首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new microsporidian species is described from the predatory mite Metaseiulus (formerly Typhlodromus or Galendromus) occidentalis (Nesbitt) (Acari, Phytoseiidae). The ultrastructure of this new species is presented together with the first molecular characterization for a microsporidium of mites. All stages of this new microsporidium are haplokaryotic and develop in direct contact with the host-cell cytoplasm. Sporogony is disporoblastic and spores are formed in eggs, immature stages, and adults of M. occidentalis. There are two morphological classes of spores, one with a short polar filament (3-5 coils) that measured 2.53 x 1.68 microm and one with a longer polar filament (8-9 coils) that measured 3.14 x 1.77 microm. Horizontal transmission of this new species occurs by cannibalism of eggs and other stages and perhaps involves the spores with the long polar filament. Spores with the short polar filament may play a role in autoinfection and vertical (transovarial) transmission that is highly efficient in transferring the microsporidium from adults to progeny. Analysis of the small subunit ribosomal DNA indicated that this species from M. occidentalis is most closely related to the Nosema/Vairimorpha clade of microsporidia. A conflict between the morphological and molecular data is discussed. The species is compared to previously described microsporidia of arachnids resulting in creation of Oligosporidium occidentalis n. sp. in the family Unikaryonidae.  相似文献   

2.
Two experiments were conducted to investigate the relationship between rearing temperatures, the presence or absence of Wolbachia endosymbionts, and non-reciprocal reproductive incompatibility in inbred lines of the parahaploid phytoseiid mite Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae).Heat-treated females crossed with infected males reared at room temperature produced few eggs and high proportions of shriveled eggs. No female progeny were produced. The reciprocal cross was normal. A second experiment showed that the incompatible cross from the first experiment could be made compatible if the infected line was heat-treated and those males crossed with the original heat-treated females. Furthermore, a new incompatibility was induced in a formerly compatible cross when the newly heat-treated females were crossed with males from their base colony. Heat-treatment was correlated with the loss of Wolbachia in both experiments. Wolbachia may thus affect non-reciprocal reproductive incompatibility in M. occidentalis, and may produce a unique incompatibility phenotype in this parahaploid species, including both reduced numbers of male progeny and a lack of female progeny.  相似文献   

3.
Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator-prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, A. phytoseiuli, M. phytoseiuli and O. occidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research.  相似文献   

4.
Isolated colonies of the predatory mite, Phytoseiulus persimilis, were used to gain information regarding prevalence and transmission of Microsporidium phytoseiuli. Two colonies of P. persimilis were reared on spider mite (Tetranychus urticae)-infested bean plants in isolated cages. Disease prevalence of predators from Colony 1 remained relatively low (between 0 and 15%) over 57 weeks of observation whereas disease prevalence of predators from Colony 2 increased over 3 months (from 12 to 100%). Disease prevalence among predators from Colony 1 had increased to 100% 2 months after weekly sampling had ceased for this colony and periodic sampling confirmed that disease prevalence among individuals of both colonies remained at 100%. Microsporidian spores were not detected in randomly chosen samples of T. urticae prey mites that were removed and examined biweekly during this period. Although numerous microsporidian spores were observed in smear preparations of fecal pellets examined by light microscopy, spores were not observed on leaf surfaces or predator feces when examined by SEM. The latter appeared as intact aggregates composed of numerous dumbbell-shaped crystals and it is unlikely that spores are liberated from intact fecal pellets onto leaf surfaces. Vertical transmission of M. phytoseiuli was 100%; horizontal transmission was low (14.3%) and occurred only when immature P. persimilis were permitted to develop in contact with infected immature and adult predators. The mean number of eggs produced per mated pair was highest when uninfected females were mated with uninfected males (63.2 eggs per mated pair). Although mean egg production decreased when one or both parents were infected, not all differences were significant. Male predatory mites did not contribute to infection of their progeny. Results suggest that routine examination of P. persimilis for microsporidian spores is essential for the management of M. phytoseiuli within P. persimilis colonies. Low disease prevalence and lack of obvious disease signs or symptoms, as in the case of M. phytoseiuli, increase the probability that these pathogens will escape notice unless individuals are routinely examined for pathogens.  相似文献   

5.
Amplifying microbial DNA by the polymerase chain reaction (PCR) from single phytoseiid mites has been difficult, perhaps due to the low titer of bacteria and to interference by the relatively larger amounts of mite genomic DNA. In this paper we evaluate the efficiency of standard and high-fidelity PCR protocols subsequent to amplification of the whole genome by a multiple displacement amplification (MDA) procedure developed by Dean et al. DNA from the phytoseiid Phytoseiulus persimilis (Athias-Henriot) was tested because it lacks a Cytophaga-like organism (CLO) and we could add known amounts of a plasmid containing a cloned 16S rRNA gene fragment from a CLO from Metaseiulus occidentalis (Nesbitt). P. persimilis genomic DNA was mixed with the serially diluted plasmid and amplified using MDA followed by either standard or high-fidelity PCR. MDA followed by high-fidelity PCR was most efficient and successfully amplified an expected 1.5-kb band from as little as 0.01fg of the plasmid, which is equivalent to about 1 copy. MDA followed by high-fidelity PCR also consistently amplified Wolbachia- or CLO-specific products from naturally infected single females or eggs of M. occidentalis, which will allow detailed studies of infection frequency and transmission of several microorganisms associated with this predatory mite.  相似文献   

6.
Adult females of Culex salinarius, transovarially infected with the microsporidium Amblyospora sp., showed no significant differences in overall fecundity, physiological longevity, and preoviposition periods when compared to healthy adults under laboratory conditions. Development times and survival rates for congenitally infected young to reproductive age were also indistinguishable from those of healthy controls. A significant reduction of 52% in egg hatch was observed for infected eggs when compared to healthy eggs. Prevalence rates of infection for progeny produced by infected females declined with each successive gonotrophic cycle and averaged 90%. Transovarial transmission is not sufficient for the maintenance of the microsporidium in a population of mosquitoes. An alternate host is suggested as a mechanism whereby the microsporidium can reenter a healthy mosquito population.  相似文献   

7.
An undescribed microsporidium was found infecting Tachinaephagus zealandicus, a gregarious parasitoid that attacks third instar larvae of muscoid flies. Spores were present in all body regions and in all stages of development. Infected adults contained an average of 3.75 x 10(5) spores, and the pathogen was vertically transmitted to progeny. Infected female adults were fed either rifampicin or albendazole mixed with honey to determine the effectiveness of these drugs in preventing vertical transmission. After eight days of feeding on rifampicin the parasitoids produced progeny of which only 37% were infected. In contrast, albendazole-treated and untreated females produced progeny that were 97% and 100% infected, respectively. Healthy and infected colonies were established and studies were conducted to determine the mechanisms of transmission. It was observed that the efficiency of vertical (maternal) transmission was 96.3%. Uninfected parasitoid immatures also became infected when they shared superparasitized hosts with infected immatures. The method of transmission within superparasitized hosts is not known.  相似文献   

8.
Cardinium, a bacterium from the Bacteroidetes group, is associated with reproductive manipulations such as cytoplasmic incompatibility, parthenogenesis, and feminization in some arthropod species. We, and others, have shown that Cardinium, but not Wolbachia, is an endosymbiont in some populations of Metaseiulus occidentalis, a phytoseiid mite that is an important predator of spider mite pests of agricultural crops. However, the precise biological effects that Cardinium may have on M. occidentalis remain unclear. In this study we show, in two sets of crosses between different colonies of Cardinium-free (C-) M. occidentalis females and Cardinium-containing (C+) males, that fecundity was reduced in parental females, F1 progeny survival rates were reduced, and fewer female progeny were produced when compared to the reciprocal and control crosses. There were no differences in these attributes in the reciprocal and two control crosses. Cardinium was transmitted maternally but there was no observed paternal transmission. Finally, Cardinium did not cause asexual (thelytoky) reproduction in M. occidentalis. Thus, Cardinium is associated with nonreciprocal reproductive incompatibility in M. occidentalis and our results support the hypothesis that Cardinium is a reproductive parasite in this agriculturally important predator. Cardinium may therefore affect the evolution and ecology of M. occidentalis and biological control efforts using this mite.  相似文献   

9.
Red imported fire ant, Solenopsis invicta, colonies were successfully infected with the microsporidium Vairimorpha invictae by introducing live larvae, pupae, or dead adults from V. invictae-infected field colonies collected in Argentina. Introductions with 4th instar larvae or non-melanized pupae obtained from infected field colonies, resulted in infection of 40% of the inoculated colonies. Introductions of 4th instars or melanized pupae produced from colonies that were initially infected in the laboratory, resulted in infections of 83% of the colonies, thus perpetuating the infection in other colonies. Infection was detected in 2 of 6 colonies after introducing adult worker caste ants that had died with V. invictae. The average number of adults and the volume of immature ants per colony were significantly lower in the infected than in the control colonies. Infected colonies had 86% fewer adults per colony and 82% less immature ants than the controls. A portion of the 16S rRNA gene of the V. invictae identified from these studies was amplified, cloned, and sequenced; the 1251 nucleotide amplicon was 100% identical to the 16S rRNA gene sequence recorded previously in the GenBank database, thus verifying the species as V. invictae. This is the first report of the artificial transmission of this pathogen to uninfected ant colonies, and demonstration of its ability to hinder growth in individual colonies.  相似文献   

10.
Laboratory observations were made of the microsporidian parasite Amblyospora dyxenoides in its natural mosquito host, Culex annulirostris. There were no differences in the numbers of eggs laid and in the proportions which hatched between infected and uninfected females, indicating that the parasite did not affect fecundity. Unlike other species of Amblyospora which have been studied the development of binucleate spores in adult mosquitoes increase with age of the host in both sexes and in females it proceeds independently of egg development and blood feeding. The same trend is apparent for adult mosquitoes which acquired the infection in the larval stage by horizontal transmission from the intermediate copepod host as well as for mosquitoes which acquired oenocytic infections by transovarial transmission. There was considerable variation in the proportion of mosquitoes which became infected after exposure to A. dyxenoides infected copepods. Infections in larval progeny of female mosquitoes infected via spores produced in copepods ranged from 0 to 100% in individual batches and averaged 45.6% with meiospore infections, 19.3% with oenocytic infections, with the remaining 35.7% being uninfected. Similar variability was observed in the progeny of infected female mosquitoes in the second generation after exposure to infected copepods. During experiments in which the microsporidium was maintained in C. annulirostris through 9 successive transovarially transmitted cycles (by selectively rearing the progeny of females infected with binucleate spores after an initial exposure to infected copepods) the proportion of infected progeny with oenocytic infections increased from 25 to around 50% whereas the incidence of meiospore infections declined from 50 to 10%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The natural ecology of a heterosporous microsporidium, Amblyospora connecticus was investigated at three different salt marsh habitats during 1986-1989. The parasite has a well-defined seasonal transmission cycle that occurs regularly each year and intimately involves the primary mosquito host, Aedes cantator, and the intermediate copepod host, Acanthocyclops vernalis. In the spring, the microsporidium is horizontally transmitted from the copepod, where it appears to overwinter, to the mosquito via the ingestion of haploid spores produced in the copepod. Mosquitoes develop a benign infection, and females transmit the microsporidium transovarially to their progeny via infected eggs. Oviposition occurs during the summer and infected eggs hatch synchronously in the fall causing widespread epizootics. Infected larvae die, and the cycle is completed when meiospores are released into the pool and subsequently are eaten by A. vernalis, which reappears in the fall and early winter. Amblyospora connecticus thereby persists by surviving in one of two living hosts throughout most of its life cycle rather than in the extra-corporeal environment. This represents an important survival strategy for A. connecticus as results show the salt marsh habitat to be a relatively unstable environment that is subject to periodic flooding and drying. The adaptive significance of utilizing an intermediate host in the life cycle is discussed as it directly facilitates transmission and enhances survival of the microsporidium.  相似文献   

12.
In Aedes cantator, Amblyospora sp. is transovarially transmitted and has two developmental sequences. The life cycle is initiated in the adult female with the release of sporoplasms from binucleated spores not bounded by membranes, lying free within host oenocytes. Sporoplasms infect the developing oocytes and are transmitted to the filial generation when the eggs are laid. In some of the female progeny that hatch from infected eggs, diplokaryotic cells infect host oenocytes and divide by binary fission during merogony. Sporulation and spore formation do not occur until a blood meal is taken by the host and they coincide with the development and maturation of the oocytes to complete the cycle. In other female and all male progeny, pathogen development occurs within fat body tissue of the host where diplokaryotic cells divide by multiple fission during merogony to spread the infection. Sporulation in this developmental sequence is characterized by the secretion of an accessory membrane and the meiotic division of diplokaryotic sporonts, which result in the formation of octonucleated plasmodia that undergo cytokinesis to form eight haploid spores which are not perorally infectious to other mosquito larvae. There is no increase in the prevalence of either type of infection in field populations during juvenile development, indicating that there is no direct horizontal transmission of the pathogen within any one generation. Data obtained from laboratory rearings of infected progeny, however, show that infections cannot persist relying solely upon maternal-mediated transmission and that some other mode of transmission must be operative for continued maintenance of this microsporidium in A. cantator.  相似文献   

13.
The epizootiology, transmission dynamics and survival strategies employed by the microsporidium Hyalinocysta chapmani were examined in field populations of its primary mosquito host, Culiseta melanura and its intermediate copepod host, Orthocyclops modestus over a three-year period in an aquatic subterranean habitat. H. chapmani was enzootic and was maintained in a continuous cycle of horizontal transmission between each host. There were three distinct periods during the summer and fall when developing mosquito larvae acquired infections; each was preceded by or coincident with the detection of infected copepods. Results were corroborated in laboratory bioassays, wherein transmission was achieved in mosquito larvae that were reared in water and sediment samples taken from the site during the same time periods. The highest infection rates, ranging from 60% to 48%, were repeatedly observed during the first six weeks of larval development. These were coincident with the most sustained collections of infected copepods obtained during the year and highest levels of infection achieved in the laboratory transmission studies. The high prevalence rates of lethal infection observed in larval populations of C. melanura at this site are among the highest recorded for any mosquito-parasitic microsporidium and clearly suggest that H. chapmani is an important natural enemy of C. melanura. H. chapmani appears to overwinter in diapausing mosquito larvae but may also persist in copepods. The absence of vertical transmission in the life cycle of H. chapmani and the sole reliance on horizontal transmission via an intermediate host are unique survival strategies not seen among other mosquito-parasitic microsporidia. The epizootiological data suggest that this transmission strategy is a function of the biological attributes of the hosts and the comparatively stable environment in which they inhabit. The subterranean habitat is inundated with water throughout the year; copepods are omnipresent and C. melanura has overlapping broods. The spatial and temporal overlap of both hosts affords abundant opportunity for continuous horizontal transmission and increases the likelihood that H. chapmani will find a target host. It is hypothesized that natural selection has favored the production of meiospores in female host mosquitoes rather than congenital transfer of infection to progeny via ovarian infection as a strategy for achieving greater transmission success.  相似文献   

14.
We surveyed 165 sites to determine the ecological factors that might influence the distribution and prevalence of Thelohania solenopsae, and its effect on the demography of the red imported fire ant (Solenopsis invicta) in Louisiana. The microsporidium was found in 9.9% of colonies and at 16% of sites. Its distribution was clumped within the state with the majority of infected colonies and sites occurring in two infection patches. The proportion of polygyne colonies was a strong (positive) predictor of the proportion of infected colonies at a site. Infected monogyne colonies, however, still accounted for nearly 20% of infected colonies, a much higher proportion than anticipated. Several other factors, including the numbers of colonies at a site, precipitation, proximity to commercial waterways and ports, and type of habitat were also retained in the multiple logistic regression model describing T. solenopsae prevalence. The microsporidium appears to adversely affect the occurrence of brood, and possibly the size of S. invicta colonies and the mass of workers. It, however, was not included in the multiple regression model of the number of colonies or the density of ants at a site. Although our findings do not imply causation, they have identified several variables that might influence the epizootiology of T. solenopsae. Future work should concentrate on experimentally manipulating these variables to confirm these relationships.  相似文献   

15.
The distribution of deformed wing virus (DWV) in adult female Varroa destructor and in their progeny in relation to the pupal host bee was investigated to evaluate acquisition and transfer of DWV by the mites. The results clearly show that adult female mites regularly act as competent vectors of DWV, however, they do not acquire or transfer virus on all possible occasions. Mother mites may contain DWV while the pupal host remains free from overt infection and both mother mites and mite progeny may not acquire detectable amounts of DWV from an infected host bee. However, a majority of mites feeding on pupae that emerge with deformed wings will contain DWV. The data also demonstrates that both adult and immature mite progeny most likely acquire DWV from DWV-infected host bees and not from their mother mites. Possible explanations for the obtained results are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The effects of infection by a microsporidium, Vairimorpha necatrix (Kramer), on the endogenous levels of juvenile hormones in tomato moth (Lacanobia oleracea L.) larvae were investigated. Levels of juvenile hormone II (JH II) were 10-fold greater in the infected larvae on day two of the sixth stadium but no significant difference was observed on day seven. Juvenile hormone I (JH I) was also detected in day two and day seven sixth instar infected larvae but was not detected in non-infected larvae. The duration of the fifth and sixth stadia was significantly longer for infected larvae when compared with non-infected larvae. No evidence was found to suggest that supernumerary moults are a feature of infection by V. necatrix in L. oleracea larvae. Experiments were performed to determine whether the elevation in JH levels, which probably prevents pupation, is an adaptive mechanism of the microsporidium for extending the growth phase of the host, thereby allowing increased spore production. A proportion of infected larvae were collected on days 9 and 24 of the sixth stadium and spore extracts prepared from each larva. These days represent the average duration of the sixth stadium required for uninfected larvae to reach pupation, and the average number of days that V. necatrix-infected larvae survive in the sixth stadium before dying from infection. The mean spore yields from infected larvae 24 days into the sixth stadium were significantly higher than the spore yields obtained from day nine sixth instar larvae. The hypothesis that V. necatrix manipulates host endocrinology (i.e. prolong the host larval state to maximise spore yield) is discussed in context with the results obtained.  相似文献   

17.
Representative fungicides from three or four families used for management of powdery mildew and other diseases in tree fruits were evaluated for their effects on a common spider mite and predator mite species, respectively. A modified Munger cell technique was effective in measuring the response of phytophagous and predaceous mites to fungicide residues on detached leaves in the laboratory. Demethylation-inhibiting (DMI) (imidazole [triflumazole] and triazole [myclobutanil]) and strobilurin (trifloxystrobin) fungicides were not toxic to female Tetranychus urticae Koch and Galendromus occidentalis (Nesbitt), and no sublethal effects were found on fecundity and predation rate after 3-5-d exposure to residues. Benomyl, a benzimidazole fungicide, increased adult mortality and reduced fecundity for both mite species; however, it did not alter the predation rate of G. occidentalis females on T. urticae eggs and larvae. Female G. occidentalis that survived the lethal effects of benomyl and the comparison acaricide pyridaben were unimpaired in predation. Our results for benomyl substantiate those of earlier studies and provide evidence for nontoxic effects of DMI and strobilurin fungicides on mites. We propose that DMI and strobilurin fungicides are a good fit for integrated mite management programs due to conservation of phytoseiid predatory mites.  相似文献   

18.
Bioassays were conducted to document the effects of Metarhizium anisopliae infection on adult female Asian longhorned beetle (Anoplophora glabripennis) reproduction before death and subsequent survival of offspring. The effect of infection on fecundity was evaluated for females already laying eggs and for newly eclosed females using M. anisopliae isolates ARSEF 7234 and 7711, respectively. Decreased longevity and oviposition compared with controls were observed in females that were already laying eggs when exposed to M. anisopliae ARSEF 7234. Newly eclosed females exposed to M. anisopliae ARSEF 7711 displayed shortened longevity (10.0 ± 0.7 days vs 74.3 ± 6.8 days for controls) and decreased oviposition (1.3 ± 0.7 eggs per ARSEF 7711-exposed female vs 97.2 ± 13.7 eggs per female for controls) compared with controls. Percentages of eggs that did not hatch were greater for both groups of fungal-treated females compared with controls and 60.0% of unhatched eggs contained signs of fungal infection. The percentage of larvae dying within 9 weeks of oviposition was higher for sexually mature females exposed to ARSEF 7234 compared with controls and >40% of dead larvae displayed signs of fungal infection. Thus, for both stages of females and both fungal isolates, fewer surviving larvae were produced after female fungal infection compared with controls. M. anisopliae infection affects female fitness by decreasing female longevity, by decreasing female oviposition before death and through horizontal transmission of M. anisopliae to offspring.  相似文献   

19.
Kinship relations within populations of unionicolid water mites are not well known, owing to their complex life cycles and the fact that interactions between active and resting stages for some species are transitory. A number of species of unionicolid water mites are, however, obligate symbionts of freshwater mussels and spend most of their life cycle in association with these hosts. Among these species of mites, parents and offspring are more likely to co-occur and thus provide opportunities to address questions related to the structure of the mating system. The present study employs random amplified polymorphic DNA (RAPD) analysis to address kinship within populations of Unionicola foili living in symbiotic association with the host mussel Utterbackia imbecillis. DNA was amplified from adult mites and a representative number of eggs or larvae (n = 20-30) that were removed from mussels collected on three separate occasions (July, November, and March) over a 12-month period. Parsimony analyses of the molecular data for adults and progeny collected from mussels during July, November, and March revealed distinct groupings, that for the most part, corresponded to mites collected from each of the sampling periods. Many of the genetic markers obtained for male and female U. foili were not evident among the larvae or eggs, suggesting that adults obtained from a host mussel at the time of collection were not the parents of a majority of the progeny. However, female mites and eggs collected from mussels during March and November shared more markers than did females and progeny examined during July. Furthermore, many offspring in the July sampling period were found to have one or more parents absent from the sampled population. Overall, RAPD profiling appears to have limited usage in determining kinship within populations of U. foili, due to its recruitment patterns, and the relatively large number of adults and progeny per mussel. It may, however, prove to be a useful method for assessing genetic relatedness among unionicolid mussel-mites that have substantially lower population densities.  相似文献   

20.
Infection of Tenebrio molitor with Hymenolepis diminuta induces curtailment of female fertility. We examined ovulation and oviposition, and associated titres of juvenile hormone (JH), in relation to parasitism and mating. Oviposition was significantly increased in infected mated and virgin beetles by days 6 and 9 post-emergence. Ovulation was not changed by infection; by the end of the 18-day experiment, the total number of laid eggs was not significantly altered. On day 6, JH levels were significantly higher in virgin infected insects, compared to non-infected controls (236+/-37.7 and 107+/-9.62 pg/g wet weight). Oviposition increased after mating, but total eggs ovulated remained the same. JH levels were higher in mated females on days 12 and 18 post-emergence, for infected and control insects. Previous studies suggested that male reproductive potential might rise following infection, because uninfected females lay more eggs when mated to infected males. We tested whether this caused an increase in female JH. Males were mated on days 5 or 12, when significant changes in their reproductive physiology begin to be observed, and are maximal, respectively. However, male age was of greater significance in promoting JH levels in females (p=0.001), than infection status of either partner (p=0.33).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号