首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Neurons of sea anemone tentacles receive stimuli via sensory cells and process and transmit information via a plexus of nerve fibers. The nerve plexus is best revealed by scanning electron microscopy of epidermal peels of the tentacles. The nerve plexus lies above the epidermal muscular layer where it appears as numerous parallel longitudinal and short interconnected nerve fibers in Calliactis parasitica . Bipolar and multipolar neurons are present and neurites form interneuronal and neuromuscular synaptic contacts. Transmission electron microscopy of cross sections of tentacles of small animals, both C. parasitica and Aiptasia pallida , reveals bundles of 50–100 nerve fibers lying above groups of longitudinal muscle fibers separated by intrusions of mesoglea. Smaller groups of 10–50 slender nerve fibers are oriented at right angles to the circular muscle formed by the bases of the digestive cells. The unmyelinated nerve fibers lack any glial wrapping, although some bundles of epidermal fibers are partially enveloped by cytoplasmic extensions of the muscle cells; small gastrodermal nerve bundles lie between digestive epithelial cells above their basal myonemes. A hypothetical model for sensory input and motor output in the epidermal and gastrodermal nerve plexuses of sea anemones is proposed.  相似文献   

2.
External muscle and myenteric plexus from the small intestine of adult guinea-pigs were maintained in vitro for 3 or 6 days. Myenteric neurons and smooth muscle cells from such organotypic cultures were examined at the electron-microscopic level. An intact basal lamina was found around the myenteric ganglia and internodal strands. Neuronal membranes, nuclei and subcellular organelles appeared to be well preserved in cultured tissues and ribosomes were abundant. Dogiel type-II neurons were distinguishable by their elongated electron-dense mitochondria, numerous lysosomes and high densities of ribosomes. Vesiculated nerve profiles contained combinations of differently shaped vesicles. Synaptic membrane specializations were found between vesiculated nerve profiles and nerve processes and cell bodies. The majority of nerve fibres were well preserved in the myenteric ganglia, in internodal strands and in bundles running between circular muscle cells. No detectable changes were found in the ultrastructure of the somata and processes of glial cells. Longitudinal and circular muscle cells from cultured tissue had clearly defined membranes with some close associations with neighbouring muscle cells. Caveolae occurred in rows that ran parallel to the long axis of the muscle cells. These results indicate that the ultrastructural features of enteric neurons and smooth muscle of the guinea-pig small intestine are well preserved in organotypic culture.  相似文献   

3.
The localization of sympathetic fibers on the floor of the cranium was studied in rats using amine fluorescence histochemistry, neuropeptide-Y (NPY) immunohistochemistry, and electron microscopy. The vast majority of amine fluorescent fibers joined the abducent nerve and were localized in the peripheral zone under the perineurium. After advancing along this nerve for some distance, the fibers diverged into many bundles that converged to form the cavernous plexus at a rostral end of the trigeminal ganglion. On the dorsal surface of the trigeminal ganglion, one or two medium-calibered fluorescent bundles ran inside or in close proximity to the trochlear nerve, while many small-calibered, brightly fluorescent bundles also extended longitudinally in the epidural connective tissue. In rats that had undergone nerve severance, NPY-immunoreactive fibers were detected at the cut ends of the abducent and trochlear nerve. The differing amounts of NPY accumulated at the rostral and the caudal stumps indicated the direction of the NPY-bearing fibers. Electron microscopy confirmed the presence of unmyelinated fibers in both the abducent and trochlear nerves.  相似文献   

4.
Striated muscle fibers and their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimension (100-200 microns of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and some were of the mixed type. Striated muscle fibers represented three different types, which were considered as intermediate, with certain structural features characteristic of the fast fiber type. Of these, the most frequently-found fibers were most similar to the fast fiber type. Satellite cells were numerous; in mixed fascicles they were gradually replaced by smooth muscle cells. The gap between striated muscle fiber and smooth muscle cells was more than 200 nm wide. It contained the respective basal laminae and a delicate layer of amorphous connective tissue. No specialized junctions were formed between consecutive striated muscle fibers, or between striated muscle fibers and smooth muscle cells. Interstitial cells of Cajal were never situated as close to striated muscle fibers as to smooth muscle cells.  相似文献   

5.
Summary The localization of sympathetic fibers on the floor of the cranium was studied in rats using amine fluorescence histochemistry, neuropeptide-Y (NPY) immunohistochemistry, and electron microscopy. The vast majority of amine fluorescent fibers joined the abducent nerve and were localized in the peripheral zone under the perineurium. After advancing along this nerve for some distance, the fibers diverged into many bundles that converged to form the cavernous plexus at a rostral end of the trigeminal ganglion. On the dorsal surface of the trigeminal ganglion, one or two medium-calibered fluorescent bundles ran inside or in close proximity to the trochlear nerve, while many small-calibered, brightly fluorescent bundles also extended longitudinally in the epidural connective tissue. In rats that had undergone nerve severance, NPY-immunoreactive fibers were detected at the cut ends of the abducent and trochlear nerve. The differing amounts of NPY accumulated at the rostral and the caudal stumps indicated the direction of the NPY-bcaring fibers. Electron microscopy confirmed the presence of unmyelinated fibers in both the abducent and trochlear nerves.Dedicated to Professor Dr. T. H. Schiebler on the occasion of his 65th birthday.  相似文献   

6.
The tertiary component of the myenteric plexus consists of interlacing fine nerve fibre bundles that run between its principal ganglia and connecting nerve strands. It was revealed by zinc iodide-osmium impregnation and substance P immunohistochemistry at the light-microscope level. The plexus was situated against the inner face of the longitudinal muscle and was present along the length of the small intestine at a density that did not vary markedly from proximal to distal. Nerve bundles did not appear to be present in the longitudinal muscle as judged by light microscopy, although numberous fibre bundles were encountered within the circular muscle layer. At the ultrastructural level, nerve fibre bundles of the tertiary plexus were found in grooves formed by the innermost layer of longitudinal smooth muscle cells. In the distal parts of the small intestine, some of these nerve fibre bundles occasionally penetrated the longitudinal muscle coat. Vesiculated profiles in nerve fibre bundles of the tertiary plexus contained variable proportions of small clear and large granular vesicles; they often approached to within 50–200 nm of the longitudinal smooth muscle cells. Fibroblast-like cells lay between strands of the tertiary plexus and the circular muscle but were never intercalated between nerve fibre varicosities and the longitudinal muscle. These anatomical relationships are consistent with the tertiary plexus being the major site of neurotransmission to the longitudinal muscle of the guinea-pig small intestine.  相似文献   

7.
The cat hindlimb contains several long, biarticular strap muscles composed of parallel muscle fascicles that attach to short tendons. Three of these muscles--sartorius, tenuissimus, and semitendinosus--were studied by dissecting individual gold-stained fibers and determining the surface distribution of acetylcholinesterase-stained end-plate zones. In each muscle, fascicles were composed of muscle fibers that ran only part of the fascicle length and tapered to end as fine strands that interdigitated with other tapering fibers within the muscle mass. Most muscle fibers measured 2-3 cm in length. Fascicles of muscle fibers were crossed by short transverse bands of endplates (1 mm wide by 1-5 mm long) that were spaced at fairly regular intervals from the origin to the insertion of the muscle. The endplate pattern suggested that the fiber fascicles were organized into multiple longitudinal strips. In the sartorius, the temporospatial distribution of electromyographic (EMG) activity evoked by stimulating fine, longitudinal branches of the parent nerve confirmed that each strip was selectively innervated by a small subset of the motor axons. These axons appeared to distribute their endings throughout the entire length of the fascicles, providing for synchronous activation of their in-series fibers.  相似文献   

8.
Nitric oxide (NO) is generated intracellularly from L-arginine by the action of the enzyme nitric oxide synthase (NOS). The present investigation demonstrates immunoreactivity against NOS and nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in nerve cells and fibers of the reproductive system of the female mouse. The density of nerve fibers staining for NOS varied among different genital organs. The ovary and Fallopian tube were devoid of NOS-positive nerves. The uterine horns received sparse innervation by NOS-containing nerve fibers. The most abundant NOergic innervation was found in the uterine cervix and vagina, where the nerve fibers ran parallel to the smooth muscle bundles and beneath the epithelium; they also accompanied intramural blood vessels. The vaginal muscular wall contained single or groups of NOS-reactive nerve cells. Clusters of NOS-containing neurons were located in Frankenhäuser's ganglion at the cervico-vaginal junction. NO may therefore act as a transmitter in the nervous control of the female reproductive tract.  相似文献   

9.
Smooth muscle cells of the external longitudinal coat of the guinea pig vas deferens were followed for 480 mu at 4.5-mu intervals. Muscle bundles and fibers interwove, facilitating intermuscular and neuromuscular contacts. The ribbon- or rodlike muscle cells were about 450 mu long, 3,000 mu3 in volume, and 4,500 mu2 in area. The thickened nuclear zone day anywhere along the middle one-third of the cell. Intercellular distances were 500-800 A. Intrusions were rare, and tight-junctions absent. At any level in a field of 80 muscle fibers there were 10-15 nerve bundles, each containing several varicose axons. Bundles and axons divided. Axons, en passage, were frequently within 500-1,000 A of a muscle fiber. En passage close contacts were rate. Axon terminations were bare, and bare axons invariably terminated. Bare terminations had scattered vesicle-laden varicosities and were from 10-60 mu in length, and all ended within 500 A of muscle fibers. Some made close contact with muscle fibers. Less than half of the muscle cells received this close contact, but some cells were approached by more than one termination. Most terminations involved more than one cell. Some cells had little or no innervation. Some groups of cells had a rich innervation. There was very little evidence of sensory innervation. These conclusions are not valid for other smooth muscles.  相似文献   

10.
Some ultrastructural features of the muscular coat of human small intestine   总被引:3,自引:0,他引:3  
The muscular coat of human small intestine is constituted by a 'special' layer, by the main component of the circular layer, by the region between the circular and the longitudinal layers and by the longitudinal layer. The 'special' layer is made up of the innermost 4-6 rows of muscle cells of the circular layer and is separated from the main component of the circular layer by a space in which an abundant connective tissue and numerous nerve fibers rich in nerve endings are located. Cells identified as interstitial cells of Cajal are located inside the 'special' layer, the space between it and the main component of the circular layer and in the region between the circular and the longitudinal layers. In this region small bundles of obliquely orientated muscle cells, apparently bridging the circular to the longitudinal layer, are found.  相似文献   

11.
Peripheral nerve injury results in short-term and long-term changes in both neurons and glia. In the present study, immunohistological and immunoblot analyses were used to examine the expression of the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) within different parts of a functionally linked neuromuscular system extending from skeletal muscle to the spinal cord after peripheral nerve injury. Histological samples were taken from 3 to 150 d after crushing or transecting the sciatic nerve in adult chickens and mice. In unperturbed tissues, both N-CAM and Ng-CAM were found on nonmyelinated axons, and to a lesser extent on Schwann cells and myelinated axons. Only N-CAM was found on muscles. After denervation, the following changes were observed: The amount of N-CAM in muscle fibers increased transiently on the surface and in the cytoplasm, and in interstitial spaces between fibers. Restoration of normal N-CAM levels in muscle was dependent on reinnervation; in a chronically denervated state, N-CAM levels remained high. After crushing or cutting the nerve, the amount of both CAMs increased in the area surrounding the lesion, and the predominant form of N-CAM changed from a discrete Mr 140,000 component to the polydisperse high molecular weight embryonic form. Anti-N-CAM antibodies stained neurites, Schwann cells, and the perineurium of the regenerating sciatic nerve. Anti-Ng-CAM antibodies labeled neurites, Schwann cells and the endoneurial tubes in the distal stump. Changes in CAM distribution were observed in dorsal root ganglia and in the spinal cord only after the nerve was cut. The fibers within affected dorsal root ganglia were more intensely labeled for both CAMs, and the motor neurons in the ventral horn of the spinal cord of the affected segments were stained more intensely in a ring pattern by anti-N-CAM and anti-Ng-CAM than their counterparts on the side contralateral to the lesion. Taken together with the previous studies (Rieger, F., M. Grumet, and G. M. Edelman, J. Cell Biol. 101:285-293), these data suggest that local signals between neurons and glia may regulate CAM expression in the spinal cord and nerve during regeneration, and that activity may regulate N-CAM expression in muscle. Correlations of the present observations are made here with established events of nerve degeneration and suggest a number of roles for the CAMs in regenerative events.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Summary The organization of collagen fibrils in the rat sciatic nerve was studied by scanning electron microscopy after digestion of cellular elements by sodium hydroxide treatment, and by conventional transmission electron microscopy. The epineurium consisted mainly of thick bundles of collagen fibrils measuring about 10–20 m in width; they were wavy and ran slightly obliquely to the nerve axis. Between these collagen bundles, a very coarse meshwork of randomly oriented collagen fibrils was present. In the perineurium, collagen fibrils occupied the interspaces between the concentrically arranged perineurial cells; in each interspace, they formed a sheet of characteristic lacework elaborately interwoven by thin (about 3 m or less in width) bundles of collagen fibrils. In the subperineurial region, there was a distinct sheet of densely woven collagen fibrils between the perineurium and underlying endoneurial fibroblasts. In the endoneurium, collagen fibrils surrounded individual nerve fibers in two layers as scaffolds: the inner layer was made up of a delicate meshwork of very fine collagen fibrils, and the outer one consisted of longitudinally oriented bundles of about 1–3 m in width. The collagen fibril arrangement described above may protect the nerve fibers against external forces.  相似文献   

13.
Cryosections and whole-mount preparations of the guinea pig small intestine and colon were single or double immunolabeled using the anti-c-Kit and protein gene product 9.5 antibodies. Immunolabeled specimens were observed under a confocal laser scanning microscope. The main findings of the present study are: (1) the distribution and profiles of three-dimensional structures of c-Kit-positive cellular networks in the small intestine and colon, and (2) the anatomical relations of c-Kit-positive cells to the enteric nerves in the layers. In the small intestine, c-Kit-positive cellular networks were observed at levels of the deep muscular plexus and myenteric plexus. The c-Kit-positive cellular networks ran along or overlay the nerve fibers at the deep muscular plexus, while they showed the reticular structures intermingled with the nerve elements at the myenteric plexus. In the colon, c-Kit-positive cellular networks were observed at levels of the submuscular plexus and myenteric plexus, and were further identified within the circular and longitudinal muscle layers as well as in the subserosal layer. In the circular muscle layer, c-Kit-positive cells surrounded the associated nerve fibers and extended several long processes toward the adjacent c-Kit-positive cells. The c-Kit-positive cellular networks within the longitudinal muscle layer as well as in the subserosal layer were not associated with the nerve fibers. In the layers of the intestinal wall with c-Kit-positive cells, the cellular networks of the interstitial cells were identified in ultrastructure. The characteristic profiles of c-Kit-positive cellular networks provide a morphological basis upon which to investigate the mechanisms regulating intestinal movement. Received: 14 July 1998 / Accepted: 2 September 1998  相似文献   

14.
In an attempt to identify the distribution and structure of vagal fibers and terminals in the gastroduodenal junction, vagal efferents were labeled in vivo by multiple injections of the fluorescent carbocyanine dye DiA into the dorsal motor nucleus (dmnX), and vagal afferents were anterogradely labeled by injections of DiI into the nodose ganglia of the same or separate rats. Thick frontal cryostat sections were analysed either with conventional or laser scanning confocal microscopy, using appropriate filter combinations and/or different wavelength laser excitation to distinguish the fluorescent tracers. Vagal efferent terminal-like structures were present in small ganglia within the circular sphincter muscle, which, in the absence of a well-developed, true myenteric plexus at this level, represent the myenteric ganglia. Furthermore, vagal efferent terminals were also present in submucosal ganglia, but were absent from mucosa, Brunner's glands and circular muscle fibers. Vagal afferent fibers and terminal-like structures were more abundant than efferents. The most prominent afferent terminals were profusely branching, large net-like aggregates of varicose fibers running within the connective tissue matrix predominantly parallel to the circular sphincter muscle bundles. Profusely arborizing, highly varicose endings were also present in large myenteric ganglia of the antrum and duodenum, in the modified intramuscular ganglia, and in submucosal ganglia. Additionally, afferent fibers and terminals were present throughout the mucosal lining of the gastroduodenal junction. The branching patterns of some vagal afferents suggested that individual axons produced multiple collaterals in different compartments. NADPH-diaphorase positive, possibly nitroxergic neurons were present in myenteric ganglia of the immediately adjacent antrum and duodenum, and fine varicose fibers entered the sphincter muscle from both sides, delineating the potential vagal inhibitory postganglionic innervation. These morphological results support the view of a rich and differentiated extrinsic neural control of this important gut region as suggested by functional studies.  相似文献   

15.
In strain 129/Sv-ter mice, teratomas develop spontaneously during the 13th day of gestation. These testicular germ cell tumors exhibit characteristics of different germ layers closely resembling normal embryonic tissue. We investigated the interrelationship between nervous and muscular tissues (often found side by side) in teratomas of 4-week-old 129/Sv-ter mice. In well-differentiated mouse teratomas, histochemically and immunohistochemically distinct muscle fiber types could be distinguished, but not with all reactions. According to its aerobic oxidative capacity, teratoma muscle tissue was comparable with normal muscles. However, with respect to myosin-related properties, fiber type differentiation was incomplete. The muscle fibers - generally arranged in bundles - contained one centrally located endplate which was contacted mostly by a single nerve terminal. From this, proper endplate zones within the fiber bundles were formed. Occasionally "type grouping" was encountered, suggesting collateral axonal branching paralleled by synapse elimination. Together with the earlier in vivo observation of muscular contractions, we assume that teratoma muscle fibers are innervated by nerve cells (within the nervous tissue compartments) corresponding to spinal motoneurons. Thus, myogenesis, maturation and innervation of skeletal muscular tissue in mouse teratomas are largely comparable to normal development.  相似文献   

16.
Gamma-aminobutyric acid (GABA) immunoreactivity was revealed by immunocytochemistry in the mouse adrenal gland at the light and electron microscopic levels. Groups of weakly or faintly GABA immunoreactive chromaffin cells were often seen in the adrenal medulla. By means of immunohistochemistry combined with fluorescent microscopy, these GABA immunoreactive chromaffin cells showed noradrenaline fluorescence. The immunoreaction product was seen mainly in the granular cores of these noradrenaline cells. These results suggest the co-existence of GABA and noradrenaline within the chromaffin granules. Sometimes thick or thin bundles of GABA immunoreactive nerve fibers with or without varicosities were found running through the cortex directly into the medulla. In the medulla, GABA immunoreactive varicose nerve fibers were numerous and were often in close contact with small adrenaline cells and large ganglion cells; a few, however, surrounded clusters of the noradrenaline cells, where membrane specializations were formed. Single GABA immunoreactive nerve fibers, and thin or thick bundles of the immunoreactive varicose nerve fibers ran along the blood vessels in the medulla. The immunoreaction deposits were observed diffusely in the axoplasm and in small agranular vesicles of the GABA immunoreactive nerve fibers. Since no ganglion cells with GABA immunoreactivity were found in the adrenal gland, the GABA immunoreactive nerve fibers are regarded as extrinsic in origin.  相似文献   

17.
The histology and ultrastructure of the body wall in Phoronopsis harmeriwere studied using light microscopy and TEM. The ectoderm epithelium of tentacles, anterior body region, and ampulla consists of monociliary cells. Gram-negative bacteria were found between microvilli, in the protocuticle of the anterior region, and in the ampulla. The epithelium of the posterior body region lacks both monociliary cells and bacteria. The bundles of nerve fibers run between the layer of epithelial cells and basal membrane. The musculature of the body wall comprises circular and longitudinal muscles. The circular muscle fibers are applied to the basal membrane and constitute a solid layer extending almost throughout the length of the body. This pattern is broken in the posterior body region, where there is no solid layer of circular musculature, and the latter is arranged in isolated muscle bands. In the ampullar (terminal) body region, the inversion of circular and longitudinal muscle layers takes place, so that the latter appears to be pressed against the basal membrane. The apical surfaces of longitudinal muscle cells bear cytoplasmic processes; some of the cells have a flagellum. The basal portion of the longitudinal muscle cells forms a cytoplasmic process containing bundles of tonofilaments. The processes of all cells making up the muscle bands are interwoven and anchored to the basal membrane.  相似文献   

18.
The aim of this study was to investigate the distribution of nitric oxide synthase (NOS)-containing nerve cells in the gastrointestinal tract of a reptile and to compare it with the pattern in other vertebrate classes. In the estuarine crocodile, Crocodylus porosus, NOS-positive nerve cell bodies and fibres were found in all regions of the gut examined. Most myenteric microganglia contained one or several NOS-immunoreactive neurons together with unlabelled neurons. The majority of the neurons were multipolar, ranging from 10 to 25 microns in diameter. Both the circular and the longitudinal muscle layers were innervated by NOS-immunoreactive nerve fibres, which mostly ran parallel to the muscle fibres. In addition, small blood vessels in the submucosa and on the serosal surface of the gut were innervated by NOS-immunoreactive fibres. Double labelling with antisera to NOS and vasoactive intestinal peptide (VIP) revealed three neuronal subpopulations. A small proportion of the NOS-immunoreactive cells also contained immunoreactivity to VIP while a majority of the VIP-immunoreactive cells were NOS immunoreactive. There were more nerve fibres showing VIP immunoreactivity than fibres with NOS immunoreactivity, although most of the latter also contained immunoreactivity to VIP. VIP-immunoreactive fibres often surrounded the NOS-immunoreactive nerve cells. These results suggest that neuronally released nitric oxide is likely to be involved in the control of gastrointestinal motility in the crocodile as in most other vertebrate species.  相似文献   

19.
Three-dimensional arrangement of the smooth muscle bundles of the outer layer of the vas deferens musculature in mammals (guinea-pigs, rats and mice) was examined under the scanning electron microscope (SEM) after removal of fibrous connective tissue elements. Muscle fibers of all examined animals formed bundles. In the guinea-pig, similar sized bundles extended longitudinally along the tubular vas deferens and branched to anastomose with branches of neighboring bundles to create a net which was regular in form. In the rat, longitudinal muscle bundles constituted an outer layer in the form of a net, which was roughly enmeshed with variously-sized, transverse or oblique bundles in anastomosis with underlying longitudinal bundles. In the mouse, longitudinal bundles of irregular thickness branched into many small bundles and anastomosed not only with neighboring bundles to create an irregular net. In both the rat and the mouse there were bundles extending over many other bundles to anastomose with them at a far point. Junctional structures were well developed between neighboring fibers. Myofibrils were represented as thin streaks on muscle fiber surfaces. Varicosed nerve fibers existed between muscle fibers and in narrow cytoplasmic grooves in all the examined animal species. The findings are discussed in correlation with electrophysiological data.  相似文献   

20.
Summary The distribution of calcitonin gene-related peptide-immunoreactive nerve fibers in the renal pelvis and ureter was examined by immunohistochemistry using whole-mount preparations and cryostat sections. The patterns of innervation were contrasted between the pelvis and ureter; the immunoreactive nerve fibers in the pelvis ran parallel to the long axis of each of the circular and longitudinal muscle layers, causing a lattice-like appearance of the nerve fibers. In the ureter, the immunoreactive fibers were accumulated in the subepithelial region and the longitudinal muscle. In both the pelvis and ureter, a portion of the nerve fibers of smaller caliber showed a swollen or beaded structure; they were located in the musculature and beneath the epithelium extending for considerable distances. Ligation of the ureter caused a marked decrease in the immunoreactive nerves in the pelvis and the proximal portion of the ureter, suggesting that the axonal flow in the calcitonin gene-related peptide-containing neurons of the ureter runs towards the pelvis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号