首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
土壤微生物多样性的形成、维持和变化机理是生态学研究的核心内容, 已有大量研究表明土壤微生物群落构建不仅受到土壤环境的深刻影响, 也与植物群落物种多样性密切相关。由于自然群落中土壤环境和植物多样性协同影响土壤微生物, 难以区分和厘清植物多样性和土壤环境对土壤微生物多样性构建的各自影响。该研究基于在青藏高原高寒草地构建的人工草地群落, 比较分析了3种优势禾本科牧草单播和混播及施肥处理13年后, 土壤细菌和真菌物种多样性及其与植物群落和土壤理化因子的关系。主要结果: 1)与各单播处理相比, 3种牧草两两混播一致显著降低了土壤细菌群落的丰富度和多样性, 其中变形菌门和放线菌门相对丰度显著增加, 而酸杆菌门、拟杆菌门和浮霉菌门相对丰度显著减小; 牧草混播对土壤真菌多样性没有显著影响。2)牧草混播显著降低了土壤pH和土壤全氮含量, 增加了土壤全磷含量; 施肥显著降低土壤pH, 增加了土壤速效磷含量; 但这些土壤理化因子的变化不足以解释土壤细菌和真菌多样性在处理间的差异。3)施肥显著提高了植物群落地上生物量, 降低了植物物种丰富度, 土壤细菌多样性随植物物种丰富度增加而减小, 而与植物生物量变化无关。该研究在野外条件下, 通过长期控制实验揭示了高寒草地禾草混播并不增加土壤微生物多样性, 为高寒地区牧草混播人工草地实践提供了科学依据。  相似文献   

3.
4.
Biological diversity would apparently seem the most intuitive and easily studied of all the ecological concepts. However, in practice biodiversity has suffered from great number of definitions that vary with the specific needs of the different researchers, thus making it extremely confusing as an ecological concept. In this paper, I shortly review the concept of biodiversity showing that there exists a substantial ambiguity among ecologists as far as biodiversity conceptualization and evaluation is concerned. I conclude that, due to this major disagreement on its very nature, biodiversity may be defined simply as a set of multivariate summary statistics for quantifying different characteristics of community structure.  相似文献   

5.
Several hypotheses have been proposed to explain the mechanisms that generate temporal and spatial species richness patterns. We tested four common hypotheses (water, energy, climatic heterogeneity and net primary productivity) to evaluate which factors best explain patterns of Zygoptera species richness. Of these, we predicted that climatic heterogeneity would be the most important predictor for Zygoptera richness patterns. We sampled communities of adult Zygoptera in 100 small Amazonian streams. Based on generalized linear mixed models (GLMM), we found that net primary productivity and climatic heterogeneity comprised the best model of Zygoptera species richness in Amazonian streams, with an pseudo r2 of 39.5%. Results indicate that species richness increases by one species per 1 kg of biomass per square meter in NPP, or with an increase of 2 °C in air temperature variability. Our work corroborates a recent study with other taxa in Brazilian Bioms. This suggests that temporal variation in climate and net primary productivity are important predictors of the macroecological patterns of richness for aquatic organisms in tropical regions.  相似文献   

6.
Habitat isolation is one of the most important factors endangering the biodiversity, but little research has been done with vascular epiphytes. In order to understand the effect of isolation on the epiphyte community, we studied epiphyte diversity on three plots in a forest fragment, two riparian forest fragments, and in isolated pastureland trees. We found 118 vascular epiphyte species. On forest plots, both epiphyte richness per tree (Stree) and species turnover rate within trees (βtree) registered the highest values, although the lowest Stree diversity was also found there; additionally inside the forest were host species with clearly different epiphyte community. Stree and βtree diversities of riparian fragments behaved similarly to those of the forest. Isolated trees had the second highest Stree diversity, although their βtree diversity was the lowest. In the forest plots were both, the highest and lowest expected accumulated richness (α diversity); on riparian fragments it was intermediate, and the second lowest α diversity was registered for isolated trees. Species turnover rate among plots (β) was high and was associated with both, isolation and a distance gradient from permanent water sources. The epiphyte community on isolated trees was clearly different to the other habitats. Results suggest that deforestation eliminated dry areas and specific hosts that were important for the maintenance of epiphyte species richness. In pastureland trees the epiphyte βtree diversity diminished, suggesting a simplification of the environment for epiphytes and causing a low α diversity.  相似文献   

7.

Aim

Our aim is to document the dimensions of current squamate reptile biodiversity in the Americas by integrating taxonomic, phylogenetic and functional data, and assessing how this may vary across phylogenetic scales. We also explore the potential underlying mechanisms that may be responsible for the observed geographical diversity patterns.

Location

The Americas.

Time period

Present.

Major taxa

Squamate reptiles.

Methods

We used published data on the distribution, phylogeny, and body size of squamate reptiles to document the current dimensions of their alpha diversity in the Americas. We overlapped species ranges to estimate taxonomic diversity (TD) and calculated phylogenetic diversity (PD) using mean pairwise phylogenetic distance (MPD), speciation rate (DivRate) and Faith's phylogenetic index (PD). We estimated functional diversity (FD) as trait dispersion in the multivariate space using body size and leg development data. We implemented a deconstructive macroecological approach to understand how spatial mismatches between the three facets of diversity vary across phylogenetic scales, and the potential eco-evolutionary mechanisms driving these patterns across space.

Results

We found a strong latitudinal gradient of TD with a large accumulation in tropical regions. PD and FD patterns were largely similar likely due to the high phylogenetic signal in the traits used, and higher values tended to be concentrated in harsh and/or heterogeneous environments. We found differences between major clades within Squamata that display contrasting geographical patterns. Several regions across the continent shared the same spatial mismatches between dimensions across clades, suggesting that similar eco-evolutionary processes are shaping these regional reptile assemblages. However, we also found evidence that non-mutually exclusive processes can operate differently across clades.

Main conclusions

The deconstructive approach implemented here is based on a solid macroecological framework. We can extend this to other taxonomic groups to establish whether there are particularities about how different eco-evolutionary mechanisms shape biodiversity facets in a spatially explicit context.  相似文献   

8.
Species diversity includes two aspects, the number of species (species richness) and the proportional abundances of the species (heterogeneity diversity). Species richness and heterogeneity diversity can be measured over different scales; a single point, samples, large scales, biogeographical provinces and in assemblages and habitats. In the literature, the terminology of these scales is confused. Here, scales are given a uniform notation. Scales of species richness and heterogeneity diversity are distinguished from turnover (beta) diversity, which is the degree of change in species composition along a gradient. Methods of measurement of the scales of species richness, heterogeneity diversity, turnover diversity and for estimating total species richness are reviewed. Two methods for measuring heterogeneity diversity are recommended Exp H′ (where H′ is the Shannon-Wiener index) and 1/Simpson’s index, together with an equitability index J′. The reviewed methods are then applied to a data set from the Norwegian continental shelf to illustrate the advantages of the recommended methods. Finally, the application of the methods to assessment of effects of disturbance, to studies of gradients of species richness and to conservation issues are discussed.  相似文献   

9.
The effects of fire season on forb diversity patterns, density, and composition were determined for a northern Mixed Prairie site, USA. Repeated spring burns (dormant season), summer burns, fall burns (dormant season), and unburned treatments were compared over a 3-yr period characterized by wet and dry moisture conditions. Alpha and beta diversity were highest on unburned and summer burn treatments, while landscape mosaic diversity was highest on fall burns. Forb density was highest on fall and spring burn sites. Nine forb species comprised 82% of total densities and were significantly affected by fire season and year to year variations in moisture. Forb composition for unburned and spring burn treatments was similar, but both treatments were different from the summer burn and fall burn treatments which were similar to each other. Fire alone did not appear to be an intense enough disturbance to initiate drastic changes in the forb component of vegetation patches. Specific fire seasons did appear to either mask or enhance forb structure arising from other disturbance(s). Fire season also affected the scales of forb organization in the landscape. Contrasting spatial characteristics of the forb component of prairie plant communities may provide a diagnostic technique for exposing the interaction of disturbances at different temporal and spatial scales.  相似文献   

10.
Measuring commonness and rarity is pivotal to ecology and conservation. Zeta diversity, the average number of species shared by multiple sets of assemblages, and Dark diversity, the number of species that could occur in an assemblage but are missing, have been recently proposed to capture two aspects of the commonness‐rarity spectrum. Despite a shared focus on commonness and rarity, thus far, Zeta and Dark diversities have been assessed separately. Here, we review these two frameworks and suggest their integration into a unified paradigm of the “rarity facets of biodiversity.” This can be achieved by partitioning Alpha and Beta diversities into five components (the Zeta, Eta, Theta, Iota, and Kappa rarity facets) defined based on the commonness and rarity of species. Each facet is assessed in traditional and multiassemblage fashions to bridge conceptual differences between Dark diversity and Zeta diversity. We discuss applications of the rarity facets including comparing the taxonomic, functional, and phylogenetic diversity of rare and common species, or measuring species'' prevalence in different facets as a metric of species rarity. The rarity facets integrate two emergent paradigms in biodiversity science to better understand the ecology of commonness and rarity, an important endeavor in a time of widespread changes in biodiversity across the Earth.  相似文献   

11.
Floodplain waterbodies and their biodiversity are increasingly threatened by human activities. Given the limited resources available to protect them, methods to identify the most valuable areas for biodiversity conservation are urgently needed. In this study, we used freshwater fish assemblages in floodplain waterbodies to propose an innovative method for selecting priority areas based on four aspects of their diversity: taxonomic (i.e. according to species classification), functional (i.e. relationship between species and ecosystem processes), natural heritage (i.e. species threat level), and socio-economic (i.e. species interest to anglers and fishermen) diversity. To quantitatively evaluate those aspects, we selected nine indices derived either from metrics computed at the species level and then combined for each assemblage (species rarity, origin, biodiversity conservation concern, functional uniqueness, functional originality, fishing interest), or from metrics directly computed at the assemblage level (species richness, assemblage rarity, diversity of biological traits). Each of these indices belongs to one of the four aspects of diversity. A synthetic index defined as the sum of the standardized aspects of diversity was used to assess the multi-faceted diversity of fish assemblages. We also investigated whether the two main environmental gradients at the catchment (distance from the sea) and at the floodplain (lateral connectivity of the waterbodies) scales influenced the diversity of fish assemblages, and consequently their potential conservation value. Finally, we propose that the floodplain waterbodies that should be conserved as a priority are those located in the downstream part of the catchment and which have a substantial lateral connectivity with the main channel.  相似文献   

12.
中国温带荒漠区的植物多样性及其易地保护*   总被引:4,自引:0,他引:4  
荒漠植物多样性研究及其保护是生物多样性保护的重要组成部分。 中国荒漠区植物种类贫乏(约1000余种),分布稀疏,生物量小,起源古老,地理成份复杂(有14个地理分布型), 特有成份多(80余种),珍稀濒危植物种类相对较多(50~60种),在荒漠气候和特殊的土壤基质条件下, 形成了多种生态型和特殊的生活型,为荒漠植物多样性易地保护提供了可能性和必要性。 处于亚洲荒漠区的吐鲁番沙漠植物园的研究工作,正从传统的植物引种驯化和经济植物栽培,向荒漠区系植物多样性保护领域转移,现园内保存的荒漠区系植物成份已达42.2%,特有种和珍稀濒危植物也占相当比例。 长期适应荒漠环境的各类植物具有多种多样的抗逆性基因,因而有着潜在的开发利用前景。  相似文献   

13.
云南高黎贡山怒族对植物传统利用的初步研究   总被引:9,自引:0,他引:9  
采用民族生物学和文化人类学等方法,广泛调查和研究了云南西北部高黎贡山地区怒族对植物的传统利用形式。结果表明:怒族对植物的传统利用主要表现在食用、药用、观赏、宗教祟拜和文化利用等方面。讨论了怒族的传统文化在当地植物多样性利用和管理中的作用和意义,并探讨了在植物多样性管理中传统管理和现代管理之间的关系以及在我国利用文化多样性进行自然生态环境保护的可能性、必要性和可行性。此外,面对优秀的传统文化知识和文化多样性逐渐消失的现实,作者建议加以拯救和广泛的研究。  相似文献   

14.
15.
Single-stranded DNA (ssDNA) viruses are economically important pathogens of plants and animals, and are widespread in oceans; yet, the diversity and evolutionary relationships among marine ssDNA viruses remain largely unknown. Here we present the results from a metagenomic study of composite samples from temperate (Saanich Inlet, 11 samples; Strait of Georgia, 85 samples) and subtropical (46 samples, Gulf of Mexico) seawater. Most sequences (84%) had no evident similarity to sequenced viruses. In total, 608 putative complete genomes of ssDNA viruses were assembled, almost doubling the number of ssDNA viral genomes in databases. These comprised 129 genetically distinct groups, each represented by at least one complete genome that had no recognizable similarity to each other or to other virus sequences. Given that the seven recognized families of ssDNA viruses have considerable sequence homology within them, this suggests that many of these genetic groups may represent new viral families. Moreover, nearly 70% of the sequences were similar to one of these genomes, indicating that most of the sequences could be assigned to a genetically distinct group. Most sequences fell within 11 well-defined gene groups, each sharing a common gene. Some of these encoded putative replication and coat proteins that had similarity to sequences from viruses infecting eukaryotes, suggesting that these were likely from viruses infecting eukaryotic phytoplankton and zooplankton.  相似文献   

16.
Summary Diversity as a measure of individual variation within a population is widely agreed to reflect the number of different types in the population, taking into account their frequencies. In contrast, differentiation measures variation between two or more populations, demes or subpopulations. As such, it is based on the relative frequencies of types within these subpopulations and, ideally, measures the average distance of subpopulations from their respective lumped remainders. This concept of subpopulation differentiation can be applied consistently to a single population by regarding each individual as a deme (subpopulation) of its own, and it results in a measure of population differentiation T which depends on the relative frequencies of the types and the population size. T corresponds to several indices of variation frequently applied in population genetics and ecology, and it verifies these indices as measures of differentiation rather than diversity. For any particular frequency distribution of types, the diversity is then shown to be the size of a hypothetical population in which each type is represented exactly once, i. e. for which T =1. Hence, the diversity of a population is its differentiation effective number of types. This uniquely specifies the link between the two concepts. Moreover, again corresponds to known measures of diversity applied in population genetics and ecology. While population differentiation can always be estimated from samples, the diversity of a population, particularly if it is large, may not be. In such cases, it is recommended that population differentiation is estimated and the corresponding sample diversity merely computed. Finally, a solution to the problem of measuring multi-locus diversities is provided.  相似文献   

17.
Aim We investigated partitioning of aquatic macroinvertebrate diversity in eight headwater streams to determine the relative contributions of α and β diversity to γ diversity, and the scale dependence of α and β components. Location Great Dividing Range, Victoria, Australia. Methods We used the method of Jost (Ecology, 2007, 88, 2427–2439) to partition γ diversity into its α and β components. We undertook the analyses at both reach and catchment scales to explore whether inferences depended on scale of observation. Results We hypothesized that β diversity would make a large contribution to the γ diversity of macroinvertebrates in our dendritic riverine landscape, particularly at the larger spatial scale (among catchments) because of limited dispersal among sites and especially among catchments. However, reaches each had relatively high taxon richness and high α diversity, while β diversity made only a small contribution to γ diversity at both the reach and catchment scales. Main conclusions Dendritic riverine landscapes have been thought to generate high β diversity as a consequence of limited dispersal and high heterogeneity among individual streams, but this may not hold for all headwater stream systems. Here, α diversity was high and β diversity low, with individual headwater stream reaches each containing a large portion of γ diversity. Thus, each stream could be considered to have low irreplaceability since losing the option to use one of these sites in a representative reserve network does not greatly diminish the options available for completing the reserve network. Where limited information on individual taxonomic distributions is available, or time and money for modelling approaches are limited, diversity partitioning may provide a useful ‘first‐cut’ for obtaining information about the irreplaceability of individual streams or subcatchments when establishing representative freshwater reserves.  相似文献   

18.
19.
海南植物区系的多样性   总被引:15,自引:2,他引:13  
张宏达 《生态科学》2001,20(Z1):1-10
记载海南维管束植物的多样性,表明蕨类植物区系已有古生代和中生代的孑遗,又有白垩纪以来的现代蕨类,它们都存在着许多特有种;裸子植物则以泛热带成分及华夏成分为主;有花植物包括全球植物区系8个植物区的成分,而以热带成分及全球性分布成分最多。最后,文章分析了海南植物区系多样性的地史背景及自然条件的因素。  相似文献   

20.
The Pseudoroegneria species are perennial grasses in the Triticeae tribe, whose St genome has been linked to several important polyploid species. Due to frequent hybridization and complex genetic mechanism, the relationships within Pseudoroegneria, and within the Triticeae have been heavily disputed. Using the chloroplast rbcL gene we estimated the nucleotide diversity of 8 Pseudoroegneria species. We also examined the phylogenetic relationships within Pseudoroegneria and of Pseudoroegneria within the Triticeae. The estimates of nucleotide diversity indicated that Pseudoroegneria tauri and Pseudoroegneria spicata species had the highest diversity, while Pseudoroegneria gracillima had the lowest diversity. The phylogenetic analysis of Pseudoroegneria placed all P. spicata species into a clade separate from the other Pseudoroegneria species, while the relationship of the other Pseudoroegneria species could not be determined. Due to the groupings of Pseudoroegneria with the polyploid Elymus, our results strongly supported Pseudoroegneria as the maternal genome donor to Elymus. There was also weak support that P. spicata may be the maternal donor to the StH Elymus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号