首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ugi protein inhibitor of uracil-DNA glycosylase encoded by bacteriophage PBS2 inactivates human uracil-DNA glycosylases (UDG) by forming a tight enzyme:inhibitor complex. To create human cells that are impaired for UDG activity, the human glioma U251 cell line was engineered to produce active Ugi protein. In vitro assays of crude cell extracts from several Ugi-expressing clonal lines showed UDG inactivation under standard assay conditions as compared to control cells, and four of these UDG defective cell lines were characterized for their ability to conduct in vivo uracil-DNA repair. Whereas transfected plasmid DNA containing either a U:G mispair or U:A base pairs was efficiently repaired in the control lines, uracil-DNA repair was not evident in the lines producing Ugi. Experiments using a shuttle vector to detect mutations in a target gene showed that Ugi-expressing cells exhibited a 3-fold higher overall spontaneous mutation frequency compared to control cells, due to increased C:G to T:A base pair substitutions. The growth rate and cell cycle distribution of Ugi-expressing cells did not differ appreciably from their parental cell counterpart. Further in vitro examination revealed that a thymine DNA glycosylase (TDG) previously shown to mediate Ugi-insensitive excision of uracil bases from DNA was not detected in the parental U251 cells. However, a Ugi-insensitive UDG activity of unknown origin that recognizes U:G mispairs and to a lesser extent U:A base pairs in duplex DNA, but which was inactive toward uracil residues in single-stranded DNA, was detected under assay conditions previously shown to be efficient for detecting TDG.  相似文献   

2.
In view of removing lesions in DNA produced by the deamination of cytosine to uracil, uracil-DNA glycosylases were anticipated to be ubiquitous. However, an analogous activity in Drosophila melanogaster was not detected. Instead, a nuclease was identified that acts specifically upon DNA containing uracil. The cleavage of uracil-containing DNA by the nuclease generates acid-soluble oligonucleotides in a reaction which can be inhibited by pretreatment of the DNA with Escherichia coli uracil-DNA glycosylase. Uracil-containing DNA with either A:U base pairs or G:U base pairs were susceptible to cleavage by the nuclease, whereas other damaged DNA substrates were not. The nuclease activity is transient and appears only in third instar larvae, with other developmental stages of Drosophila lacking significant levels of the nuclease.  相似文献   

3.
Deamination of cytosine to uracil and 5-methylcytosine to thymine represents a major mutagenic threat particularly at high temperatures. In double-stranded DNA, these spontaneous hydrolytic reactions give rise to G.U and G.T mispairs, respectively, that must be restored to G.C pairs prior to the next round of DNA replication; if left unrepaired, 50% of progeny DNA would acquire G.C --> A.T transition mutations. The genome of the hyperthermophilic archaeon Pyrobaculum aerophilum has been recently shown to encode a protein, Pa-MIG, a member of the endonuclease III family, capable of processing both G.U and G.T mispairs. We now show that this latter activity is undetectable in crude extracts of P. aerophilum. However, uracil residues in G.U mispairs, in A.U pairs, and in single-stranded DNA were efficiently removed in these extracts. These activities were assigned to a approximately 22-kDa polypeptide named Pa-UDG (P. aerophilum uracil-DNA glycosylase). The recombinant Pa-UDG protein is highly thermostable and displays a considerable degree of homology to the recently described uracil-DNA glycosylases from Archaeoglobus fulgidus and Thermotoga maritima. Interestingly, neither Pa-MIG nor Pa-UDG was inhibited by UGI, a generic inhibitor of the UNG family of uracil glycosylases. Yet a small fraction of the total uracil processing activity present in crude extracts of P. aerophilum was inhibited by this peptide. This implies that the hyperthermophilic archaeon possesses at least a three-pronged defense against the mutagenic threat of hydrolytic deamination of cytosines in its genomic DNA.  相似文献   

4.
The DNA repair enzyme uracil-DNA glycosylase from Mycoplasma lactucae (831-C4) was purified 1,657-fold by using affinity chromatography and chromatofocusing techniques. The only substrate for the enzyme was DNA that contained uracil residues, and the Km of the enzyme was 1.05 +/- 0.12 microM for dUMP containing DNA. The product of the reaction was uracil, and it acted as a noncompetitive inhibitor of the uracil-DNA glycosylase with a Ki of 5.2 mM. The activity of the enzyme was insensitive to Mg2+, Mn2+, Zn2+, Ca2+, and Co2+ over the concentration range tested, and the activity was not inhibited by EDTA. The enzyme activity exhibited a biphasic response to monovalent cations and to polyamines. The enzyme had a pI of 6.4 and existed as a nonspherical monomeric protein with a molecular weight of 28,500 +/- 1,200. The uracil-DNA glycosylase from M. lactucae was inhibited by the uracil-DNA glycosylase inhibitor from bacteriophage PBS-2, but the amount of inhibitor required for 50% inhibition of the mycoplasmal enzyme was 2.2 and 8 times greater than that required to cause 50% inhibition of the uracil-DNA glycosylases from Escherichia coli and Bacillus subtilis, respectively. Previous studies have reported that some mollicutes lack uracil-DNA glycosylase activity, and the results of this study demonstrate that the uracil-DNA glycosylase from M. lactucae has a higher Km for uracil-containing DNA than those of the glycosylases of other procaryotic organisms. Thus, the low G + C content of the DNA from some mollicutes and the A.T-biased mutation pressure observed in these organisms may be related to their decreased capacity to remove uracil residues from DNA.  相似文献   

5.
Uracil-initiated base excision DNA repair was conducted using homozygous mouse embryonic fibroblast DNA polymerase beta (+/+) and (-/-) cells to determine the error frequency and mutational specificity associated with the completed repair process. Form I DNA substrates were constructed with site-specific uracil residues at U.A, U.G, and U.T targets contained within the lacZalpha gene of M13mp2 DNA. Efficient repair was observed in both DNA polymerase beta (+/+) and (-/-) cell-free extracts. Repair was largely dependent on uracil-DNA glycosylase activity because addition of the PBS-2 uracil-DNA glycosylase inhibitor (Ugi) protein reduced ( approximately 88%) the initial rate of repair in both types of cell-free extracts. In each case, the DNA repair patch size was primarily distributed between 1 and 8 nucleotides in length with 1 nucleotide repair patch constituting approximately 20% of the repair events. Addition of p21 peptide or protein to DNA polymerase beta (+/+) cell-free extracts increased the frequency of short-patch (1 nucleotide) repair by approximately 2-fold. The base substitution reversion frequency associated with uracil-DNA repair of M13mp2op14 (U.T) DNA was determined to be 5.7-7.2 x 10(-4) when using DNA polymerase beta (+/+) and (-/-) cell-free extracts. In these two cases, the error frequency was very similar, but the mutational spectrum was noticeably different. The presence or absence of Ugi did not dramatically influence either the error rate or mutational specificity. In contrast, the combination of Ugi and p21 protein promoted an increase in the mutation frequency associated with repair of M13mp2 (U.G) DNA. Examination of the mutational spectra generated by a forward mutation assay revealed that errors in DNA repair synthesis occurred predominantly at the position of the U.G target and frequently involved a 1-base deletion or incorporation of dTMP.  相似文献   

6.
Dong L  Mi R  Glass RA  Barry JN  Cao W 《DNA Repair》2008,7(12):1962-1972
Thymine DNA glycosylases (TDG) in eukaryotic organisms are known for their double-stranded glycosylase activity on guanine/uracil (G/U) base pairs. Schizosaccharomyces pombe (Spo) TDG is a member of the MUG/TDG family that belongs to a uracil DNA glycosylase superfamily. This work investigates the DNA repair activity of Spo TDG on all four deaminated bases: xanthine (X) and oxanine (O) from guanine, hypoxanthine (I) from adenine, and uracil from cytosine. Unexpectedly, Spo TDG exhibits glycosylase activity on all deaminated bases in both double-stranded and single-stranded DNA in the descending order of X > I > U  O. In comparison, human TDG only excises deaminated bases from G/U and, to a much lower extent, A/U and G/I base pairs. Amino acid substitutions in motifs 1 and 2 of Spo TDG show a significant impact on deaminated base repair activity. The overall mutational effects are characterized by a loss of glycosylase activity on oxanine in all five mutants. L157I in motif 1 and G288M in motif 2 retain xanthine DNA glycosylase (XDG) activity but reduce excision of hypoxanthine and uracil, in particular in C/I, single-stranded hypoxanthine (ss-I), A/U, and single-stranded uracil (ss-U). A proline substitution at I289 in motif 2 causes a significant reduction in XDG activity and a loss of activity on C/I, ss-I, A/U, C/U, G/U, and ss-U. S291G only retains reduced activity on T/I and G/I base pairs. S163A can still excise hypoxanthine and uracil in mismatched base pairs but loses XDG activity, making it the closest mutant, functionally, to human TDG. The relationship among amino acid substitutions, binding affinity and base recognition is discussed.  相似文献   

7.
The human base excision repair machinery must locate and repair DNA base damage present in chromatin, of which the nucleosome core particle is the basic repeating unit. Here, we have utilized fragments of the Lytechinus variegatus 5S rRNA gene containing site-specific U:A base pairs to investigate the base excision repair pathway in reconstituted nucleosome core particles in vitro. The human uracil-DNA glycosylases, UNG2 and SMUG1, were able to remove uracil from nucleosomes. Efficiency of uracil excision from nucleosomes was reduced 3- to 9-fold when compared with naked DNA, and was essentially uniform along the length of the DNA substrate irrespective of rotational position on the core particle. Furthermore, we demonstrate that the excision repair pathway of an abasic site can be reconstituted on core particles using the known repair enzymes, AP-endonuclease 1, DNA polymerase beta and DNA ligase III. Thus, base excision repair can proceed in nucleosome core particles in vitro, but the repair efficiency is limited by the reduced activity of the uracil-DNA glycosylases and DNA polymerase beta on nucleosome cores.  相似文献   

8.
Cells contain low amounts of uracil in DNA which can be the result of dUTP misincorporation during replication or cytosine deamination. Elimination of uracil in the base excision repair pathway yields an abasic site, which is potentially mutagenic unless repaired. The Trypanosoma brucei genome presents a single uracil-DNA glycosylase responsible for removal of uracil from DNA. Here we establish that no excision activity is detected on U:G, U:A pairs or single-strand uracil-containing DNA in uracil-DNA glycosylase null mutant cell extracts, indicating the absence of back-up uracil excision activities. While procyclic forms can survive with moderate amounts of uracil in DNA, an analysis of the mutation rate and spectra in mutant cells revealed a hypermutator phenotype where the predominant events were GC to AT transitions and insertions. Defective elimination of uracil via the base excision repair pathway gives rise to hypersensitivity to antifolates and oxidative stress and an increased number of DNA strand breaks, suggesting the activation of alternative DNA repair pathways. Finally, we show that uracil-DNA glycosylase defective cells exhibit reduced infectivity in vivo demonstrating that efficient uracil elimination is important for survival within the mammalian host.  相似文献   

9.
Uracil DNA glycosylases are an important class of enzymes that hydrolyze the N-glycosidic bond between the uracil base and the deoxyribose sugar to initiate uracil excision repair. Uracil may arise in DNA either because of its direct incorporation (against A in the template) or because of cytosine deamination. Mycobacteria with G, C rich genomes are inherently at high risk of cytosine deamination. Uracil DNA glycosylase activity is thus important for the survival of mycobacteria. A limitation in evaluating the druggability of this enzyme, however, is the absence of a rapid assay to evaluate catalytic activity that can be scaled for medium to high-throughput screening of inhibitors. Here we report a fluorescence-based method to assay uracil DNA glycosylase activity. A hairpin DNA oligomer with a fluorophore at its 5′ end and a quencher at its 3′ ends was designed incorporating five consecutive U:A base pairs immediately after the first base pair (5′ C:G 3’) at the top of the hairpin stem. Enzyme assays performed using this fluorescent substrate were seen to be highly sensitive thus enabling investigation of the real time kinetics of uracil excision. Here we present data that demonstrate the feasibility of using this assay to screen for inhibitors of Mycobacterium tuberculosis uracil DNA glycosylase. We note that this assay is suitable for high-throughput screening of compound libraries for uracil DNA glycosylase inhibitors.  相似文献   

10.
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung(+/+) and Ung(-/-) backcrossed mice. Interestingly, human cells displayed ~15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ~8-fold higher in mouse cells, constituting ~50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung(-/-) mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.  相似文献   

11.
The gene for the mismatch-specific uracil DNA glycosylase (MUG) was identified in the Escherichia coli genome as a sequence homolog of the human thymine DNA glycosylase with activity against mismatched uracil base pairs. Examination of cell extracts led us to detect a previously unknown xanthine DNA glycosylase (XDG) activity in E. coli. DNA glycosylase assays with purified enzymes indicated the novel XDG activity is attributable to MUG. Here, we report a biochemical characterization of xanthine DNA glycosylase activity in MUG. The wild type MUG possesses more robust activity against xanthine than uracil and is active against all xanthine-containing DNA (C/X, T/X, G/X, A/X and single-stranded X). Analysis of potentials of mean force indicates that the double-stranded xanthine base pairs have a relatively narrow energetic difference in base flipping, whereas the tendency for uracil base flipping follows the order of C/U > G/U > T/U > A/U. Site-directed mutagenesis performed on conserved motifs revealed that Asn-140 and Ser-23 are important determinants for XDG activity in E. coli MUG. Molecular modeling and molecular dynamics simulations reveal distinct hydrogen-bonding patterns in the active site of E. coli MUG that account for the specificity differences between E. coli MUG and human thymine DNA glycosylase as well as that between the wild type MUG and the Asn-140 and Ser-23 mutants. This study underscores the role of the favorable binding interactions in modulating the specificity of DNA glycosylases.  相似文献   

12.
Uracil in DNA is repaired by base excision repair (BER) initiated by a DNA glycosylase, followed by strand incision, trimming of ends, gap filling and ligation. Uracil in DNA comes in two distinct forms; U:A pairs, typically resulting from replication errors, and mutagenic U:G mismatches, arising from cytosine deamination. To identify proteins critical to the rate of repair of these lesions, we quantified overall repair of U:A pairs, U:G mismatches and repair intermediates (abasic sites and nicked abasic sites) in vitro. For this purpose we used circular DNA substrates and nuclear extracts of eight human cell lines with wide variation in the content of BER proteins. We identified the initiating uracil-DNA glycosylase UNG2 as the major overall rate-limiting factor. UNG2 is apparently the sole glycosylase initiating BER of U:A pairs and generally initiated repair of almost 90% of the U:G mismatches. Surprisingly, TDG contributed at least as much as single-strand selective monofunctional uracil-DNA glycosylase 1 (SMUG1) to BER of U:G mismatches. Furthermore, in a cell line that expressed unusually high amounts of TDG, this glycosylase contributed to initiation of as much as approximately 30% of U:G repair. Repair of U:G mismatches was generally faster than that of U:A pairs, which agrees with the known substrate preference of UNG-type glycosylases. Unexpectedly, repair of abasic sites opposite G was also generally faster than when opposite A, and this could not be explained by the properties of the purified APE1 protein. It may rather reflect differences in substrate recognition or repair by different complex(es). Lig III is apparently a minor rate-regulator for U:G repair. APE1, Pol beta, Pol delta, PCNA, XRCC1 and Lig I did not seem to be rate-limiting for overall repair of any of the substrates. These results identify damaged base removal as the major rate-limiting step in BER of uracil in human cells.  相似文献   

13.
Dynamic opening of DNA during the enzymatic search for a damaged base   总被引:7,自引:0,他引:7  
Uracil DNA glycosylase (UDG) removes uracil from U.A or U.G base pairs in genomic DNA by extruding the aberrant uracil from the DNA base stack. A question in enzymatic DNA repair is whether UDG and related glycosylases also use an extrahelical recognition mechanism to inspect the integrity of undamaged base pairs. Using NMR imino proton exchange measurements we find that UDG substantially increases the equilibrium constant for opening of T-A base pairs by almost two orders of magnitude relative to free B-DNA. This increase is brought about by enzymatic stabilization of an open state of the base pair without increasing the rate constant for spontaneous base pair opening. These findings indicate a passive search mechanism in which UDG uses the spontaneous opening dynamics of DNA to inspect normal base pairs in a rapid genome-wide search for uracil in DNA.  相似文献   

14.
15.
UDGb belongs to family 5 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that family 5 UDGb from Thermus thermophilus HB8 is not only a uracil DNA glycosyase acting on G/U, T/U, C/U, and A/U base pairs, but also a hypoxanthine DNA glycosylase acting on G/I, T/I, and A/I base pairs and a xanthine DNA glycosylase acting on all double-stranded and single-stranded xanthine-containing DNA. Analysis of potentials of mean force indicates that the tendency of hypoxanthine base flipping follows the order of G/I > T/I, A/I > C/I, matching the trend of hypoxanthine DNA glycosylase activity observed in vitro. Genetic analysis indicates that family 5 UDGb can also act as an enzyme to remove uracil incorporated into DNA through the existence of dUTP in the nucleotide pool. Mutational analysis coupled with molecular modeling and molecular dynamics analysis reveals that although hydrogen bonding to O2 of uracil underlies the UDG activity in a dissociative fashion, Tth UDGb relies on multiple catalytic residues to facilitate its excision of hypoxanthine and xanthine. This study underscores the structural and functional diversity in the UDG superfamily.  相似文献   

16.
17.
Uracil residues are eliminated from cellular DNA by uracil-DNA glycosylase, which cleaves the N-glycosylic bond between the uracil base and deoxyribose to initiate the uracil-DNA base excision repair pathway. Co-crystal structures of the core catalytic domain of human uracil-DNA glycosylase in complex with uracil-containing DNA suggested that arginine 276 in the highly conserved leucine intercalation loop may be important to enzyme interactions with DNA. To investigate further the role of Arg(276) in enzyme-DNA interactions, PCR-based codon-specific random mutagenesis, and site-specific mutagenesis were performed to construct a library of 18 amino acid changes at Arg(276). All of the R276X mutant proteins formed a stable complex with the uracil-DNA glycosylase inhibitor protein in vitro, indicating that the active site structure of the mutant enzymes was not perturbed. The catalytic activity of the R276X preparations was reduced; the least active mutant, R276E, exhibited 0.6% of wildtype activity, whereas the most active mutant, R276H, exhibited 43%. Equilibrium binding studies utilizing a 2-aminopurine deoxypseudouridine DNA substrate showed that all R276X mutants displayed greatly reduced base flipping/DNA binding. However, the efficiency of UV-catalyzed cross-linking of the R276X mutants to single-stranded DNA was much less compromised. Using a concatemeric [(32)P]U.A DNA polynucleotide substrate to assess enzyme processivity, human uracil-DNA glycosylase was shown to use a processive search mechanism to locate successive uracil residues, and Arg(276) mutations did not alter this attribute.  相似文献   

18.
Uracil-DNA glycosylase is the DNA repair enzyme responsible for the removal of uracil from DNA, and it is present in all organisms investigated. Here we report on the cloning and sequencing of a cDNA encoding the human uracil-DNA glycosylase. The sequences of uracil-DNA glycosylases from yeast, Escherichia coli, herpes simplex virus type 1 and 2, and homologous genes from varicella-zoster and Epstein-Barr viruses are known. It is shown in this report that the predicted amino acid sequence of the human uracil-DNA glycosylase shows a striking similarity to the other uracil-DNA glycosylases, ranging from 40.3 to 55.7% identical residues. The proteins of human and bacterial origin were unexpectedly found to be most closely related, 73.3% similarity when conservative amino acid substitutions were included. The similarity between the different uracil-DNA glycosylase genes is confined to several discrete boxes. These findings strongly indicate that uracil-DNA glycosylases from phylogenetically distant species are highly conserved.  相似文献   

19.
The bacterial mismatch-specific uracil-DNA glycosylase (MUG) and eukaryotic thymine-DNA glycosylase (TDG) enzymes form a homologous family of DNA glycosylases that initiate base-excision repair of G:U/T mismatches. Despite low sequence homology, the MUG/TDG enzymes are structurally related to the uracil-DNA glycosylase enzymes, but have a very different mechanism for substrate recognition. We have now determined the crystal structure of the Escherichia coli MUG enzyme complexed with an oligonucleotide containing a non-hydrolysable deoxyuridine analogue mismatched with guanine, providing the first structure of an intact substrate-nucleotide productively bound to a hydrolytic DNA glycosylase. The structure of this complex explains the preference for G:U over G:T mispairs, and reveals an essentially non-specific pyrimidine-binding pocket that allows MUG/TDG enzymes to excise the alkylated base, 3, N(4)-ethenocytosine. Together with structures for the free enzyme and for an abasic-DNA product complex, the MUG-substrate analogue complex reveals the conformational changes accompanying the catalytic cycle of substrate binding, base excision and product release.  相似文献   

20.
The uracil DNA glycosylase superfamily consists of several distinct families. Family 2 mismatch-specific uracil DNA glycosylase (MUG) from Escherichia coli is known to exhibit glycosylase activity on three mismatched base pairs, T/U, G/U and C/U. Family 1 uracil N-glycosylase (UNG) from E. coli is an extremely efficient enzyme that can remove uracil from any uracil-containing base pairs including the A/U base pair. Here, we report the identification of an important structural determinant that underlies the functional difference between MUG and UNG. Substitution of a Lys residue at position 68 with Asn in MUG not only accelerates the removal of uracil from mismatched base pairs but also enables the enzyme to gain catalytic activity on A/U base pairs. Binding and kinetic analysis demonstrate that the MUG-K68N substitution results in enhanced ground state binding and transition state interactions. Molecular modeling reveals that MUG-K68N, UNG-N123 and family 5 Thermus thermophiles UDGb-A111N can form bidentate hydrogen bonds with the N3 and O4 moieties of the uracil base. Genetic analysis indicates the gain of function for A/U base pairs allows the MUG-K68N mutant to remove uracil incorporated into the genome during DNA replication. The implications of this study in the origin of life are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号