首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
2.
The objective of this study was to investigate the survival and development of porcine cloned embryos vitrified by Cryotop carrier at the zygote, 2- and 4-cell stages. The quality of resultant blastocysts was evaluated according to their total cell number, apoptotic cell rate, reactive oxygen species (ROS) production, glutathione (GSH) content and mRNA expression levels of genes related to embryonic development. The survival rates of zygotes, 2- and 4-cell embryos after vitrification did not differ from those of their fresh counterparts. Vitrification still resulted in significantly decreased blastocyst formation rates of these early-stage embryos. Moreover, the total cells, apoptotic rate, ROS and GSH levels in resultant blastocysts were unaffected by vitrification. The mRNA expression levels of PCNA, CPT1, POU5F1 and DNMT3B in the blastocysts derived from vitrified early-stage embryos were significantly higher than those in the fresh blastocysts, but there was no change in expression of CDX2 and DNMT3A genes. In conclusion, our data demonstrate that the early-stage porcine cloned embryos including zygotes, 2- and 4-cells can be successfully vitrified, with respectable blastocyst yield and quality.  相似文献   

3.
Pig embryos suffer severe sensitivity to hypothermic conditions, which limits their ability to withstand conventional cryopreservation. Research has focused on high lipid content of pig embryos and its role in hypothermic sensitivity, while little research has been conducted on structural damage. Documenting cytoskeletal disruption provides information on embryonic sensitivity and cellular response to cryopreservation. The objectives of this study were to document microfilament (MF) alterations during swine embryo vitrification, to utilize an MF inhibitor during cryopreservation to stabilize MF, and to determine the developmental competence of cytoskeletal-stabilized and vitrified pig embryos. Vitrified morulae/early blastocysts displayed MF disruptions and lacked developmental competence after cryopreservation; hatched blastocysts displayed variable MF disruption and developmental competence. Cytochalasin-b did not improve morula/early blastocyst viability after vitrification; however, it significantly (P < 0.05) improved survival and development of expanded and hatched blastocysts. After embryo transfer, we achieved pregnancy rates of almost 60%, and litter sizes improved from 5 to 7.25 piglets per litter. This study shows that the pig embryo cytoskeleton can be affected by vitrification and that MF depolymerization prior to vitrification improves blastocyst developmental competence after cryopreservation. After transfer, vitrified embryos can produce live, healthy piglets that grow normally and when mature are of excellent fecundity.  相似文献   

4.
microRNAs (miRNAs) play a critical role in implantation and development of mouse embryos. In this study, we aim to evaluate the possibility of miRNAs as potential biomarkers in the blastocyst culture to assess embryo quality. We also intend to investigate whether improved clinical outcomes of vitrified embryos agree with altered miRNA expressions. Mouse embryos from in vitro fertilization were vitrified at the two-cell stage. After thawing, the embryos were individually cultured and developed to the blastocyst stage. We used quantitative real-time polymerase chain reaction to evaluate miRNA expression levels in both vitrified and fresh groups, and culture medium (CM). The fibronectin binding assay was performed to examine for blastocyst attachment. The findings showed reduced expressions of miR-16-1 (0.2 ± 0.06) and miR-Let-7a (0.65 ± 0.1) after vitrification compared to fresh embryos. We observed significant upregulation of the target genes Vav3 (4.33 ± 0.25), integrin β-3 (Itg β3; 4.73 ± 0.2), and Bcl2 (2.29 ± 0.16) in the vitrified embryos compared to the fresh groups. Evaluation of blastocyst CM showed upregulation of miR-Let-7a (15.68 ± 0.89), miR-16-1 (16.18 ± 0.75), and miR-15a (13.36 ± 0.73) in the vitrified group in comparison to the fresh blastocysts (P < .05). The expression levels of miR-16-1 (3.28 ± 0.63), miR-15a (5.91 ± 0.38), and miR-Let-7a (9.07 ± 0.6) in CM of the vitrified blastocysts conducted on fibronectin were significantly higher than the fresh group (P < .05).This study showed that vitrification of embryos changes implantation and proliferation biomarkers. In addition, upregulated miRNAs in CM could be potentially used for noninvasive early assessment of embryo quality.  相似文献   

5.
Misumi K  Suzuki M  Sato S  Saito N 《Theriogenology》2003,60(2):253-260
This study was conducted to determine the efficiency of vitrification using the microdroplet (MD) method for early stage porcine embryos. Embryos at compacted morulae to early blastocyst stage were vitrified in a vitrification solution containing 40% (v/v) ethylene glycol, 0.6M sucrose and 2% (w/v) polyethylene glycol in M2 (ESP) without any pretreatment. The equilibration and dilution were carried out in third and fourth steps, respectively, at 38 degrees C. The survivability of the cryopreserved embryos was assessed for both in vitro culture (Experiment 1) and by embryo transfer (Experiment 2). In Experiment 1, the embryos were vitrified within a microdroplet or 0.25 ml straw (ST) and fresh embryos were used as a control group. The survival rates after 24h culture in the MD, ST and control groups were 21/23, 14/20 and 20/20, respectively. The hatching rates of the embryos after 48 h incubation were 14/23, 4/20 and 16/20, respectively. In Experiment 2, 171 vitrified embryos were transferred to 5 recipient gilts, and 17 healthy piglets were produced from 2 recipients (3 recipients aborted) in Group 1. In Group 2, 81 vitrified embryos and 16 fresh embryos in total were transferred to 4 recipient gilts, and 10 healthy piglets from the vitrified embryos were produced from 3 recipients. These results indicated that porcine embryos of compacted morulae to early blastocyst stage can survive cryopreservation using the microdroplet method without any special intracellular manipulation or treatment.  相似文献   

6.
This study evaluated the effects of exposure and/or vitrification of porcine metaphase II (MII) oocytes on their in vitro viability and ultra-structural changes with two experiments. Experiment 1 examined the effect of vitrified oocytes on microtubule localization, mitochondrial morphology, chromosome organization and the developmental rate in IVF control and vitrified oocytes. Oocytes matured for 44 h were subjected to IVF (IVF control). Oocytes matured for 42 h were exposed to cryoprotectants (CPA control), followed by 2h culture, and subjected to IVF. Oocytes vitrified at 42 h post-maturation were warmed, cultured for 2h, and subjected to IVF (vitrified). Experiment 2 evaluated the effect of oocytes freezing on development of ICSI with and without activation and parthenotes. Fresh and vitrified oocytes were subjected to ICSI with and without electrical activation. Cleavage and blastocyst rates were significantly (P<0.05) lower in vitrified IVF, parthenote and ICSI embryos than those in fresh counterparts. Between ICSI embryos from fresh oocytes and vitrified oocytes, the rates of blastocyst were significantly higher (P<0.05) in activated group than the group without activation. Significant differences (P<0.05) were observed in normal spindle configuration of vitrified (43.5%) compared to control (81.0%) oocytes, but no significant difference was observed between CPA exposed and control groups. In conclusion, porcine oocytes at MII stage are very sensitive to vitrification with altered microtubule localization and mitochondrial organization thus resulting in impaired fertilization and embryo development.  相似文献   

7.
Lin TA  Chen CH  Sung LY  Carter MG  Chen YE  Du F  Ju JC  Xu J 《Theriogenology》2011,75(4):760-768
The objective was to determine cryotolerance of in vitro cultured rabbit embryos to the open-pulled straw (OPS) method. Overall, 844 rabbit embryos at pronuclear, 2- to 4-cell, 8-cell, and morula/blastocyst stages were vitrified, and ≥ 1 mo later, were sequentially warmed, rehydrated, and subjected to continuous culture (n = 691) or embryo transfer (ET, n = 153). Embryos vitrified at the 8-cell stage or beyond had greater survival, expanded blastocyst and hatched blastocyst rates in vitro, and better term development than those vitrified at earlier stages. The 8-cell group had 70.1% expanded blastocysts, 63.7% hatched blastocysts, and 25.7% term development, as compared to 1.5-17.7%, 1.5-4.3% and 2.8-3.7% in the pronuclear, 2-cell and 4-cell embryos, respectively (P < 0.05). The expanded and hatched blastocyst rates in vitrified morula/blastocyst post-warming were higher than that in the 8-cell group; however, their term development after ET was similar (8-cell vs morula/blastocyst: 25.7 vs 19.4%, P > 0.05). Development after ET was comparable between vitrified-warmed embryos and fresh controls at 8-cell and morula/blastocyst stages (19.4-25.7 vs 13.7-26.6%, P > 0.05). For embryos at pronuclear or 2- to 4-cell stages, however, term rates were lower in the vitrified-warmed (2.8-3.7%) than in fresh controls (28.6-35.6%, P < 0.05). Therefore, cultured rabbit embryos at various developmental stages had differential crytolerance. Under the present experimental conditions, the 8-cell stage appeared to be the critical point for acquiring cryotolerance. We inferred that for this OPS cryopreservation protocol, rabbit embryos should be vitrified no earlier than the 8-cell stage, and stage-specific protocols may be needed to maximize embryo survival after vitrification and re-warming.  相似文献   

8.
This study was conducted to evaluate the effects of developmental stage of in vitro produced (IVP) ovine embryos and the type of vitrification procedure used on embryo cryotolerance.The IVP embryos were vitrified at five different developmental stages: 4-, 8- and 16-cell, morula, and blastocyst. For each stage, half of the embryos were vitrified in either 30 μl 3.4 M glycerol + 4.6 M ethylene glycol in straw (method 1) or in <0.1 μl 2.7 M ethylene glycol + 2.1 M Me2SO + 0.5 M sucrose placed on the inner surface of a straw (method 2) of vitrification solution, based on two different procedures. After warming embryo viability was determined by assessing the rates of re-expansion, survival, and blastocyst formation. The quality of surviving embryos was evaluated by their hatching rate and blastocyst cell numbers. In both vitrification methods, embryo survival progressively increased as the developmental stage progressed. In method 1 few of the early cleavage stage embryos (4-, 8- and 16-cell) could reach to the blastocyst stage following warming. There was no significant difference in blastocyst cell numbers (total, ICM, and trophectoderm cells) or hatching rate of blastocysts derived from vitrified embryos at different developmental stages. The number of dead cells in vitrified blastocysts in method 1 was higher than for non-vitrified blastocysts (P < 0.05). The number of apoptotic cells in vitrified blastocysts was higher than for non-vitrified counterparts (P < 0.05). In conclusion, both the developmental stage of IVP ovine embryos and the method of vitrification have a significant effect on the viability and developmental competence of sheep embryos.  相似文献   

9.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

10.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

11.
In this study, three different vitrification systems (open pulled straw: OPS; superfine open pulled straw: SOPS; and Vit-Master technology using SOPS: Vit-Master-SOPS) were compared in order to investigate the influence of cooling rate on in vitro development of vitrified/warmed porcine morulae, early blastocysts, or expanded blastocysts. Embryos were obtained surgically on Day 6 of the estrous cycle (D0 = onset of estrus) from weaned crossbred sows, classified and pooled according their developmental stage. A subset of embryos from each developmental stage was cultured to evaluate the in vitro development of fresh embryos; the remaining embryos were randomly allocated to each vitrification system. After vitrification and warming, embryos were cultured in vitro for 96 h in TCM199 with 10% fetal calf serum at 39 degrees C, in 5% CO(2) in humidified air. During the culture period, embryos were morphologically evaluated for their developmental progression. The developmental stage of embryos at collection affected the survival and hatching rates of vitrified/warmed embryos (P < 0.001). The vitrification system or the interaction of vitrification system and developmental stage had no effect on these parameters (P > 0.05). Vitrified expanded blastocysts showed the best development in vitro (P < 0.001), with survival and hatching rates similar to those of fresh expanded blastocysts. The hatching rate of fresh morula or early blastocyst stage embryos was higher than their vitrified counterparts. In conclusion, under our experimental conditions, cooling rates greater than 20,000 degrees C/min, as occurs when SOPS or Vit-Master-SOPS systems are used, do not enhance the efficiency of in vitro development of vitrified porcine embryos.  相似文献   

12.
The effectiveness of three cryopreservation protocols (slow freezing, short equilibration vitrification and long equilibration vitrification) on in vitro-derived cattle embryos at expanded blastocyst and pronuclear stages was compared. 199 expanded blastocysts of good quality were assigned randomly into four treatment groups [control, non-cryopreserved (fresh, unfrozen); and the three cryopreservation methods]. The re-expansion of the cryopreserved blastocysts after 24 h in vitro culture was similar to that of the fresh control group. However, the hatching rate of expanded blastocysts after 48 h culture was significantly less for the slow freezing group (31/47; 66.0%) than for both the short equilibration vitrification (46/51; 90.2%) and long equilibration vitrification groups (42/50; 84.0%). Denuded presumptive zygotes at the pronuclear stage (14–18 h post-insemination) were assigned randomly to the same four treatment groups and, following thawing, embryos were assessed for their capacity to cleave and to develop into a blastocyst. Overall, cleavage rates of cryopreserved zygotes were significantly less than those of the fresh control. The blastocyst formation rate of slow-frozen zygotes (4/81; 4.9%) was significantly less than that of zygotes subjected either to short equilibration vitrification (18/82; 22.0%) or long equilibration vitrification (16/74; 21.6%). All cryopreservation groups showed rates of blastocyst formation that were significantly less than that of the fresh control (51/92; 55.4%). Collectively, our findings indicate that vitrification is the preferred technology to cryopreserve in vitro-derived cattle embryos at expanded blastocyst and pronuclear stages. Moreover, short equilibration vitrification technology can improve outcomes and be more efficient by taking less time to perform.  相似文献   

13.
Vitrification is becoming a preferred method for pre‐implantation embryo cryopreservation. The objective of this study was to determine the differentially expressed genes of in vivo‐ and in vitro‐produced bovine embryos after vitrification. In vitro‐ (IVF) and in vivo‐derived (IVV) bovine blastocysts were identified as follows: in vitro‐produced fresh (IVF‐F), in vitro‐produced vitrified (IVF‐V), in vivo‐derived fresh (IVV‐F), in vivo‐derived vitrified (IVV‐V). The microarray results showed that 53 genes were differentially regulated between IVF and IVV, and 121 genes were differentially regulated between fresh and vitrified blastocysts (P < 0.05). There were 6, 268, 962, and 17 differentially regulated genes between IVF‐F × IVV‐F, IVF‐V × IVV‐V, IVF‐F × IVF‐V, and IVV‐F × IVV‐V, respectively (P < 0.05). While gene expression was significantly different between fresh and vitrified IVF blastocysts (P < 0.05), it was similar between fresh and vitrified IVV blastocysts. Significantly up‐regulated KEGG pathways included ribosome, oxidative phosphorylation, spliceosome, and oocyte meiosis in the fresh IVF blastocyst samples, while sphingolipid and purine metabolisms were up‐regulated in the vitrified IVF blastocyst. The results showed that in vitro bovine blastocyst production protocols used in this study caused no major gene expression differences compared to those of in vivoproduced blastocysts. After vitrification, however, in vitro‐produced blastocysts showed major gene expression differences compared to in vivo blastocysts. This study suggests that in vitro‐produced embryos are of comparable quality to their in vivo counterparts. Vitrification of in vitro blastocysts, on the other hand, causes significant up‐regulation of genes that are involved in stress responses. Mol. Reprod. Dev. 79: 613–625, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
不同温度条件下小鼠囊胚OPS法玻璃化冷冻保存技术的研究   总被引:1,自引:0,他引:1  
本实验采用OPS法在不同温度条件下对小鼠囊胚实施冷冻保存,研究用EDFS和EFS溶液冷冻保存囊胚的效率和提供不同温度下筛选玻璃化溶液的依据,为家畜和人类胚胎的冷冻保存建立模型。25℃室温和37℃恒温台条件下OPS一步法冷冻保存小鼠囊胚,EFS40和EDFS40冷冻组扩张囊胚率(92.31%,92.30%)与对照(97.26%)均无显著差异(P>0.05),但EDFS40孵化囊胚率(59.62%)显著低于对照组(83.56%)(P<0.05);二步法冷冻结果显示,采用EDFS30和EFS40均能高效保存小鼠囊胚,解冻后扩张囊胚率(95.69%和95.05%)和孵化率(80.48%和78.95%)与对照无显著差异(P>0.05)。当改为25℃室温不使用恒温台条件下,一步法冷冻的胚胎解冻后,仅EDFS40冷冻组扩张囊胚率和孵化囊胚率(85.96%和75.44%)与对照(96.05%和82.89%)无显著性差异(P>0.05);实施二步法冷冻的胚胎,解冻后EDFS30,EDFS40和EFS40组均获得理想效果,扩张囊胚率(92.03%-95.31%)及孵化囊胚率(67.19%-76.76%)与对照均无显著差异(96.05%和82.89%)(P>0.05)。据体外发育结果,选择最佳冷冻组胚胎移植给假孕4d的受体母鼠,其妊娠率和产仔率(90.90%和37.33%)与新鲜胚对照组(91.67%和42.33%)无显著差异(P>0.05)。结果证实,EDFS30、EDFS40和EFS40三种冷冻液在不同的温度条件和采用不同冷冻程序,均能成功保存小鼠囊胚。  相似文献   

15.
牛血清白蛋白对小鼠原核期胚胎玻璃化冷冻的影响   总被引:1,自引:0,他引:1  
以小鼠原核期胚胎为对象,以胚胎的存活率、卵裂率、囊胚率以及囊胚细胞数作为检测指标,在M2液的基础上添加8种浓度(0,2,4,8,16,32,64,96mg/mL)牛血清白蛋白(BSA)配置防冻液,探讨防冻液和玻璃化冷冻后对胚胎发育的影响。BSA防冻液对胚胎发育影响的实验结果表明,8个浓度组间以及与对照组间胚胎的卵裂率、囊胚率以及囊胚细胞数无显著差异(P>0.05),说明在防冻液中加入一定浓度的BSA对小鼠胚胎无毒性作用。防冻液经玻璃化冷冻后对胚胎发育影响的实验表明,8个浓度组间冷冻胚胎复苏后的存活率、卵裂率、囊胚率及囊胚细胞数无显著差异(P>0.05)。表明BSA在这种防冻液中没有明显的保护作用。从经济、实用、生物安全角度考虑,不支持在玻璃化防冻液中添加BSA。  相似文献   

16.
There is a clinical demand for efficient cryopreservation of cloned camel embryos with considerable logistic and economic advantage. Vitrification of in vivo derived embryos has been reported in camels, but there is no study on vitrification of cloned embryos. Moreover, whether characteristic differences between cloned and in vivo derived embryos imply different vitrification requirement is unresolved. Here, we compared survival, re-expansion and pregnancy rates of cloned embryos vitrified using two commercial vitrification kits (Cryotec and Kitazato), developed basically for human embryos, and a vitrification protocol developed for in vivo camel embryos (CVP). Cloned embryos responded dynamically to vitrification-warming steps in commercial kits, with a flat shrinkage in the final vitrification solution and a quick re-expansion to the original volume immediately after transferring to the isotonic warming solution. Contrarily, full shrinkage was not observed in CVP method, and majority of embryos were still collapsed post-warming. The immediate re-expansion was highly associated and predictive of higher survival and total cell number, and also better redox state of embryos vitrified by Cryotec and Kitazato kits compared to CVP method. Importantly, while 30% blastomere loss, verified by differential dye exclusion test, was tolerated in vitrified embryos, >50% blastomeres loss in non-expanded blastocysts implied the minimal essential cell survival rate for blastocoelic cavity re-expansion in vitrified cloned camel blastocysts, irrespective of vitrification method. A protocol-based exposure of embryos to cryoprotectants indicated that cryoprotectant toxicity, per se, may not be involved in lower cryosurvival of embryos in CVP vs. Cryotec and Kitazato. The initial pregnancy rates were numerically higher in Cryotec and Kitazato frozen transfers compared to fresh transfer (56.3, 60 and 33.3%, respectively), and importantly, a higher percentage of established pregnancies in vitrified groups passed the critical 3 months period of early embryonic loss compared to sibling fresh clone pregnancies (50, 40, and 10%, respectively). Results confirmed the suitability of Cryotec and Kitazato kits for vitrification of cloned camel embryos and that vitrification may improve pregnancy outcome by weeding out poor competent embryos.  相似文献   

17.
Porcine embryos, which had been vitrified and stored in liquid nitrogen for up to three yr, were retrospectively analyzed to evaluate the influence of duration of storage on their in vitro viability post-warming. All embryos were vitrified (OPS or SOPS) and warmed (three-step or direct warming) using procedures that resulted in the same in vitro survival, hatching rates, and numbers of cells. Therefore, embryo data obtained using the different procedures were pooled according to their developmental stage as morulae (n = 571) or blastocysts (n = 797) and to the length of their storage in liquid nitrogen: a) 1-9 d; b) 10-30 d; c) 31-90 d; d) 1-3 yr. Non-vitrified embryos of corresponding developmental stages were used as a fresh control group (n = 280). Survival and hatching rates were evaluated after in vitro culture to assess embryo viability. The total number of cells was counted in the resulting viable blastocysts as an indicator of quality. A total of 1,648 fresh and vitrified embryos were analyzed. In vitro survival and hatching rates, but not the number of cells, differed significantly between vitrified morulae and their fresh counterparts irrespective of the duration of cryostorage. Length of storage in liquid nitrogen (LN2) did not influence in vitro viability among different groups of vitrified/warmed morulae nor embryos at the blastocyst stage. In conclusion, duration of storage in LN2 has no effect on the post-warming viability of porcine embryos vitrified at morula or blastocyst stage.  相似文献   

18.
19.
The objectives of this study were to: (1) determine an optimal method and stage of development for vitrification of bovine zygotes or early embryos; and (2) use the optimal procedure for bovine embryos to establish equine pregnancies after vitrification and warming of early embryos. Initially, bovine embryos produced by in-vitro fertilization (IVF) were frozen and vitrified in 0.25 mL straws with minimal success. A subsequent experiment was done using two vitrification methods and super open pulled straws (OPS) with 1- or 8-cell bovine embryos. In Method 1 (EG-O), embryos were exposed to 1.5 M ethylene glycol (EG) for 5 min, 7 M ethylene glycol and 0.6 M galactose for 30 s, loaded in an OPS, and plunged into liquid nitrogen. In Method 2 (EG-DMSO), embryos were exposed to 1.1 M ethylene glycol and 1.1 M dimethyl sulfoxide (DMSO) for 3 min, 2.5 M ethylene glycol, 2.5 M DMSO and 0.5 M galactose for 30 s, and loaded and plunged as for EG-O. Cryoprotectants were removed after warming in three steps. One- and eight-cell bovine embryos were cultured for 7 and 4.5 d, respectively, after warming, and control embryos were cultured without vitrification. Cleavage rates of 1-cell embryos were similar (P > 0.05) for vitrified and control embryos, although the blastocyst rates for EG-O and control embryos were similar and higher (P < 0.05) than for EG-DMSO. The blastocyst rate of 8-cell embryos was higher (P < 0.05) for EG-O than EG-DMSO. Therefore, EG-O was used to cryopreserve equine embryos. Equine oocytes were obtained from preovulatory follicles. After ICSI, injected oocytes were cultured for 1-3 d. Two- to eight-cell embryos were vitrified, warmed and transferred into recipient's oviducts. The pregnancy rate on Day 20 was 62% (5/8) for equine embryos after vitrification and warming. In summary, a successful method was established for vitrification of early-stage bovine embryos, and this method was used to establish equine pregnancies after vitrification and warming of 2- to 8-cell embryos produced by ICSI.  相似文献   

20.
Vitrification of rat embryos at various developmental stages   总被引:6,自引:0,他引:6  
Han MS  Niwa K  Kasai M 《Theriogenology》2003,59(8):1851-1863
The effect of developmental stage on the survival of cryopreserved rat embryos was examined. Wistar rat embryos at various developmental stages were vitrified by a 1-step method with EFS40, an ethylene glycol-based solution, or by a 2-step method with EFS20 and EFS40. After warming, the survival of the embryos was assessed by their morphology, their ability to develop to blastocysts (or expanded blastocysts for blastocysts) in culture, or their ability to develop to term after transfer. Most (91-100%) of the embryos recovered after vitrification were morphologically normal in all developmental stages. However, the developmental ability of 1-cell embryos was quite low; exposing them to EFS40 for just 0.5 min decreased the in vitro survival rate from 76 to 9%. The survival rates of 2-cell embryos and blastocysts, both in vitro and in vivo, were significantly higher with a 2-step vitrification process than with a 1-step vitrification process. Very high in vitro survival rates (94-100%) were obtained in 4- to 8-cell embryos and morulae in the 1-step method. Although survival rates in vivo of 4-cell (40%) and 8-cell (4%) embryos vitrified by the 1-step method were comparatively low, the values were similar to those obtained in non-vitrified fresh embryos. When morulae vitrified by the 1-step method were transferred to recipients, the in vivo survival rate (61%) was high, and not significantly different from that of fresh embryos (70%). These results show that rat embryos at the 2-cell to blastocyst stages can be vitrified with EFS40, and that the morula stage is the most feasible stage for embryo cryopreservation in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号