首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The combinatorial method has been applied to determine peptide ligands to the duplex DNA by using the solid-state pentapeptide library and the target-DNA conjugated magnetic beads. Seventy-one sequences were determined as ligands for AT duplex. Interestingly, hydrophobic amino acids such as Phe, Ile and Gly were most frequently determined. Relative binding affinity of the selected pentapeptides with the various DNA sequences was estimated by ethidium displacement assay in 10 mM SHE buffer. FQGII constituted of amino acids that were most frequently determined in the random screening showed highest binding affinity to the duplex DNA.  相似文献   

2.
Stimulation of T-cells by IL-2 has been exploited for treatment of metastatic renal carcinoma and melanoma. However, a narrow therapeutic window delimited by negligible stimulation of T-cells at low picomolar concentrations and undesirable stimulation of NK cells at nanomolar concentrations hampers IL-2-based therapies. We hypothesized that increasing the affinity of IL-2 for IL-2Ralpha may create a class of IL-2 mutants with increased biological potency as compared with wild-type IL-2. Towards this end, we have screened libraries of mutated IL-2 displayed on the surface of yeast and isolated mutants with a 15-30-fold improved affinity for the IL-2Ralpha subunit. These mutants do not exhibit appreciably altered bioactivity at 0.5-5 pM in steady-state bioassays, concentrations well below the IL-2Ralpha equilibrium binding constant for both the mutant and wild-type IL-2. A mutant was serendipitously identified that exhibited somewhat improved potency, perhaps via altered endocytic trafficking mechanisms described previously.  相似文献   

3.
Activated lymphocyte function-associated antigen-1 (LFA-1, alphaLbeta2 integrin) found on leukocytes facilitates firm adhesion to endothelial cell layers by binding to intercellular adhesion molecule-1 (ICAM-1), which is up-regulated on endothelial cells at sites of inflammation. Recent work has shown that LFA-1 in a pre-activation, low-affinity state may also be involved in the initial tethering and rolling phase of the adhesion cascade. The inserted (I) domain of LFA-1 contains the ligand-binding epitope of the molecule, and a conformational change in this region during activation increases ligand affinity. We have displayed wild-type I domain on the surface of yeast and validated expression using I domain specific antibodies and flow cytometry. Surface display of I domain supports yeast rolling on ICAM-1-coated surfaces under shear flow. Expression of a locked open, high-affinity I domain mutant supports firm adhesion of yeast, while yeast displaying intermediate-affinity I domain mutants exhibit a range of rolling phenotypes. We find that rolling behavior for these mutants fails to correlate with ligand binding affinity. These results indicate that unstressed binding affinity is not the only molecular property that determines adhesive behavior under shear flow.  相似文献   

4.
Artificial peptides designed to form alpha-helical, beta-turn, antiparallel beta-sheet and beta-hairpin structures which are among the motifs most frequently found in natural DNA/RNA binding proteins were synthesized and their characteristic features were examined in the presence or absence of double or triple stranded DNA by means of UV melting experiments, CD spectra, SPR measurements. It was revealed that amphiphilic character arising from the specific secondary structures and positive charge in the hydrophobic face of peptides played an important role in the interaction with DNA, and that hybrid duplex and triplex were intensively stabilized by the cationic amphiphilic peptides. It was also found that these peptides could protect dsDNA against DNase 1 digestion. These results indicate that structurally designed amphiphilic peptides synthesized in the present study can be powerful tools for antisense and antigene strategies.  相似文献   

5.
6.
1. DNA polymerase alpha was isolated from Norman Murine Myxosarcoma cells using ion exchange, immunoaffinity, and DNA affinity chromatography, showing two distinct enzyme forms designated A1 and A2. 2. Chromatographic analysis of polymerase alpha forms A1 and A2 indicate a charge difference and a difference in affinity of binding to DNA between polymerase alpha forms which were equally reactive to anti-DNA polymerase alpha monoclonal IgG. 3. Polymerase A1 specific activity was about 3600 U/mg while A2 specific activity was about 40,000 U/mg.  相似文献   

7.
We describe here our recent studies of the DNA binding properties of Msh2-Msh6 and Mlh1-Pms1, two protein complexes required to repair mismatches generated during DNA replication. Mismatched DNA binding by Msh2-Msh6 was probed by mutagenesis based on the crystal structure of the homologous bacterial MutS homodimer bound to DNA. The results suggest that several amino acid side chains inferred to interact with the DNA backbone near the mismatch are critical for repair activity. These contacts, which are different in Msh2 and Msh6, likely facilitate stacking and hydrogen bonding interactions between side chains in Msh6 and the mismatched base, thus stabilizing a kinked DNA conformation that permits subsequent repair steps coordinated by the Mlh1-Pms1 heterodimer. Mlh1-Pms1 also binds to DNA, but independently of a mismatch. Mlh1-Pms1 binds short DNA substrates with low affinity and with a slight preference for single-stranded DNA. It also binds longer duplex DNA molecules, but with a higher affinity indicative of cooperative binding. Indeed, imaging by atomic force microscopy reveals cooperative DNA binding and simultaneous interaction with two DNA duplexes. The novel DNA binding properties of Mlh1-Pms1 may be relevant to signal transduction during DNA mismatch repair and to recombination, meiosis and cellular responses to DNA damage.  相似文献   

8.
HU-1 mutants of Escherichia coli deficient in DNA binding   总被引:1,自引:0,他引:1  
N Goshima  K Kohno  F Imamoto  Y Kano 《Gene》1990,96(1):141-145
We constructed four mutants of the Escherichia coli hupB gene, encoding HU-1 protein, by synthetic oligodeoxyribonucleotide-directed, site-specific mutagenesis on M13mp18 vectors. The HupBR45 protein contained alterations of Arg58----Gly and Arg61----Gly, and the HupBF3, HupBK2 and HupBA1 proteins contained Phe47----Thr, Lys37----Gln and Ala30----Asp alterations, respectively. HupBF3 and HupBR45 were unable to maintain normal cell growth in a hupA-hupB-himA triple mutant at 42 degrees C, mini-F or RSF1010 proliferation, or Mu phage development in a hupA-hupB double mutant, whereas HupBA1 and HupBK2 supported these cellular activities. DNA-affinity column chromatography showed that the HupBF3 and HupBR45 had reduced affinities to DNA. These observations indicate that two highly conserved Arg residues in the arm structure of the C-terminal half of the HU-1 molecule and a Phe residue in the short beta-sheet connecting the two halves of the molecule are important for the DNA-binding ability and biological functions of this protein.  相似文献   

9.
10.
The glucocorticoid receptor (GR) DNA binding domain consists of several conserved amino acids and folds into two zinc finger-like structures. Previous transactivation experiments indicated that three amino acids residing in this region, Gly, Ser and Val, appear to be critical for target-site discrimination. Based on the solved crystal structure, these residues are at the beginning of an amphipathic alpha-helix that interacts with the DNA's major groove; of these, only valine, however, contacts DNA. In order to examine their functional role directly, we have substituted these residues for the corresponding amino acids from the estrogen receptor (ER), overexpressed and purified the mutant proteins, and assayed their binding specificity and affinity by gel mobility shifts using glucocorticoid or estrogen response elements (GRE or ERE, respectively) as DNA probes. We find that all three residues are indeed required to fully switch GR's specificity to an ERE. The contacting valine in GR is of primary importance. The corresponding residue in ER, alanine, is less important for specificity, while glutamic acid, four amino acids towards the N-terminus, is most critical for ER discrimination. Finally, we show that the GR DNA binding domain carrying all three ER-specific mutations has a significantly higher affinity for an ERE than the ER DNA binding domain itself. We interpret these results in the context of both the data presented here and the crystal structure of the GR DNA binding domain complexed to a GRE.  相似文献   

11.
12.
13.
We have investigated and highlighted the behavior of binding residue, Asp25 by computational analysis, which play an important role in understanding docking process with drug molecule, Ritonavir (Norvir®) and the flexibility nature of the Human Immunodeficiency Virus-1 (HIV-1) protease enzyme. It is well known that Ritonavir is a potent and a selective HIV-1 protease inhibitor. Molecular dockings were performed in order to gain insights regarding the binding mode of this inhibitor. In our analysis, we observed Ritonavir had different rank orders of scores against different mutant of this enzyme. Asp25 of the enzyme was found to be the active site for all the mutants. The results clearly suggest that Ritonavir is not able to appropriately bind at the active site of each HIV-1 protease mutant due to RMSD difference of the amino acid (Asp) at the position 25 of all mutants. These findings support the concept that 3D space of active site is a qualitative assessment for binding affinity of inhibitor with an enzyme. The investigation on the flexibility nature of Asp25 by normal mode analysis, show that binding residue posses less flexibility due to its solvation potential. The overall analysis of our study brings clarity to the binding behavior with respect to the different mutants with Ritonavir on the basis RMSD and also on the flexible nature of HIV-1 protease enzyme with respect to Asp25 position.  相似文献   

14.
Falcon CM  Matthews KS 《Biochemistry》2000,39(36):11074-11083
The mechanism by which genetic regulatory proteins discern specific target DNA sequences remains a major area of inquiry. To explore in more detail the interplay between DNA and protein sequence, we have examined binding of variant lac operator DNA sequences to a series of mutant lactose repressor proteins (LacI). These proteins were altered in the C-terminus of the hinge region that links the N-terminal DNA binding and core sugar binding domains. Variant operators differed from the wild-type operator, O(1), in spacing and/or symmetry of the half-sites that contact the LacI N-terminal DNA binding domain. Binding of wild-type and mutant proteins was affected differentially by variations in operator sequence and symmetry. While the mutant series exhibits a 10(4)-fold range in binding affinity for O(1) operator, only a approximately 20-fold difference in affinity is observed for a completely symmetric operator, O(sym), used widely in studies of the LacI protein. Further, DNA sequence influenced allosteric response for these proteins. Binding of this LacI mutant series to other variant operator DNA sequences indicated the importance of symmetry-related bases, spacing, and the central base pair sequence in high affinity complex formation. Conformational flexibility in the DNA and other aspects of the structure influenced by the sequence may establish the binding environment for protein and determine both affinity and potential for allostery.  相似文献   

15.
Naturally occurring autoantibodies against native DNA (nDNA) in SLE sera showed diverse antigen binding characteristics. The antibodies isolated by affinity chromatography using nDNA linked to Sepharose 4B exhibited specificity towards nDNA and showed strong reactivity with DNA-psoralen photoadduct by direct binding assay and competitive ELISA. The anti-DNA antibody belong to both IgG and IgM immunoglobulin classes and their ratio was 5:1. The possible significance of altered conformation of nDNA in the etiology of SLE has been discussed.  相似文献   

16.
The LexA repressor from Escherichia coli is a sequence-specific DNA binding protein that shows no pronounced sequence homology with any of the known structural motifs involved in DNA binding. Since little is known about how this protein interacts with DNA, we have selected and characterized a great number of intragenic, second-site mutations which restored at least partially the activity of LexA mutant repressors deficient in DNA binding. In 47 cases, the suppressor effect of these mutations was due to an Ind- phenotype leading presumably to a stabilization of the mutant protein. With one exception, these second-site mutations are all found in a small cluster (amino acid residues 80 to 85) including the LexA cleavage site between amino acid residues 84 and 85 and include both already known Ind- mutations as well as new variants like GN80, GS80, VL82 and AV84. The remaining 26 independently isolated second-site suppressor mutations all mapped within the amino-terminal DNA binding domain of LexA, at positions 22 (situated in the turn between helix 1 and helix 2) and positions 57, 59, 62, 71 and 73. These latter amino acid residues are all found beyond helix 3, in a region where we have previously identified a cluster of LexA (Def) mutant repressors. In several cases the parental LexA (Def) mutation has been removed by subcloning or site-directed mutagenesis. With one exception, these LexA variants show tighter in vivo repression than the LexA wild-type repressor. The most strongly improved variant (LexA EK71, i.e. Glu71----Lys) that shows an about threefold increased repression rate in vivo, was purified and its binding to a short consensus operator DNA fragment studied using a modified nitrocellulose filter binding assay. As expected from the in vivo data, LexA EK71 interacts more tightly with both operator and (more dramatically) with non-operator DNA. A determination of the equilibrium association constants of LexA EK71 and LexA wild-type as a function of monovalent salt concentration suggests that LexA EK71 might form an additional ionic interaction with operator DNA as compared to the LexA wild-type repressor. A comparison of the binding of LexA to a non-operator DNA fragment further shows that LexA interacts with the consensus operator very selectively with a specificity factor of Ks/Kns of 1.4 x 10(6) under near-physiological salt conditions.  相似文献   

17.
18.
We previously identified several rad51 gain-of-function alleles that partially suppress the requirement for RAD55 and RAD57 in DNA repair. To gain further insight into the mechanism of action of these alleles, we compared the activities of Rad51-V328A, Rad51-P339S and Rad51-I345T with wild-type Rad51, for DNA binding, filament stability, strand exchange and interaction with the antirecombinase helicase, Srs2. These alleles were chosen because they show the highest activity in suppression of ionizing radiation sensitivity of the rad57 mutant, and Val 328 and Ile 345 are conserved in the human Rad51 protein. All three mutant proteins exhibited higher affinity for single-stranded DNA (ssDNA) and showed more robust strand exchange activity with oligonucleotide substrates than wild-type Rad51, with the Rad51-I345T and Rad51-V328A proteins displaying higher activity than Rad51-P339S. However, the Srs2 antirecombinase was able to disrupt Rad51–ssDNA complexes formed with all the mutant proteins. In vivo, the rad51-I345T mutant strain exhibited high resistance to methyl methane sulfonate that was dependent on functional SRS2. These results suggest the Srs2 translocase is able to disrupt Rad51–ssDNA complexes at stalled replication forks, but in the absence of Srs2 the enhanced DNA binding of the Rad51-I345T protein is detrimental to cell survival.  相似文献   

19.
Analysis of vaccinia topoisomerase mutants that are impaired in DNA relaxation has allowed the identification of amino acid residues required for the transesterification step of catalysis. Missense mutations of wild-type residues Gly-132----Asp and Arg-223----Gln rendered the protein inert in formation of the covalent enzyme-DNA complex and hence completely inactive in DNA relaxation. Mutations of Thr-147----Ile and Gly-132----Ser caused severe defects in covalent adduct formation that correlated with the extent of inhibition of relaxation. None of these point mutations had an effect on noncovalent DNA binding sufficient to account for the defect in relaxation. Deletion of amino- or carboxyl-terminal portions of the polypeptide abrogated noncovalent DNA binding. Two distinct topoisomerase-DNA complexes were resolved by native gel electrophoresis. One complex, which was unique to those proteins competent in covalent adduct formation, contained topoisomerase bound to the 5'-portion of the incised DNA strand. The 3'-segment of the cleaved strand had dissociated spontaneously. This complex was isolated and shown to catalyze transfer of the covalently bound DNA to a heterologous acceptor oligonucleotide, thereby proving that the covalent adduct between protein and duplex DNA is a true intermediate in strand breakage and reunion. The role of the active site region of eukaryotic topoisomerase in determining sensitivity or resistance to camptothecin was examined by converting the active site region of the resistant vaccinia enzyme (SKRAY274) to that of the drug-sensitive yeast enzyme (SKINY). The SKINY mutation did not alter the resistance of the vaccinia enzyme to the cleavage-enhancing effects of camptothecin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号