首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we examined homologous recombination in mammalian cells using a gene targeting assay in which the introduction of a double-strand-break (DSB) in the vector-borne region of homology to the chromosome resulted in targeted vector integration. The vector-borne DSB was flanked with small palindromic insertions that, when encompassed within heteroduplex DNA (hDNA) formed during targeted vector integration, were capable of avoiding the activity of the mismatch repair (MMR) system. When used in conjunction with an isolation procedure in which the product(s) of each targeted vector integration event were retained for molecular analysis, information about recombination mechanisms was obtained. The examination of marker segregation patterns in independent recombinants revealed the following, (i) hDNA tracts could form simultaneously on each side of the DSB and in both participating homologous regions. Clonal analysis of sectored recombinants revealed that, in the homologous repeats generated by the recombination event, vector-borne palindrome and chromosomal markers were linked in the expected way in each strand of the hDNA intermediate, (ii) hDNA tracts were subject to MMR processing that occurred on opposite sides of the DSB, and (iii) in the majority of recombinants, the vector-borne marker was replaced with the corresponding marker from the chromosome. Bidirectional hDNA formation and MMR processing of both sides of the DSB are consistent with the double-strand-break repair (DSBR) model of recombination.  相似文献   

2.
Accuracy of intrachromosomal gene conversion in mouse cells.   总被引:4,自引:0,他引:4       下载免费PDF全文
Results of several recent studies suggest that homologous recombination and related processes in mammalian cells are highly mutagenic. We have examined the products of intrachromosomal gene conversion events that encompassed the last intron of the chicken thymidine kinase gene. Following plasmid rescue and DNA sequencing, we find no mutations associated with twenty conversion events representing 5380 total base pairs of which 2414 base pairs are intron sequence. Based on these studies we conclude that intrachromosomal gene conversion in mouse cells is not a highly mutagenic process but rather it operates with fidelity.  相似文献   

3.
Lukacsovich T  Waldman AS 《Genetics》1999,151(4):1559-1568
Pairs of closely linked defective herpes simplex virus (HSV) thymidine kinase (tk) gene sequences exhibiting various nucleotide heterologies were introduced into the genome of mouse Ltk- cells. Recombination events were recovered by selecting for the correction of a 16-bp insertion mutation in one of the tk sequences. We had previously shown that when two tk sequences shared a region of 232 bp of homology, interruption of the homology by two single nucleotide heterologies placed 19 bp apart reduced recombination nearly 20-fold. We now report that either one of the nucleotide heterologies alone reduces recombination only about 2.5-fold, indicating that the original pair of single nucleotide heterologies acted synergistically to inhibit recombination. We tested a variety of pairs of single nucleotide heterologies and determined that they reduced recombination from 7- to 175-fold. Substrates potentially leading to G-G or C-C mispairs in presumptive heteroduplex DNA (hDNA) intermediates displayed a particularly low rate of recombination. Additional experiments suggested that increased sequence divergence causes a shortening of gene conversion tracts. Collectively, our results suggest that suppression of recombination between diverged sequences is mediated via processing of a mispaired hDNA intermediate.  相似文献   

4.
Not all vertebrates create an immunoglobulin repertoire through the recombination of individual members of variable (V), diversity (D) and joining (J) gene segment families. In chickens, for example, a diverse set of immunoglobulins is created by intrachromosomal gene conversion of the single variable gene segments of the immunoglobulin heavy and light chain genes. Recent evidence from other species such as the rabbit suggests that gene conversion may be a more widespread mechanism for the creation of immunologic diversity than previously supposed.  相似文献   

5.
A model for the evolution of a family of tandemly repeated genes in a single chromosome lineage under intrachromosomal gene conversion [43] is analyzed further and extended. Direct and diffusion approximations are derived for the exact fixation probabilities, mean time to fixation or loss, and mean conditional fixation time of Nagylaki and Petes [43]. The distribution of the number of variant repeats under the joint action of gene conversion and reversible mutation is investigated; exact and approximate expressions are derived for the stationary distribution. It is shown that conversional bias greatly increases the amount of sequence homogeneity at equilibrium. The diffusion processes studied here also apply to selection and mutation in a finite population, and some new results are established for that classical problem.Supported by National Science Foundation Grant DEB81-03530. This paper is dedicated to the memory of Charles C. Conley (1933–1984), who greatly influenced and generously helped and taught the author.  相似文献   

6.
In this report we present an experimental scheme that facilitates the study of homologous recombination between closely linked genes in cultured mammalian cells. Two different Xho I linker insertion mutants of the herpes simplex virus type 1 thymidine kinase (HTK) gene were introduced into mouse LTK? cells as direct repeats on a plasmid carrying a dominant selectable marker. Following stabilization of these sequences in the recipient cell, selection for TK+ was applied to detect recombinational events between different TK? genes. TK+ segregants were observed at a frequency of 10?4–10?5 in lines harboring both mutant genes. Control lines carrying only one type of mutant HTK gene yielded TK+ cells at frequencies of 10?7 or less. Physical analysis of the TK+ segregants has revealed the presence of an apparently normal HTK gene that is resistant to Xho I endonuclease digestion in each TK+ line examined. Analyses of the TK gene pairs before and after recombination suggest that at least 50% of the recombinants are the result of nonreciprocal exchanges of genetic information, or gene conversion events.  相似文献   

7.
Previous work indicated that extrachromosomal recombination in mammalian cells could be explained by the single-strand annealing (SSA) model. This model predicts that extrachromosomal recombination leads to nonconservative crossover products and that heteroduplex DNA (hDNA) is formed by annealing of complementary single strands. Mismatched bases in hDNA may subsequently be repaired to wild-type or mutant sequences, or they may remain unrepaired and segregate following DNA replication. We describe a system to examine the formation and mismatch repair of hDNA in recombination intermediates. Our results are consistent with extrachromosomal recombination occurring via SSA and producing crossover recombinant products. As predicted by the SSA model, hDNA was present in double-strand break-induced recombination intermediates. By placing either silent or frameshift mutations in the predicted hDNA region, we have shown that mismatches are efficiently repaired prior to DNA replication.  相似文献   

8.
Formation of nascent heteroduplex structures by RecA protein and DNA   总被引:13,自引:0,他引:13  
A M Wu  R Kahn  C DasGupta  C M Radding 《Cell》1982,30(1):37-44
E. coli RecA protein promotes homologous pairing in two distinguishable phases: synapsis and strand exchange. With circular single strands (plus strand only) and linear duplex DNA, polarized or unidirectional strand exchange appeared to cause heteroduplex joints to form and grow from a unique end of the duplex DNA. However, a variety of other pairs of substrates appeared to form joint molecules without regard to the polarity of the strands involved. This paradox has been resolved by observations that show that synapsis is fast, nonpolar and sensitive to inhibition by ADP, whereas strand exchange is slow, directional and relatively insensitive to inhibition by ADP. Thus a heteroduplex joint initiated at one end of the duplex DNA grows by continued strand exchange, whereas a joint initiated at the other end dissociates and is unable to start again because accumulating ADP inhibits synapsis. RecA protein appears to form a nascent protein-DNA structure, the RecA synaptic structure, in which at least 100-300 bp in the duplex molecule are held in an unwound configuration and in which the incoming strand is aligned with its complement.  相似文献   

9.
The independent repair of mismatched nucleotides present in heteroduplex DNA has been used to explain gene conversion and map expansion after general genetic recombination. We have constructed and purified heteroduplex plasmid DNAs that contain heteroallelic 10-base-pair insertion-deletion mismatches. These DNA substrates are similar in structure to the heteroduplex DNA intermediates that have been proposed to be produced during the genetic recombination of plasmids. These DNA substrates were transformed into wild-type and mutant Escherichia coli strains, and the fate of the heteroduplex DNA was determined by both restriction mapping and genetic tests. Independent repair events that yielded a wild-type Tetr gene were observed at a frequency of approximately 1% in both wild-type and recB recC sbcB mutant E. coli strains. The independent repair of small insertion-deletion-type mismatches separated by 1,243 base pairs was found to be reduced by recF, recJ, and ssb single mutations in an otherwise wild-type genetic background and reduced by recF, recJ, and recO mutations in a recB recC sbcB genetic background (the ssb mutation was not tested in the latter background). Independent repair of small insertion-deletion-type mismatched nucleotides that were as close as 312 nucleotides apart was observed. There was no apparent bias in favor of the insertion or deletion of mutant sequences.  相似文献   

10.
Extrachromosomal and chromosomal gene conversion in mammalian cells.   总被引:17,自引:5,他引:12       下载免费PDF全文
We constructed substrates to study gene conversion in mammalian cells specifically without the complication of reciprocal recombination events. These substrates contain both an insertion mutation of the neomycin resistance gene (neoX) and an internal, homologous fragment of the neo gene (neo-526), such that gene conversion from neo-526 to neoX restores a functional neo gene. Although two reciprocal recombination events can also produce an intact neo gene, these double recombination events occur much less frequently that gene conversion in mammalian cells, We used our substrates to characterize extrachromosomal gene conversion in recombination-deficient bacteria and in monkey COS cells. Chromosomal recombination was also studied after stable integration of these substrates into the genome of mouse 3T6 cells. All extrachromosomal and chromosomal recombination events analyzed in mammalian cells resulted from gene conversion. Chromosomal gene conversion events occurred at frequencies of about 10(-6) per cell generation and restored a functional neo gene without overall effects on sequence organization.  相似文献   

11.
X-irradiation of mammalian cells with moderate doses (100-1000 rads) inhibits the initiation of DNA replicons. This inhibition is observed as depressed amounts of radioactivity at low molecular weights when the DNA from the cells is analysed by velocity sedimentation in alkaline sucrose gradients at 30 min after irradiation. There is no detectable effect on chain elongation and joining of those molecules that do initiate replication; this is indicated by the presence of the same amounts of radioactivity in nascent DNA molecules of high molecular weights from control and irradiated cells. The labeling of DNA molecules that initiated replication before irradiation continues unhindered for more than 60 min after irradiation, which is observed as peaks of radioactivity at high S values in alkaline sucrose gradients from irradiated cells. These data indicate that DNA replication in mammalian cells proceeds by continuous joining of nascent molecules that initiate almost simultaneously at origins at various distances from one another. Some of the interorigin distances are much greater than others, implying that large replicons make up a significant component of mammalian DNA.  相似文献   

12.
13.
Gene conversion is a recombinatorial mechanism which transfers genetic information from a donor into a recipient gene. A case of gene conversion between immunoglobulin VH region genes was analysed and palindromic sequences were found to be located near to the left recombinatorial breakpoint, which also is flanked by a direct repeat sequence. We performed a computer search for palindromes and direct repeats in the published sequences of eucaryotic genes which had been involved in gene conversion. In these sequences, the palindrome with the best or second best quality is located near to a breakpoint of recombination. A correlation of recombination breakpoints with direct repeats was not observed. This suggests that gene conversion is promoted by palindromic sequences.  相似文献   

14.
The effects of heterozygosity on meiotic gene conversion characteristics have been studied in the fungus Ascobolus immersus. The non-Mendelian segregation patterns of seven white ascospore mutants of the b2 gene were established in the presence or the absence of additional neighbouring allelic mutations. These correspond to nine different double mutants with wild-type or pseudo-wild-type phenotypes, constituted by two +1, -1 frameshift mutations of complementary phases. When heterozygous, these double point mutations decrease, by an average of one third, the gene conversion frequencies of the mutants located on their right, toward the low conversion end of the gene. The decrease corresponds either to a reduction in all classes of non-Mendelian segregation (6:2, 5:3 and aberrant 4:4 asci) or to a reduction restricted to the single class of aberrant 4:4 asci. These modifications are explained by changes in hybrid DNA parameter values: frequencies of formation and modalities of distribution (asymmetric versus symmetric ratio). Besides the nature of the non-homology, point mutation versus deletion, which leads to quantitative differential effects, the region where the non-homology is located within the gene also appears to play an important role.  相似文献   

15.
16.
Recombination between a 360-base-pair (bp) segment of a wild-type thymidine kinase gene (tk) from each of three different strains (F, MP, and 101) of herpes simplex virus type one and a complete herpes simplex virus type 1 (strain F) tk gene containing an 8-bp insertion mutation was studied. The pairs of tk sequences resided as closely linked repeats within the genome of mouse LTK- cells. The frequency of recombination between sequences exhibiting 232 bp of uninterrupted homology and containing no mismatches other than the insertion mutation was comparable to the frequency of recombination between two sequences exhibiting four additional nucleotide mismatches distributed in such a way to preserve the 232-bp stretch of contiguous homology. In contrast, the placement of only two single-nucleotide mismatches (in addition to the insertion mutation) in such a manner to reduce the longest uninterrupted homology to 134 bp resulted in a 20-fold reduction in recombination. We conclude that the rate of intrachromosomal recombination in mammalian cells is determined by the amount of uninterrupted homology available and not by the total number of mismatches within a given interval of DNA. Furthermore, efficient recombination appears to require between 134 and 232 bp of uninterrupted homology; single-nucleotide heterologies are most likely sufficient to disrupt the minimal efficient recombination target. We also observed that if recombination was allowed to initiate within sequences exhibiting perfect homology, the event could propagate through and terminate within adjacent sequences exhibiting 19% base pair mismatch. We interpret this to mean that heterology exerts most of its impact on early rather than late steps of intrachromosomal recombination in mammalian cells.  相似文献   

17.
E Cassuto 《The EMBO journal》1984,3(9):2159-2164
The concerted action of DNA gyrase and RecA protein of Escherichia coli on intact and gapped homologous or partially homologous plasmid DNA molecules leads to the formation of covalently closed DNA containing one strand of each parental molecule. Large regions of non-homology can be incorporated into the closed circular duplex. Both proteins are essential for the reaction to take place, and type I topoisomerase cannot substitute for DNA gyrase.  相似文献   

18.
19.
Mouse Ltk- cell lines that contained a herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene with a 16-bp insertion mutation linked to either a defective HSV-2 tk gene or a hybrid tk sequence comprised of HSV-1 and HSV-2 tk sequences were constructed. HSV-1 and HSV-2 tk genes have 81% nucleotide identity and hence are homeologous. Correction of the insertion mutant HSV-1 tk gene via recombination with the hybrid tk sequence required an exchange between homeologous tk sequences, although recombination could initiate within a region of significant sequence identity. Seven cell lines containing linked HSV-1 and HSV-1-HSV-2 hybrid tk sequences gave rise to tk+ segregants at an average rate of 10(-8) events per cell division. DNA sequencing revealed that each recombinant from these lines displayed an apparent gene conversion which involved an accurate transfer of an uninterrupted block of information between homeologous tk sequences. Conversion tract lengths ranged from 35 to >330 bp. In contrast, cell lines containing linked HSV-1 and HSV-2 tk sequences with no significant stretches of sequence identity had an overall rate of homeologous recombination of <10(-9). One such cell line produced homeologous recombinants at a rate of 10(-8). Strikingly, all homeologous recombinants from this latter cell line were due to crossovers between the HSV-1 and HSV-2 tk genes. Our results, which provide the first detailed analysis of homeologous recombination within a mammalian genome, suggest that rearrangements in mammalian genomes are regulated by the degree of sequence divergence located at the site of recombination initiation.  相似文献   

20.
DNA from both Chinese hamster ovary (CHO) cells and human fibroblasts contains a high buoyant density fraction. This fraction of DNA was purified from CHO cells and characterized. Compared with mainband CHO DNA, this high buoyant density DNA binds more of a GC-specific dye, actinomycin D (actD), and less of an AT-specific dye, netropsin, which suggests that its increased density is due to an increase in clusters of GC base pairs. The detection of heteroduplex DNA which has been hypothesized to occur during sister chromatid exchange formation is considerably complicated by the presence of this high density DNA. Experiments to detect heteroduplex DNA in CHO cells, using actD to shift the position of the high density DNA, did not reveal any underlying heteroduplex material, thus placing an upper limit on the size of the hypothesized heteroduplex regions. Experiments with both CHO cells and with human fibroblasts indicated that the amount of the high buoyant density DNA did not consistently increase when the sister chromatid exchange frequency increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号