共查询到20条相似文献,搜索用时 15 毫秒
1.
Cao W Cheng L Behar J Biancani P Harnett KM 《American journal of physiology. Gastrointestinal and liver physiology》2006,291(4):G672-G680
In a cat model of acute experimental esophagitis, resting in vivo lower esophageal sphincter (LES) pressure and in vitro tone are lower than in normal LES, and the LES circular smooth muscle layer contains elevated levels of IL-1beta that decrease the LES tone of normal cats. We now examined the mechanisms of IL-1beta-induced reduction in LES tone. IL-1beta significantly reduced acetylcholine-induced Ca(2+) release in Ca(2+)-free medium, and this effect was partially reversed by catalase, demonstrating a role of H(2)O(2) in these changes. IL-1beta significantly increased the production of H(2)O(2), and the increase was blocked by the p38 MAPK inhibitor SB-203580, by the cytosolic phospholipase A(2) (cPLA(2)) inhibitor AACOCF3, and by the NADPH oxidase inhibitor apocynin, but not by the MEK1 inhibitor PD-98059. IL-1beta significantly increased the phosphorylation of p38 MAPK and cPLA(2). IL-1beta-induced cPLA(2) phosphorylation was blocked by SB-203580 but not by AACOCF3, suggesting sequential activation of p38 MAPK-phosphorylating cPLA(2). The IL-1beta-induced reduction in LES tone was partially reversed by AACOCF3 and by the Ca(2+)-insensitive PLA(2) inhibitor bromoenol lactone (BEL). IL-1beta significantly increased cyclooxygenase (COX)-2 and PGE(2) levels. The increase in PGE(2) was blocked by SB-203580, AACOCF3, BEL, and the COX-2 inhibitor NS-398 but not by PD-98059 or the COX-1 inhibitor valeryl salicylate. The data suggested that IL-1beta reduces LES tone by producing H(2)O(2), which may affect Ca(2+)-release mechanisms and increase the synthesis of COX-2 and PGE(2). Both H(2)O(2) and PGE(2) production depend on sequential activation of p38 MAPK and cPLA(2). cPLA(2) activates NADPH oxidases, producing H(2)O(2), and may produce arachidonic acid, converted to PGE(2) via COX-2. 相似文献
2.
Cao W Sohn UD Bitar KN Behar J Biancani P Harnett KM 《American journal of physiology. Gastrointestinal and liver physiology》2003,285(1):G86-G95
Esophageal (ESO) circular muscle contraction and lower esophageal sphincter (LES) tone are PKC dependent. Because MAPKs may be involved in PKC-dependent contraction, we examined ERK1/ERK2 and p38 MAPKs in ESO and LES. In permeabilized LES muscle cells, ERK1/2 antibodies reduced 1,2-dioctanoylglycerol (DG)- and threshold ACh-induced contraction, which are PKC dependent, but not maximal ACh, which is calmodulin dependent. LES tone was reduced by the ERK1/2 kinase inhibitor PD-98059 and by the p38 MAPK inhibitor SB-203580. In permeable ESO cells, ACh contraction was reduced by ERK1/ERK2 and p38 MAPK antibodies and by PD-98059 and SB-203580. ACh increased MAPK activity and phosphorylation of MAPK and of p38 MAPK. The 27-kDa heat shock protein (HSP27) antibodies reduced ACh contraction. HSP27 and p38 MAPK antibodies together caused no greater inhibition than either one alone. p38 MAPK and HSP27 coprecipitated after ACh stimulation, suggesting that HSP27 is linked to p38 MAPK. These data suggest that PKC-dependent contraction in ESO and LES is mediated by the following two distinct MAPK pathways: ERK1/2 and HSP27-linked p38 MAPK. 相似文献
3.
Cao W Harnett KM Behar J Biancani P 《American journal of physiology. Gastrointestinal and liver physiology》2002,283(2):G282-G291
Lower esophageal sphincter (LES) tone depends on PGF(2alpha) and thromboxane A(2) acting on receptors linked to G(i3) and G(q) to activate phospholipases and produce second messengers resulting in muscle contraction. We therefore examined PGF(2alpha) signal transduction in circular smooth muscle cells isolated by enzymatic digestion from cat esophagus (Eso) and LES. In Eso, PGF(2alpha)-induced contraction was inhibited by antibodies against the alpha-subunit of G(13) and the monomeric G proteins RhoA and ADP-ribosylation factor (ARF)1 and by the C3 exoenzyme of Clostridium botulinum. A [(35)S]GTPgammaS-binding assay confirmed that G(13), RhoA, and ARF1 were activated by PGF(2alpha). Contraction of Eso was reduced by propranolol, a phospholipase D (PLD) pathway inhibitor and by chelerythrine, a PKC inhibitor. In LES, PGF(2alpha)-induced contraction was inhibited by antibodies against the alpha-subunit of G(q) and G(i3), and a [(35)S]GTPgammaS-binding assay confirmed that G(q) and G(i3) were activated by PGF(2alpha). PGF(2alpha)-induced contraction of LES was reduced by U-73122 and D609 and unaffected by propranolol. At low PGF(2alpha) concentration, contraction was blocked by chelerythrine, whereas at high concentration, contraction was blocked by chelerythrine and CGS9343B. Thus, in Eso, PGF(2alpha) activates a PLD- and protein kinase C (PKC)-dependent pathway through G(13), RhoA, and ARF1. In LES, PGF(2alpha) receptors are coupled to G(q) and G(i3), activating phosphatidylinositol- and phosphatidylcholine-specific phospholipase C. At low concentrations, PGF(2alpha) activates PKC. At high concentration, it activates both a PKC- and a calmodulin-dependent pathway. 相似文献
4.
Muinuddin A Neshatian L Gaisano HY Diamant NE 《American journal of physiology. Gastrointestinal and liver physiology》2004,286(2):G271-G277
Within muscular equivalents of cat lower esophageal sphincter (LES), the circular muscle develops greater spontaneous tone, whereas the sling muscle is more responsive to cholinergic stimulation. Smooth muscle contraction involves a combination of calcium release from stores and of calcium entry via several pathways. We hypothesized that there are differences in the sources of Ca(2+) used for contraction in sling and circular muscles and that these differences could contribute to functional asymmetry observed within LES. Contraction of muscle strips from circular and sling regions of LES was assessed in the presence of TTX. In Ca(2+)-free Krebs, tone was inhibited to a greater degree in circular than sling muscle. L-type Ca(2+) channel blockade with nifedipine or verapamil inhibited tone in LES circular but not sling muscle. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA) caused greater increase in tone in sling than in circular muscle. The phospholipase C inhibitor U-73122 and the SR inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptor blocker 2-aminoethoxydiphenyl borate (2-APB) inhibited tone in circular and sling muscles, demonstrating that continuous release of Ca(2+) from Ins(1,4,5)P(3)-sensitive stores is important in tone generation in both muscles. In Ca(2+)-free Krebs, ACh-induced contractions (AChC) were inhibited to a greater degree in sling than circular muscles. However, nifedipine and verapamil greatly inhibited AChC in the circular but not sling muscle. Depletion of SR Ca(2+) stores with CPA or inhibition of Ins(1,4,5)P(3)-mediated store release with either U-73122 or 2-APB inhibited AChC in both muscles. We demonstrate that LES circular and sling muscles 1) use intracellular and extracellular Ca(2+) sources to different degrees in the generation of spontaneous tone and AChC and 2) use different Ca(2+) entry pathways. These differences hold the potential for selective modulation of LES tone in health and disease. 相似文献
5.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle. 相似文献
6.
J. Kröller 《Biological cybernetics》1993,69(5-6):447-456
The nonlinear responses of deefferented primary muscle spindle afferent fibers to muscle stretching consisted of a train of action potentials which was analyzed when random changes in muscle length (band-limited gaussian white noise) were applied in cats. The upper cutoff frequency of the applied noise (the source stimulus) was varied between 1.6 and 570 Hz; the amplitude of the random input was varied between 0.002 and 1.2 mm. In a previous report the reverse correlation of 1st and 2nd order was studied for its ability to analyze data of a continuous input signal and pulsatile events in the output. Computations of the Wiener kernelsh
1 andh
2 or their equivalents, the perispike averages of the 1st and 2nd order, were computed from the random stretch responses of muscle-spindle afferents. Then the 1st- and the 2ndorder predictions and the summation of both to random muscle stretch was estimated. A general finding was that the 1st-order component was approximately 10 times that of the 2nd-order component, when both were combined in approximation procedures to give the closest prediction of observed responses to random test stimuli. The approximation was poor when the source stimulus was less than 0.03 mm and improved when it was greater. With the increase in the upper cutoff frequency of the random source input, the approximation worsened continuously. Predictions to ramp-and-hold stimuli were computed, as well as responses to random stimulation. Limiting the upper cutoff frequency did not diminish the value of the techniques applied. 相似文献
7.
The effect of bombesin on the tone and the responses of strips from the lower esophageal sphincter (LES) to field electrical stimulation (FES) (2 Hz, 0.2 ms, supramaximal current intensity, 20 s duration) was studied. Bombesin dose-dependently increased the LES tone. The threshold for this effect was 10(-14) M and was particularly pronounced with a concentration of 10(-8) M. The response reached maximum between the 3rd and the 5th min after application, persisted for 15-20 min, and was followed by a slight time-dependent decrease. Bombesin increased FES-produced relaxation of LES by 39% as compared to the control. The potentiating effect of bombesin on the LES relaxation was also observed after cholinergic and adrenergic receptor blockade. It is concluded that bombesin may modulate the release of cholinergic, adrenergic and noncholinergic, nonadrenergic inhibitory neurotransmitters. 相似文献
8.
Zhang Y Paterson WG 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(6):G1600-G1606
Na(+) reduction induces contraction of opossum lower esophageal sphincter (LES) circular smooth muscle strips in vitro; however, the mechanism(s) by which this occurs is unknown. The purpose of the present study was to investigate the electrophysiological effects of low Na(+) on opossum LES circular smooth muscle. In the presence of atropine, quanethidine, nifedipine, and substance P, conventional intracellular electrodes recorded a resting membrane potential (RMP) of -37.5 +/- 0.9 mV (n = 4). Decreasing [Na(+)] from 144.1 to 26.1 mM by substitution of equimolar NaCl with choline Cl depolarized the RMP by 7.1 +/- 1.1 mV. Whole cell patch-clamp recordings revealed outward K(+) currents that began to activate at -60 mV using 400-ms stepped test pulses (-120 to +100 mV) with increments of 20 mV from holding potential of -80 mV. Reduction of [Na(+)] in the bath solution inhibited K(+) currents in a concentration-dependent manner. Single channels with conductance of 49-60 pS were recorded using cell-attached patch-clamp configurations. The channel open probability was significantly decreased by substitution of bath Na(+) with equimolar choline. A 10-fold increase of [K(+)] in the pipette shifted the reversal potential of the single channels to the positive by -50 mV. These data suggest that Na(+)-activated K(+) channels exist in the circular smooth muscle of the opossum LES. 相似文献
9.
Distinct kinases are involved in contraction of cat esophageal and lower esophageal sphincter smooth muscles 总被引:1,自引:0,他引:1
Kim N Cao W Song IS Kim CY Harnett KM Cheng L Walsh MP Biancani P 《American journal of physiology. Cell physiology》2004,287(2):C384-C394
Contraction of smooth muscle depends on the balance of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. Because MLCK activation depends on the activation of calmodulin, which requires a high Ca2+ concentration, phosphatase inhibition has been invoked to explain contraction at low cytosolic Ca2+ levels. The link between activation of the Ca2+-independent protein kinase C (PKC) and MLC phosphorylation observed in the esophagus (ESO) (Sohn UD, Cao W, Tang DC, Stull JT, Haeberle JR, Wang CLA, Harnett KM, Behar J, and Biancani P. Am J Physiol Gastrointest Liver Physiol 281: G467G478, 2001), however, has not been elucidated. We used phosphatase and kinase inhibitors and antibodies to signaling enzymes in combination with intact and saponin-permeabilized isolated smooth muscle cells from ESO and lower esophageal sphincter (LES) to examine PKC-dependent, Ca2+-independent signaling in ESO. The phosphatase inhibitors okadaic acid and microcystin-LR, as well as an antibody to the catalytic subunit of type 1 protein serine/threonine phosphatase, elicited similar contractions in ESO and LES. MLCK inhibitors (ML-7, ML-9, and SM-1) and antibodies to MLCK inhibited contraction induced by phosphatase inhibition in LES but not in ESO. The PKC inhibitor chelerythrine and antibodies to PKC, but not antibodies to PKCII, inhibited contraction of ESO but not of LES. In ESO, okadaic acid triggered translocation of PKC from cytosolic to particulate fraction and increased activity of integrin-linked kinase (ILK). Antibodies to the mitogen-activated protein (MAP) kinases ERK1/ERK2 and to ILK, and the MAP kinase kinase (MEK) inhibitor PD-98059, inhibited okadaic acid-induced ILK activity and contraction of ESO. We conclude that phosphatase inhibition potentiates the effects of MLCK in LES but not in ESO. Contraction of ESO is mediated by activation of PKC, MEK, ERK1/2, and ILK. protein kinase C; myosin light chain kinase; phosphatase; integrin-linked kinase 相似文献
10.
Bautista-Cruz F Paterson WG 《American journal of physiology. Gastrointestinal and liver physiology》2011,301(6):G1059-G1065
Nitrergic neurotransmission to gut smooth muscle is impaired in W/W(v) mutant mice, which lack intramuscular interstitial cells of Cajal (ICC-IM). In addition, these mice have been reported to have smaller amplitude unitary potentials (UPs) and a more negative resting membrane potential (RMP) than control mice. These abnormalities have been attributed to absence of ICC-IM, but it remains possible that they are due to alterations at the level of the smooth muscle itself. Amphotericin-B-perforated patch-clamp recordings and Ca(2+) imaging (fura 2) were compared between freshly isolated single circular smooth muscle cells (CSM) from W/W(v) mutant and control mice lower esophageal sphincter (LES). There was no significant difference in seal resistance, capacitance, or input resistance in response to applied electrotonic current pulses between CSM cells from W/W(v) mutants and controls. Compared with control mice, RMP was more negative and UPs significantly smaller in CSM cells from mutant mice LES. Administration of caffeine induced an inward current in cells from both mutant and control mice, but the current density was significantly larger in cells from W/W(v) mutants. Membrane potential hyperpolarization induced by sodium nitroprusside was larger in cells from control mice vs. W/W(v) mutants. In addition, intracellular Ca(2+) transients induced by caffeine were significantly increased in cells from mutants. These findings indicate that LES CSM is abnormal in W/W(v) mutant mice. Thus some physiological functions attributed to ICC-IM based on experiments in smooth muscle of ICC deficient mice may need to be reconsidered. 相似文献
11.
Salapatek AM Ji J Muinuddin A Diamant NE 《Canadian journal of physiology and pharmacology》2004,82(11):1006-1017
We hypothesized that regional differences in electrophysiological properties exist within the musculature of the feline lower esophageal sphincter (LES) and that they may potentially contribute to functional asymmetry within the LES. Freshly isolated esophageal smooth muscle cells (SMCs) from the circular muscle and sling regions within the LES were studied under a patch clamp. The resting membrane potential (RMP) of the circular SMCs was significantly more depolarized than was the RMP of the sling SMCs, resulting from a higher Na+ and Cl- permeability in circular muscle than in sling muscle. Large conductance Ca2+-activated K+ (BKCa) set the RMP at both levels, since specific BKCa inhibitors caused depolarization; however, BKCa density was greatest in the circular region. A significant portion of the outward current was due to non-BKCa, especially in sling muscle, and likely delayed rectifier K+ channels (KDR). There was a large reduction in outward current with 4-aminopyridine (4-AP) in sling muscle, while BKCa blockers had a limited effect on the voltage-activated outward current in sling muscle. Differences in BKCa:KDR channel ratios were also manifest by a leftward shift in the voltage-dependent activation curve in circular cells compared to sling cells. The electrophysiological differences seen between the circular and sling muscles provide a basis for their different contributions to LES activities such as resting tone and neurotransmitter responsiveness, and in turn could impart asymmetric drug responses and provide specific therapeutic targets. 相似文献
12.
Mechanisms of the effect of stimulation of afferent fibers in ventral roots on dorsal horn interneurons were investigated in experiments on anesthetized cats. Dorsal horn interneurons on which such fibers project were shown to exist. In particular, some dorsal horn interneurons can exert an inhibitory influence on effects of dorsal root fiber activation.Institute of Physiology, Academy of Sciences of the Kazakh SSR, Alma-Ata. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 300–305, May–June, 1985. 相似文献
13.
L'Heureux MC Muinuddin A Gaisano HY Diamant NE 《American journal of physiology. Gastrointestinal and liver physiology》2006,290(1):G23-G29
The lower esophageal sphincter (LES) has a circular muscle component exhibiting spontaneous tone that is relaxed by nitric oxide (NO) and a low-tone sling muscle that contracts vigorously to cholinergic stimulation but with little or no evidence of NO responsiveness. This study dissected the responses of the sling muscle to nitrergic innervation in relationship to its cholinergic innervation and circular muscle responses. Motor responses were induced by electrical field stimulation (EFS; 1-30 Hz) of muscle strips from sling and circular regions of the feline LES in the presence of cholinergic receptor inhibition (atropine) or NO synthase inhibition [NG-nitro-L-arginine (L-NNA)+/-atropine]. This study showed the following. First, sling muscle developed less intrinsic resting tone compared with circular muscle. Second, with EFS, sling muscle contracted (most at 50% by 5 Hz. Third, on neural blockade with atropine or L-NNA+/-atropine, 1) sling muscle, although predominantly influenced by excitatory cholinergic stimulation, had a small neural NO-mediated inhibition, with no significant non-NO-mediated inhibition and 2) circular muscle, although little affected by cholinergic influence, underwent relaxation predominantly by neural release of NO and some non-NO inhibitory influence (at higher EFS frequency). Fourth, the sling, precontracted with bethanecol, could relax with NO and some non-NO inhibition. Finally, the tension range of both muscles is similar. In conclusion, sling muscle has limited NO-mediated inhibition to potentially augment or replace sling relaxation effected by switching off its cholinergic excitation. Differences within the LES sling and circular muscles could provide new directions for therapy of LES disorders. 相似文献
14.
Cao W Chen Q Sohn UD Kim N Kirber MT Harnett KM Behar J Biancani P 《American journal of physiology. Cell physiology》2001,280(4):C980-C992
ACh-induced contraction of esophageal circular muscle (ESO) depends on Ca2+ influx and activation of protein kinase Cepsilon (PKCepsilon). PKCepsilon, however, is known to be Ca2+ independent. To determine where Ca2+ is needed in this PKCepsilon-mediated contractile pathway, we examined successive steps in Ca2+-induced contraction of ESO muscle cells permeabilized by saponin. Ca2+ (0.2-1.0 microM) produced a concentration-dependent contraction that was antagonized by antibodies against PKCepsilon (but not by PKCbetaII or PKCgamma antibodies), by a calmodulin inhibitor, by MLCK inhibitors, or by GDPbetas. Addition of 1 microM Ca2+ to permeable cells caused myosin light chain (MLC) phosphorylation, which was inhibited by the PKC inhibitor chelerythrine, by D609 [phosphatidylcholine-specific phospholipase C inhibitor], and by propranolol (phosphatidic acid phosphohydrolase inhibitor). Ca2+-induced contraction and diacylglycerol (DAG) production were reduced by D609 and by propranolol, alone or in combination. In addition, contraction was reduced by AACOCF(3) (cytosolic phospholipase A(2) inhibitor). These data suggest that Ca2+ may directly activate phospholipases, producing DAG and arachidonic acid (AA), and PKCepsilon, which may indirectly cause phosphorylation of MLC. In addition, direct G protein activation by GTPgammaS augmented Ca2+-induced contraction and caused dose-dependent production of DAG, which was antagonized by D609 and propranolol. We conclude that agonist (ACh)-induced contraction may be mediated by activation of phospholipase through two distinct mechanisms (increased intracellular Ca2+ and G protein activation), producing DAG and AA, and activating PKCepsilon-dependent mechanisms to cause contraction. 相似文献
15.
Demonstration of mucous mechanoreceptors in the lower esophageal sphincter. Comparison with muscle mechanoreceptors 总被引:1,自引:0,他引:1
N Clerc N Mei 《Comptes rendus des séances de la Société de biologie et de ses filiales》1981,175(3):352-356
In anaesthetized cats, vagal unitary discharges originating from the Lower Oesophageal Sphincter (L.O.S.) were recorded in nodose ganglia by means of glass microelectrodes. Numerous mechanoreceptors located both in mucosa and muscular layers were found in L.O.S. The mucus mechanoreceptors (high threshold receptors) were activated by strong compressions and distensions, by rapid passage of liquid through the oesophagus and by striking the mucosa. The muscular mechanoreceptors (low threshold receptors) responded to contraction and distension of L.O.S. Both receptors were connected to nonmyelinated fibres (conduction velocity: 0.9-1.4 m/sec). 相似文献
16.
Kovac JR Preiksaitis HG Sims SM 《American journal of physiology. Gastrointestinal and liver physiology》2005,289(6):G998-1006
Excitation of human esophageal smooth muscle involves the release of Ca(2+) from intracellular stores and influx. The lower esophageal sphincter (LES) shows the distinctive property of tonic contraction; however, the mechanisms by which this is maintained are incompletely understood. We examined Ca(2+) channels in human esophageal muscle and investigated their contribution to LES tone. Functional effects were examined with tension recordings, currents were recorded with patch-clamp electrophysiology, channel expression was explored by RT-PCR, and intracellular Ca(2+) concentration was monitored by fura-2 fluorescence. LES muscle strips developed tone that was abolished by the removal of extracellular Ca(2+) and reduced by the application of the L-type Ca(2+) channel blocker nifedipine (to 13 +/- 6% of control) but was unaffected by the inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase by cyclopiazonic acid (CPA). Carbachol increased tension above basal tone, and this effect was attenuated by treatment with CPA and nifedipine. Voltage-dependent inward currents were studied using patch-clamp techniques and dissociated cells. Similar inward currents were observed in esophageal body (EB) and LES smooth muscle cells. The inward currents in both tissues were blocked by nifedipine, enhanced by Bay K8644, and transiently suppressed by acetylcholine. The molecular form of the Ca(2+) channel was explored using RT-PCR, and similar splice variant combinations of the pore-forming alpha(1C)-subunit were identified in EB and LES. This is the first characterization of Ca(2+) channels in human esophageal smooth muscle, and we establish that L-type Ca(2+) channels play a critical role in maintaining LES tone. 相似文献
17.
18.
N Clerc 《Acta anatomica》1983,117(3):201-208
The structure of the lower oesophageal sphincter (LOS) of the cat was investigated in comparison with that of the oesophagus. The following two main results were collected: (1) The muscularis mucosae of the lower oesophageal sphincter is much thicker than at oesophageal level (221 micron as compared with 17.8 micron on average). This thickening is particularly marked at the most prominent foldings of the mucosa. (2) Numerous annulospiral thin elastic fibres were found, in the circular layer of the LOS. These structures will coil spirally around muscular bundles and then wrap themselves around adjacent bundles so that they present an oblique orientation with regard to muscular fibres. Therefore it is concluded that in this species, the LOS is morphologically differentiated from the oesophagus. 相似文献
19.
20.
Cao W Cheng L Behar J Fiocchi C Biancani P Harnett KM 《American journal of physiology. Gastrointestinal and liver physiology》2004,287(6):G1131-G1139
Cholinergic mechanisms are largely responsible for esophageal contraction in response to swallowing or to in vitro electrical field stimulation (EFS). After induction of experimental esophagitis by repeated acid perfusion, the responses to swallowing and to EFS were significantly reduced but contraction in response to ACh was not affected, suggesting that cholinergic mechanisms are damaged by acid perfusion but that myogenic mechanisms are not. Measurements of ACh release in response to EFS confirmed that release of ACh was reduced in esophagitis compared with normal controls. To examine factors contributing to this neuropathy, normal esophageal strips were incubated for 1-2 h with the proinflammatory cytokines IL-1beta (100 U/ml), IL-6 (1 ng/ml), or TNF-alpha (1 ng/ml). IL-1beta and IL-6 levels, measured by Western blot analysis, increased in esophagitis compared with normal circular muscle. IL-1beta and IL-6 reduced contraction in response to EFS (2-10 Hz, 0.2 ms) but did not affect ACh-induced contraction, suggesting that these cytokines inhibit ACh release without affecting myogenic contractile mechanisms. EFS-induced ACh release was significantly reduced in normal esophageal strips by incubation in IL-1beta or IL-6, suggesting that they may contribute to the contractility changes. TNF-alpha at 1 ng/ml, however, did not affect the response to ACh or to electrical stimulation but inhibited both at higher concentrations. TNF-alpha levels were low in normal muscle and did not increase with esophagitis. The data suggest that the proinflammatory cytokines IL-1beta and IL-6 contribute to reduced esophageal contraction by inhibiting release of ACh from myenteric neurons. 相似文献