedlings grown in bitou bush soil than for those grown in Acacia soil. There was a non‐significant trend towards a lower median population of Rhizobium in the soil beneath bitou bush than in that beneath Acacia. The results demonstrated a slight effect of bitou bush on the growth of A. sophorae, which could, however, be overshadowed by the judicious use of herbicides or fire for weed control and revegetation.  相似文献   

15.
To understand the global distribution patterns of litter-dwelling thrips, a total 150 leaf litter samples were collected from 6 natural reserves located in three climatic regions, temperate, subtropical and tropical. The results showed the relative abundance of Thysanoptera was over 3.0% in 4 natural reserves from subtropical and tropical zone, and reached 5.9% in one tropical reserve, only less than Acarina and Collembola. In contrast it was only 0.3% in the warm temperate natural reserves, and no thrips were collected in a mid temperate reserve. The order on the average species numbers per plot of litter thrips was tropic > subtropics > temperate (n=25, p<0.05). Mean density of litter thrips per plots in the tropics and subtropics was significantly higher than that in the temperate region (n=25, p<0.05), but the average density was not significantly different between tropical and subtropical zones (n=25, p>0.05). The diversity of litter thrips in the tropics and subtropics was much higher than that in the temperate area based on comparsions of Shannon-Wiener diversity index (H’), Pielou eveness index (J), and Simpson dominance index (D). All of these results indicated that litter-dwelling thrips lived mainly in tropical and subtropical regions; meanwhile, species number and relative abundance increased with decreasing latitude.  相似文献   

16.
Cell wall-degrading enzymes of Venturia inaequalis are supposed to be fungal virulence factors whereas phenolic compounds of the host plant may be involved in defence. Since phenolic structures are predestined for an interaction with proteins we studied the effects on enzymes and proteins in course of in vitro culture and with preparations from culture filtrates and mycelia, respectively. The native compounds epicatechin, catechin, phloridzin, chlorogenic acid, caffeic acid, p-coumaric acid and phloridzin tested under non-oxidizing conditions had no or weak effects on enzyme activities. A significant inhibition of pectinase was only detected with the highest concentrations of procyanidins and phloretin. Aerobe conditions resulted in a fast oxidation of most phenolics which was enhanced by fungal phenoloxidases. Generally, no inhibition of fungal growth occurred in vitro but distinct irreversible effects on proteins and enzymes were detected with oxidized phenolics in course of in vitro-cultures as well as with the corresponding preparations. Efficacy of inhibitory activity in in vitro-cultures depended on media, culture technique and time course. Direct treatment of enzyme preparations with the oxidized phenolics resulted in a distinct inhibition of cellulolytic and especially pectinolytic activity. Apart from cellulase pattern altered by phenolics, in vitro-culture zymograms revealed a non specific reduction of enzymatic activities, whereas action on total culture filtrate proteins resulted in specific effects due to phenolic compounds and incubation time. An attempt was made to characterize the oxidation products of epicatechin. Chromatographic fractionation revealed a non-resolvable complex of inhibitory compounds which were not consistent with the typical yellow oxidation products.  相似文献   

17.
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.  相似文献   

18.
Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter decomposition (P<0.05). The intent of this meta-analysis was to improve our understanding of the overall effects of UV-B on litter decomposition.  相似文献   

19.
The objective of this study was to search for polymorphisms in the coding region of the estrogen receptors 1 and 2 (ESR1 and ESR2 )and to analyze the effects of these variants and the well known intronic ESR1 Pvu II polymorphism on litter size in a Chinese-European pig line. We identified five silent single nucleotide polymorphisms (SNP) in the ESR1 cDNA: c.669T > C (exon 3), c.1227C > T (exon 5), c.1452C > T (exon 7), c.1665T > C and c.1755A > G (exon 8). One pair of these SNP (c.1665T > C and c.1755A > G) co-segregated in the analyzed line, and the SNP c.669T > C showed the same segregation pattern as the Pvu II polymorphism. These polymorphisms were tested in this study, although the c.1452C > T SNP within exon 7 was not analyzed due to its low informativeness. In the ESR2 cDNA, one missense SNP was found within exon 5, which caused an amino acid substitution in the coded protein: "c.949G > A (p.Val317Met)" and was tested on sow litter size. Information on 1622 litter records from 408 genotyped sows was analyzed to determine whether these SNP influenced the total number of piglets born (TNB) or the number of born alive (NBA). The polymorphisms ESR1: [Pvu II; c.669T > C], ESR1: [c.1665T > C; c.1755A > G] and ESR2: c.949G > A showed no statistically significant association with litter size. However, the ESR1: c.1227T allele was significantly associated with TNB. The additive substitution effect was estimated to be 0.40 piglets born per litter (P < 0.03), and no dominance effects were observed. This SNP could be useful in assisted selection for litter size in some pig lines, as a new genetic marker in linkage disequilibrium with the causative mutation.  相似文献   

20.
Invasive planktonic crustaceans have become a prominent feature of aquatic communities worldwide, yet their effects on food webs are not well known. The Asian calanoid copepod, Pseudodiaptomus forbesi, introduced to the Columbia River Estuary approximately 15 years ago, now dominates the late-summer zooplankton community, but its use by native aquatic predators is unknown. We investigated whether three species of planktivorous fishes (chinook salmon, three-spined stickleback, and northern pikeminnow) and one species of mysid exhibited higher feeding rates on native copepods and cladocerans relative to P. forbesi by conducting `single-prey’ feeding experiments and, additionally, examined selectivity for prey types with `two-prey’ feeding experiments. In single-prey experiments individual predator species showed no difference in feeding rates on native cyclopoid copepods (Cyclopidae spp.) relative to invasive P. forbesi, though wild-collected predators exhibited higher feeding rates on cyclopoids when considered in aggregate. In two-prey experiments, chinook salmon and northern pikeminnow both strongly selected native cladocerans (Daphnia retrocurva) over P. forbesi, and moreover, northern pikeminnow selected native Cyclopidae spp. over P. forbesi. On the other hand, in two-prey experiments, chinook salmon, three-spined stickleback and mysids were non- selective with respect to feeding on native cyclopoid copepods versus P. forbesi. Our results indicate that all four native predators in the Columbia River Estuary can consume the invasive copepod, P. forbesi, but that some predators select for native zooplankton over P. forbesi, most likely due to one (or both) of two possible underlying casual mechanisms: 1) differential taxon-specific prey motility and escape responses (calanoids > cyclopoids > daphnids) or 2) the invasive status of the zooplankton prey resulting in naivety, and thus lower feeding rates, of native predators feeding on invasive prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号