首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Interspecific territoriality may play an important role in structuring ecological communities, but the causes of this widespread form of interference competition remain poorly understood. Here, we investigate the phenotypic, ecological and phylogenetic correlates of interspecific territoriality in wood warblers (Parulidae). Interspecifically territorial species have more recent common ancestors and are more similar phenotypically, and are more likely to hybridise, than sympatric, non‐interspecifically territorial species. After phylogenetic corrections, however, similarity in plumage and territorial song are the only significant predictors of interspecific territoriality besides syntopy (fine‐scale geographic overlap). Our results do not support the long‐standing hypothesis that interspecific territoriality occurs only under circumstances in which niche divergence is restricted, which combined with the high incidence of interspecific territoriality in wood warblers (39% of species), suggests that this interspecific interaction is more stable, ecologically and evolutionarily, than commonly assumed.  相似文献   

2.
Although both interspecific competition and coexistence mechanisms are central to ecological and evolutionary theory, past empirical studies have generally focused on simple (two-species) communities over short time periods. Experimental tests of these species interactions are challenging in complex study systems. Moreover, several studies of ‘imperfect generalists’, consistent with Liem's Paradox, raise questions about the ability of evolved species differences to partition niche space effectively when resources vary considerably across the annual cycle. Here we used a recently developed theoretical framework to combine past research on population-level processes with observational data on resource use to test for ongoing interspecific competition and understand the nature of resource overlap. We compared species diet overlaps and differences in several distinctive communities centred on a focal species, the American Redstart Setophaga ruticilla replicated both spatially and seasonally, in combination with documentation of population regulation to assess the ability of similar species to partition dietary niche space and limit interspecific competition. Our results document high dietary overlap in most of the communities studied, with only subtle differentiation consistent with known species differences in foraging behaviour and morphology. These findings are largely consistent with species foraging as imperfect generalists. However, in contrast to past studies, the high diet overlaps observed here during times of inferred resource scarcity were driven by low-value prey taxa (e.g. small ants) and did not involve truly ‘private’ resources. All of these factors increase the potential negative impacts of interspecific competition, and limit the ability of these birds to avoid competition if food availability deteriorates further than observed in our study, either seasonally or at longer intervals.  相似文献   

3.
This article examines some of the main tenets of competition theory in light of the theory of evolution and the concept of an ecological niche. The principle of competitive exclusion and the related assumption that communities exist at competitive equilibrium - fundamental parts of many competition theories and models - may be violated if non-equilibrium conditions exist in natural communities or are incorporated into competition models. Furthermore, these two basic tenets of competition theory are not compatible with the theory of evolution. Variation in ecologically significant environmental factors and non-equilibrium in population numbers should occur in most natural communities, and such changes have important effects on community relations, niche overlap, and the evolution of ecosystems. Ecologists should view competition as a process occurring within a complexdynamic system, and should be wary of theoretical positions built upon simple laboratory experiments or simplistic mathematical models.In considering the relationship between niche overlap and competition, niche overlap should not be taken as a sufficient condition for competition; many factors may prevent or diminish competition between populations with similar resource utilization patterns. The typically opposing forces of intraspecific and interspecific competition need to be simultaneously considered, for it is the balance between them that in large part determines niche boundaries.  相似文献   

4.
Kaplan I  Denno RF 《Ecology letters》2007,10(10):977-994
The importance of interspecific competition is a highly controversial and unresolved issue for community ecology in general, and for phytophagous insects in particular. Recent advancements, however, in our understanding of indirect (plant- and enemy-mediated) interactions challenge the historical paradigms of competition. Thus, in the context of this rapidly developing field, we re-evaluate the evidence for interspecific competition in phytophagous insects using a meta-analysis of published studies. Our analysis is specifically designed to test the assumptions underlying traditional competition theory, namely that competitive interactions are symmetrical, necessitate spatial and temporal co-occurrence, and increase in intensity as the density, phylogenetic similarity, and niche overlap of competing species increase. Despite finding frequent evidence for competition, we found very little evidence that plant-feeding insects conform to theoretical predictions for interspecific competition. Interactions were highly asymmetrical, similar in magnitude within vs. between feeding guilds (chewers vs. sap-feeders), and were unaffected by the quantity of resources removed (% defoliation). There was mixed support for the effects of phylogeny, spatial/temporal separation, and the relative strength of intra- vs. interspecific competition. Clearly, a new paradigm that accounts for indirect interactions and facilitation is required to describe how interspecific competition contributes to the organization of phytophagous insect communities, and perhaps to other plant and animal communities as well.  相似文献   

5.
To avoid competition, ecologically similar and closely related species tend to differ in their patterns of habitat use when they live in sympatry. We compared ranging patterns of brown howler (Alouatta guariba) and black and gold howler (A. caraya) monkeys living syntopically, i.e., co-occurring and overlapping their ranges in the same habitat within the zone of sympatry, in the Atlantic Forest of northeastern Argentina with the objective of evaluating whether their use of space contributes to the avoidance of interspecific competition for food resources. During 12 mo we collected data on the ranging behavior of 2 groups of each howler species. We analyzed annual and seasonal daily path lengths and movement rates, home range size, use and overlap, habitat and vertical strata use, and intergroup encounters. Black and gold howlers traveled farther and faster during the time of relative food abundance (abundant season) than during the time of relative food shortage (lean season), and their movement rates were affected by group identity and increased with the proportion of fruits in the diet. Brown howlers’ traveling patterns were not affected by any of these factors. Home ranges for both species (95% fixed kernel; brown howlers: 31–70 ha, black-and-gold howlers: 17–112 ha) were among the largest recorded for Alouatta. For both species, core areas (50% fixed kernel) were larger for larger versus smaller groups, and decreased in the lean season compared to the abundant season. Both species showed similar patterns of habitat use, except for a slight vertical stratification. Groups of different species overlapped their ranging areas consistently more and responded to one another less aggressively during encounters than groups of the same species, suggesting that interspecific spatial niche separation for these two syntopic species is not occurring. The vertical stratification, as well as a day-to-day avoidance strategy, may be the only responses of species to one another that could reduce the potentially high levels of competition for food suggested by their elevated trophic niche overlap. A high degree of niche overlap may explain the parapatric distribution of howlers and other closely related and ecologically similar species of primates.  相似文献   

6.
依据2015年11月(秋)、2016年2月(冬)、5月(春)、8月(夏)4个航次的渔业资源底拖网调查数据,运用相对重要性指数(IRI)、Shannon指数和Pianka指数对浙江披山海域主要鱼类的时空生态位宽度和重叠进行分析,并结合冗余分析和种间竞争系数研究了主要鱼类间的竞争共存关系及生态位分化.结果 表明:研究期间共...  相似文献   

7.
Seawater DMS in a perturbed coastal ecosystem   总被引:1,自引:0,他引:1  
Intra- and interspecific niche overlap for two mayfly species with similar life cycle timing, Rhithrogena semicolorata and Ecdyonurus sp. gr. venosus, were investigated. The nymphs were classified into 5 classes according to size and spatial overlaps are measured along a substratum roughness gradient. Substratum roughness selection was investigated by defining utilisation curves, optimum and tolerance values of the nymphs in relation to larval growth. Differences between species and size classes within each species were observed. Ecdyonurus sp. gr. venosus dominated on rough substrates, whereas R. semicolorata was most abundant on smooth substrates. An intermediate value of total interspecific substratum roughness overlap (0.49) was found. Higher intraspecific than interspecific overlap values suggested a spatial niche segregation between the two species. The results suggested that the spatial niches measured, were closer to the `fundamental niches' than could be expected if competition was acting on the two studied populations.  相似文献   

8.
Habitat partitioning is a common ecological mechanism to avoid competition among coexisting species, and the introduction of new species into existing assemblages can increase competitive pressures. However, situations of species in allopatry and sympatry only differing in species presence but not in environmental conditions are scarce. Thus, discerning whether niche segregation arises from competition or from different habitat preferences is usually unfeasible. Here, we analyse species’ habitat niches in an assemblage of native and introduced herbivores in southern Patagonia. We test if niche overlap is higher between native and domestic herbivores than among natives as expected from the relatively short time of coexistence, and we evaluate the effect of intra‐ and interspecific competition on niche breadth. We use a probabilistic multidimensional approach and null models to evaluate overlap and changes in niche dimensions. Overlap among native species is low as expected for species coexisting in evolutionary time. In native‐domestic species pairs, niche overlap was higher than among natives, although showing some niche segregation indicating niche differentiation in ecological time. Moreover, the presence of domestic species was associated with niche narrowing of both native and introduced species, revealing interspecific density‐dependent effects on their habitat niche during resource shortage periods.  相似文献   

9.
Interspecific competition is a dominant force in animal communities that induces niche shifts in ecological and evolutionary time. If competition occurs, niche expansion can be expected when the competitor disappears because resources previously inaccessible due to competitive constraints can then be exploited (i.e., ecological release). Here, we aimed to determine the potential effects of interspecific competition between the little bustard (Tetrax tetrax) and the great bustard (Otis tarda) using a multidimensional niche approach with habitat distribution data. We explored whether the degree of niche overlap between the species was a density‐dependent function of interspecific competition. We then looked for evidences of ecological release by comparing measures of niche breadth and position of the little bustard between allopatric and sympatric situations. Furthermore, we evaluated whether niche shifts could depend not only on the presence of great bustard but also on the density of little and great bustards. The habitat niches of these bustard species partially overlapped when co‐occurring, but we found no relationship between degree of overlap and great bustard density. In the presence of the competitor, little bustard's niche was displaced toward increased use of the species' primary habitat. Little bustard's niche breadth decreased proportionally with great bustard density in sympatric sites, in consistence with theory. Overall, our results suggest that density‐dependent variation in little bustard's niche is the outcome of interspecific competition with the great bustard. The use of computational tools like kernel density estimators to obtain multidimensional niches should bring novel insights on how species' ecological niches behave under the effects of interspecific competition in ecological communities.  相似文献   

10.
There are examples of coexisting species with similar morphology and ecology, in apparent contradiction to competition theory. Shrews (Soricidae) are a paradigmatic example of this because members of this group exhibit a conserved body form, relatively low variability in lifestyle, and, in many cases, a sympatric distribution. Here, we combined geometric morphometrics and ecological niche modeling to test whether diversification of soricid species inhabiting the Iberian Peninsula has been driven by niche divergence or, conversely, whether niche conservatism has played a paramount role in this process. We also examined whether pairwise morphological distances increase as the degree of niche overlap between species becomes greater, as would be expected if interspecific competition promotes morphological differentiation. Our results showed that water shrews (Neomys), white‐toothed shrews (Crocidurinae), and red‐toothed shrews (Soricinae) are clearly differentiated in terms of both skull shape and mandible shape. However, we found a lack of phylogenetic signal in most morphological traits, indicating that closely related species are not more similar than expected by random chance. Notably, water shrews show a more “triangular” or sharp skull than white‐toothed and red‐toothed shrews, probably as an adaptation to their semiaquatic lifestyle. In agreement with the phenotypic data, climatic traits (mean annual temperature and annual precipitation) were highly labile and sister taxa showed extensive differentiation in their realized niche space. Finally, we found that phenotypic distances between species tend to increase as the degree of niche overlap increases, suggesting that interspecific competition is an important factor in determining the level of morphological resemblance among relatives. Overall, our results indicate that the existence of limited morphological disparity in a given group does not necessarily imply the existence of a niche conservatism signature.  相似文献   

11.
Mangrove bird communities in north Australia comprise relatively few passerine species compared with other arboreal habitats in the region. Mangroves are dominated by a few tree species and there are potentially few resource axes available for partitioning by terrestrial birds. Competition for limited resources is predicted to cause strong niche differentiation and a highly structured, but low diversity, bird assemblage. Using multivariate and bipartite network analyses based on 1771 foraging observations (33% of 5320 behavioral observations), we examined resource partitioning by 20 terrestrial bird species in mangroves of north Australia. The mangrove bird community largely comprised generalist insectivores that partitioned insects by size with moderate‐to‐high interspecific overlap in diet. Gleaning for insects was the most common foraging mode. Few species specialized on nectar. Flowers of one or more mangrove species were available in every month of the year and insect abundance was correlated with flowering peaks. Niche differentiation by birds was determined by food type and foraging mode more than by broad spatial (mangrove zones) or temporal (seasonal) segregation of the use of resources. There was little evidence of bird species saturation or species sorting, suggesting loose species packing and a lesser role than expected for species interactions and interference competition in structuring the bird assemblage in mangroves.  相似文献   

12.
Understanding niche partitioning of closely related sympatric species is a fundamental goal in ecology. Acoustic communication space can be considered a resource, and the acoustic niche hypothesis posits that competition between species may lead to partitioning of communication space. Here, we compare the calling behavior of two sympatric Bornean hornbill species—the rhinoceros hornbill (Buceros rhinoceros) and the helmeted hornbill (Rhinoplax vigil)—to test for evidence of acoustic niche partitioning. Both hornbill species emit calls heard over many kilometers and have similar habitat preferences which is predicted to result in interspecific competition. We collected acoustic data on sympatric populations of both hornbill species using 10 autonomous recording units in Danum Valley Conservation Area, Sabah, Malaysia. We found that there was substantial spectral overlap between the calls of the two species, indicating the potential for competition for acoustic space. To test for evidence of acoustic niche partitioning, we investigated spatial and temporal patterns of calling in each species. Both hornbills were strictly diurnal and called throughout the day, and we were equally likely to detect both species at each of our recorders. We did not find evidence of temporal acoustic avoidance at a relatively coarse timescale when we divided our dataset into 1 h bins, but we did find evidence of temporal acoustic avoidance at a finer timescale when we used null models to compare the observed duration of overlapping calls to the expected amount of overlap due to chance.  相似文献   

13.
Yinghui Yang  Cang Hui 《Oikos》2021,130(2):260-273
Competitive intransitivity is mostly considered outside the main body of coexistence theories that rely primarily on the role of niche overlap and differentiation. How the interplay of competitive intransitivity and niche overlap jointly affects species coexistence has received little attention. Here, we consider a rock–paper–scissors competition system where interactions between species can represent the full spectra of transitive–intransitive continuum and niche overlap/differentiation under different levels of competition asymmetry. By comparing results from pair approximation that only considers interference competition between neighbouring cells in spatial lattices, with those under the mean-field assumption, we show that 1) species coexistence under transitive competition is only possible at high niche differentiation; 2) in communities with partial or pure intransitive interactions, high levels of niche overlap are not necessary to beget species extinction; and 3) strong spatial clustering can widen the condition for intransitive loops to facilitate species coexistence. The two mechanisms, competitive intransitivity and niche differentiation, can support species persistence and coexistence, either separately or in combination. Finally, the contribution of intransitive loops to species coexistence can be enhanced by strong local spatial correlations, modulated and maximised by moderate competition asymmetry. Our study, therefore, provides a bridge to link intransitive competition to other generic ecological theories of species coexistence.  相似文献   

14.
1. The mechanisms that structure biological communities hold the key to understanding ecosystem functioning and the maintenance of biodiversity. Patterns of species abundances have been proposed as a means of differentiation between niche-based and neutral processes, but abundance information alone cannot provide unequivocal discrimination. 2. We combined species niche information and species' relative abundances to test the effects of two opposing structuring mechanisms (environmental filtering and niche complementarity) on species' relative abundances in French lacustrine fish communities. The test involved a novel method comparing the abundance-weighted niche overlap within communities against that expected when relative abundances were randomized among species within the community. 3. Observed overlap was consistently significantly lower than expected at random for two (swimming ability and trophic status) of four primary niche axes across lakes of differing physical environments. Thus, for these niche axes, pairs of abundant species tended to have relatively low niche overlap, while rare species tended to have relatively high niche overlap with abundant species. 4. This suggests that niche complementarity may have acted to enhance ecosystem function and that it is important for species coexistence in these fish communities. The method used may be easily applied to any sort of biological community and thus may have considerable potential for determining the generality of niche complementarity effects on community structure.  相似文献   

15.
In a competitive sympatric association, coexisting species may try to reduce interspecific interactions as well as competition for similar resources by several ecological and behavioral practices. We studied resource utilization of three sympatric primate species namely, lion-tailed macaques (Macaca silenus), bonnet macaques (M. radiata) and Hanuman langurs (Semnopithecus entellus) in a tropical rainforest of the central Western Ghats, south India. We studied resource use, tree-height use, foraging height, substrate use when consuming animal prey and interspecific interactions. The results revealed that across the year, there was very limited niche overlap in diet between each species-pair. Each primate species largely depended on different plant species or different plant parts and phenophases from shared plant species. Primate species used different heights for foraging, and the two macaque species searched different substrates when foraging on animal prey. We also recorded season-wise resource abundance for the resources shared by these three primate species. While there was low dietary overlap during the dry season (a period of relatively low resource abundance), there was high dietary overlap between the two macaque species during the wet season (a period of high resource abundance for the shared resources). We observed only a few interspecific interactions. None of these were agonistic, even during the period of high niche overlap. This suggests that the sympatric primate species in this region are characterized by little or no contest competition. Unlike in some other regions of the Western Ghats, the lack of interspecific feeding competition appears to allow these primates, especially the macaques, to remain sympatric year-round.  相似文献   

16.
 以塔里木河下游绿洲外围大型防风固沙林为研究对象, 采用基于Simpson多样性指数的生态位宽度公式和Pianka生态位重叠测度公式, 在群落梯度上按重要值大小筛选出优势种群进行生态位分析, 探讨这些群落在4~7年的发育过程中生态位变化特点。结果表明: 1)经过4年的发育, 植物种组成简单的人工防风固沙林由于乡土植物种的侵入, 演变成为人工-天然植物群落, 不同地段群落中的优势种群发生了较大的变化, 优势种群共7个。芦苇(Phragmites communis)、花花柴(Karelinia caspica)和盐生草(Halogeton glomeratus)这3个乡土植物种侵入后逐渐成为优势种群, 而原人工群落主要建群种宁夏枸杞(Lycium barbarum)种群逐渐消退; 7年后, 优势种群共6个。由于水分条件的变化, 多枝柽柳(Tamarix ramosissima)成为优势种群, 而芦苇降为亚优势种群, 盐生草种群发生消退; 2)人工-天然植物群落中优势种群以耐旱耐盐碱植物占主要优势向占绝对优势的方向发展, 其生态位宽度变化幅度为0.56~0.86, 生态位宽度排序为芦苇>花花柴>头状沙拐枣(Calligonum caput-medusae)>沙枣(Elaeagnus angustifolia)>胡杨(Populus euphratica)>多枝柽柳>梭梭(Haloxylon ammodendron)>盐生草; 3)生态位重叠最大值发生在头状沙拐枣和胡杨种群之间; 4)在乡土植物种向人工群落侵入的过程中, 生态位宽度较大(或较小)的种群, 它们所构成的种对间生态位重叠既有较大的, 也有较小的, 可见生态位宽度与生态位重叠程度无相关性; 表明在现阶段群落演变中, 植物对环境资源存在着激烈的竞争和高的空间异质性。  相似文献   

17.
基于对山西陵川县境内野生南方红豆杉群落的样地调查,采用总体相关性VR检验、Pearson相关系数、Spearman秩相关系数和生态位测度方法,在群落尺度上对南方红豆杉群落的种间联结性和生态位特征进行了研究。结果显示:(1)南方红豆杉(Taxus chinensis(Pilger)Rehd.var.mairei(Lemee et Levl.)Cheng et L.K.Fu)、荆条(Vitex negundo L.var.heterophylla(Franch.)Rehd.)、鹅耳枥(Carpinus turczaninowii Hance)、连翘(Forsythia suspensa(Thunb.)Vahl)和三裂绣线菊(Spiraea trilobata L.)的重要值和生态位宽度较大,为群落中的建群种和优势种;(2)物种间生态位重叠指数总体偏高,种间竞争较强,尤其是南方红豆杉与其他物种之间;(3)群落总体呈显著负联结,大多数种对间呈中性关联(χ23.84,P0.05);(4)群落中物种间的Pearson相关系数、Spearman秩相关系数与生态位重叠指数之间表现为极显著的正相关(P0.01),而生态位宽度与生态位重叠指数之间未表现出线性关系,即物种间的竞争关系随种间关联性的增大而增强,而与生态位宽度没有直接关系。本研究可为保护和利用本区现有野生南方红豆杉资源提供合理的理论支撑。  相似文献   

18.
  1. Interspecific competition is an important evolutionary force, influencing interactions between species and shaping the composition of biological communities. In mammalian carnivores, to reduce the risks of negative encounters between competitors, species can employ a strategy of temporal partitioning, adapting activity patterns to limit synchronous activity. This strategy of non-human competitor avoidance, however, may be influenced by the expansion of human activities, which has driven wild mammals towards nocturnality.
  2. We hypothesise that the disruption of temporal niche partitioning by humans and their activities could increase temporal overlap between carnivores, enhancing interspecific competition.
  3. We reviewed the published literature systematically and employed generalised linear models to evaluate quantitatively the relative influence of a range of human, meteorological and ecological variables on coefficients of temporal overlap within mammalian terrestrial carnivore communities (orders Carnivora and Didelphimorphia) on a global scale.
  4. None of the models investigated showed evidence of an impact of humans on temporal partitioning between carnivores on a global scale. This illustrates that temporal avoidance of humans and competitors does not always follow a consistent pattern and that its strength may be context-dependent and relative to other dimensions of niche partitioning (spatial and trophic).
  5. Similarly, the regulation of activity patterns may be strongly site-specific and may be influenced by a combination of biotic and abiotic characteristics. Temporal avoidance of both humans and competitors by carnivores may take the form of short, reactive responses that do not impact activity patterns in the longer term.
  6. Although we did not detect a global disruption of temporal partitioning due to human disturbance, carnivore communities may still experience an increase in interspecific competition in other niche dimensions. Further research would benefit from using controlled experimental designs and investigating multiple dimensions of niche partitioning simultaneously. Finally, we recommend complementing the coefficient of temporal overlap with other metrics of fine-scale spatiotemporal interactions.
  相似文献   

19.
Resource control by territorial male cichlid fish in Lake Malawi   总被引:4,自引:0,他引:4  
1. The rocky habitat communities of Lake Malawi contain a high diversity of ecologically similar, predominantly herbivorous, cichlid fish species. How so many species can coexist is still unknown.
2. Adult males of the majority of these species hold permanent territories which form dense multispecies mosaics across the shores.
3. The study examined six coexisting species of cichlids from the rocky habitat where males are known to control access to the algal food resources within their territorial space. These included four sibling species of the Pseudotropheus ( Tropheops ) species complex, which are specialized epilithic algal herbivores, and two sibling species of the trophically more generalist P . ( Maylandia ) species complex which feed upon both epilithic algae and plankton.
4. The hypotheses that both intraspecific and interspecific territoriality occur in these communities and that interspecific aggression initiated by territorial males is preferentially directed at species with the most similar diets to their own were tested.
5. It was found that males preferred to exclude conspecific intruders, while they tolerated intruders with different diets to their own. Also, male P . ( Tropheops ) preferentially excluded similar heterospecific dietary specialists, while male P. ( Maylandia ) tolerated similar heterospecific dietary generalists.
6. Based on this study, it is proposed that interspecific territoriality may be reducing competition between species with different diets and promoting their coexistence, while it may be enhancing competition between species with the same diet. Furthermore, it suggests that ecological generalism may be reducing the intensity of interspecific competition, while specializations for the same resources may be increasing competition.  相似文献   

20.
Although selectively logged tropical forests have high bird species richness, it is known that their species composition is substantially changed when compared with intact forests. Thus, we need to improve the understanding on how functional trait diversity of birds is affected in this habitat type in order to support the development of more effective conservation actions to maintain functional roles and community stability. Here, we evaluate traits responses to variations in forest vegetation integrity and how the pattern of niche occupancy is affected by this increase in species richness. We then evaluated the effects of vegetation integrity in the Atlantic rainforest on range of trait space occupied, niche packing, and trait composition in local bird communities. We also evaluate the mechanisms driving niche expansion and packing using null models. Our results show that trait composition changes in communities: (1) lower vegetation integrity increases foraging in understory and consumption of grains and ectothermic vertebrates by birds; (2) higher vegetation integrity drives higher and wider beaks and increase foraging for invertebrates in canopy. We also found that lower vegetation integrity not only is associated with the increase of species richness, but also with both expansion and packing of niche space occupied by the community. However, only niche packing had predominantly smaller values than expected by chance, indicating a strong effect of environmental filters on niche occupancy density. Although bird assemblages in more intact vegetations have lower species richness, they have greater functional distance between bird species suggesting greater stability, with a low probability of local extinctions due to a lower intensity of interspecific competition. This demonstrates that isolated assessments of species richness are potentially illusory and can lead to unsuccessful conservation measures, such as proposing selective logging in primary forests based on the supposed benefit of increased bird species richness in vegetations less intact. Furthermore, the functional composition tends to change with changes in vegetation integrity degree, thus altering the functional role provided by communities. Consequently, forests with high vegetation integrity status should be maintained, despite the lower species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号