首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The voltage-sensitive sodium channel is generally regarded as the primary target site of dichlorodiphenyl-trichloro-ethane (DDT) and pyrethroid insecticides, and has been implicated in the widely reported mechanism of nerve insensitivity to these compounds. This phenomenon is expressed as knockdown resistance (kdr) and has been best characterised in the housefly where several putative alleles, including the more potent super-kdr factor, have been identified. We report the isolation of cDNA clones containing part of a housefly sodium channel gene, designated Msc, which show close homology to the para sodium channel of Drosophila (99% amino acid identity within the region of overlap). Using Southern blots of insect DNA, restriction fragment length polymorphisms (RFLPs) at the Msc locus were identified in susceptible, kdr and super-kdr housefly strains. These RFLPs showed tight linkage to resistance in controlled crosses involving these strains, thus providing clear genetic evidence that kdr, and hence pyrethroid mode of action, is closely associated with the voltage-sensitive sodium channel.  相似文献   

2.
1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides.  相似文献   

3.
The Epsilon glutathione transferase (GST) class in the dengue vector Aedes aegypti consists of eight sequentially arranged genes spanning 53,645 bp on super contig 1.291, which maps to chromosome 2. One Epsilon GST, GSTE2, has previously been implicated in conferring resistance to DDT. The amino acid sequence of GSTE2 in an insecticide susceptible and a DDT resistant strain differs at five residues two of which occur in the putative DDT binding site. Characterization of the respective recombinant enzymes revealed that both variants have comparable DDT dehydrochlorinase activity although the isoform from the resistant strain has higher affinity for the insecticide. GSTe2 and two additional Epsilon GST genes, GSTe5 and GSTe7, are expressed at elevated levels in the resistant population and the recombinant homodimer GSTE5-5 also exhibits low levels of DDT dehydrochlorinase activity. Partial silencing of either GSTe7 or GSTe2 by RNA interference resulted in an increased susceptibility to the pyrethroid, deltamethrin suggesting that these GST enzymes may also play a role in resistance to pyrethroid insecticides.  相似文献   

4.
The housefly (Musca domestica) is an important host for a variety of bacteria, including some pathogenic and antibiotic-resistant strains. To further investigate the relationship between the housefly and the bacteria it harbors, it is necessary to understand the fate of microorganisms during the larval metamorphosis. The major bacterial communities in three developmental stages of the housefly (maggot, pupa, and adult fly) were investigated by a culture-independent method, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR?DGGE) analysis of 16S rRNA genes. The bacteria that were identified using DGGE analysis spanned phyla Proteobacteria, Firmicutes, and Bacteroidetes. Changes in the predominant genera were observed during the housefly development. Bacteroides, Koukoulia, and Schineria were detected in maggots, Neisseria in pupae, and Macrococcus, Lactococcus, and Kurthia in adult flies. Antibiotic-resistant bacteria were screened using a selective medium and tested for antibiotic susceptibility. Most resistant isolates from maggots and pupae were classified as Proteus spp., while those from adult flies were much more diverse and spanned 12 genera. Among 20 tested strains across the three stages, 18 were resistant to at least two antibiotics. Overall, we demonstrated that there are changes in the major bacterial communities and antibiotic-resistant strains as the housefly develops.  相似文献   

5.
The inhibition of DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] dehydrochlorinase and glutathione S-aryltransferase by diphenylmethane and triphenylmethane derivatives was examined. Bis-(3,5-dibromo-4-hydroxyphenyl)methane and similar compounds were excellent inhibitors of both enzymes, but only DDT dehydrochlorinase was inhibited by compounds similar to bis-(N-dimethylaminophenyl)methane. Colour salts of the basic triphenylmethyl dyes were excellent inhibitors of both enzymes. All the inhibitors examined appeared to act by competition with glutathione for its binding site on the two enzymes.  相似文献   

6.
GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 Å resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional 1H,15N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.  相似文献   

7.
8.
C. A. Malcolm 《Genetica》1990,82(1):51-55
In larvae of Anopheles stephensi, DDT resistance of 30 to 40-fold, involving no cross-resistance to pyrethroids, showed fully dominant monofactorial inheritance. The gene, termed DDT, is located 36.6 cross-over units from the morphological mutant, black larvae (Bl), on chromosome III. A polygenic system, which confers a 17-fold reduction in susceptibility to knockdown by the pyrethroid, permethrin, also makes a minor contribution to DDT resistance. It was not possible to block DDT resistance with the dehydrochlorinase inhibitor DMC.  相似文献   

9.
The voltage-sensitive sodium channel is generally regarded as the primary target site of dichlorodiphenyl-trichloro-ethane (DDT) and pyrethroid insecticides, and has been implicated in the widely reported mechanism of nerve insensitivity to these compounds. This phenomenon is expressed as knockdown resistance (kdr) and has been best characterised in the housefly where several putative alleles, including the more potent super-kdr factor, have been identified. We report the isolation of cDNA clones containing part of a housefly sodium channel gene, designated Msc, which show close homology to the para sodium channel of Drosophila (99% amino acid identity within the region of overlap). Using Southern blots of insect DNA, restriction fragment length polymorphisms (RFLPs) at the Msc locus were identified in susceptible, kdr and super-kdr housefly strains. These RFLPs showed tight linkage to resistance in controlled crosses involving these strains, thus providing clear genetic evidence that kdr, and hence pyrethroid mode of action, is closely associated with the voltage-sensitive sodium channel.  相似文献   

10.
Three kinds of DDT-resistance with different genetic and physiological background are now known in the housefly:
  1. 1)
    DDT detoxication by DDT-dehydrochlorinase (DDT-ase) dependent on the geneD-ase on chromosome 5. This resistance can be overcome with DDT-F-DMC combinations.  相似文献   

11.
A single dose of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) (160 mg/kg i.p.) enhanced the monooxygenase step of drug biotransformation in rat liver. The O-demethylation of p-nitroanisole was especially increased, a peak in activity approximately 5-fold compared with controls being attained in 7 days. On the other hand, there was only a 2-fold increase in aryl hydrocarbon hydroxylase activity.DDT increased the cytochrome P-450 content of the liver, this increase coincided well with that in p-nitroanisole O-demethylation activity.The UDPglucuronosyltransferase activity of liver microsomes was not enhanced by DDT administration, unless the microsomes were pretreated to reveal latent activity prior to assay. After trypsin digestion of microsomes a maximum increase in activity of approximately 3-fold was observed as a result of DDT dosage. The canonic surfactant cetylpyridinium chloride was less active in revealing the latent UDP-glucuronosyltransferase activity, and two other membrane perturbants, the detergent digitonin and phospholipase A, were unable to show enhancement in UDPglucuronosyltransferase as a result of DDT dosage.  相似文献   

12.
The aim of this study was to select a bacterial strain able to degrade 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), and to use it for bioaugmentation in order to decontamination soil. Advenella Kashmirensis MB-PR (A. Kashmirensis MB-PR) was isolated from DDT contaminated soil, and the degradation ability of DDT by this strain in the mineral salt medium was screened by gas chromatography. The efficiency of degradation was 81% after 30 days of bacterial growth. The study of intermediary products during the degradation of DDT showed the appearance and accumulation of DDD and DDE, which emerged from the first days of the experiment. Other metabolites were detected at a lower number of chlorine atoms, such as DBH. DNA samples were isolated and screened for the linA gene, encoding dehydrochlorinase. The bioaugmentation by A. Kashmirensis MB-PR of polluted sterile soil showed that 98% of DDT disappeared after 20 days of experience. This study demonstrates the significant potential use of A. Kashmirensis MB-PR for the bioremediation of DDT in the environment.  相似文献   

13.
The gene para in Drosophila melanogaster encodes an α subunit of voltage-activated sodium channels, the presumed site of action of DDT and pyrethroid insecticides. We used an existing collection of Drosophila para mutants to examine the molecular basis of target-site resistance to pyrethroids and DDT. Six out of thirteen mutants tested were associated with a largely dominant, 10- to 30-fold increase in DDT resistance. The amino acid lesions associated with these alleles defined four sites in the sodium channel polypeptide where a mutational change can cause resistance: within the intracellular loop between S4 and S5 in homology domains I and III, within the pore region of homology domain III, and within S6 in homology domain III. Some of these sites are analogous with those defined by knockdown resistance (kdr) and super-kdr resistance-associated mutations in houseflies and other insects, but are located in different homologous units of the channel polypeptide. We find a striking synergism in resistance levels with particular heterozygous combinations of para alleles that appears to mimic the super-kdr double mutant housefly phenotype. Our results indicate that the alleles analyzed from natural populations represent only a subset of mutations that can confer resistance. The implications for the binding site of pyrethroids and mechanisms of target-site insensitivity are discussed.  相似文献   

14.
《Insect Biochemistry》1986,16(3):573-581
Latent phenoloxidase was purified from prepupae of the housefly, Musca domestica vicina Maquart. The purification procedures included DEAE-cellulose column chromatography, sucrose density gradient centrifugation adn second sucrose density gradient centrifugation. The final preparations appear to be homogeneous based on results obtained from polyacrylamide gel electrophoresis in the presence of EDTA. Electrophoresis in the absence of EDTA caused spontaneous activation of latent phenoloxidase. While latent phenoloxidase was fairly stable over the range of temperatures between 0 and 40°C, it was quite sensitive to changes in pH, being stable only around pH 6.0. The molecular weight of latent phenoloxidase was estimated to be 178,000, as determined by gel filtration and sucrose density gradient centrifugation. Furthermore, phenoloxidase formed by the activation of latent phenoloxidase indicated a higher molecular weight (340,000) than that of latent phenoloxidase. Thus, it appears that the mechanism of the activation of latent phenoloxidase involves the association and disassociation system.  相似文献   

15.
Bowes GW 《Plant physiology》1972,49(2):172-176
The effects of DDT (2,2-bis-(p-chlorophenyl)-1, 1, 1-trichloroethane) on the growth of seven marine phytoplankters, representative of five algal divisions, were studied. At a concentration of 80 parts per billion (0.23 μm) DDT, growth of Dunaliella tertiolecta was unaffected, and there was slight, if any, influence on the development of Cyclotella nana, Thalassiosira fluviatilis, Amphidinium carteri, Coccolithus huxleyi, and Porphyridium sp. Skeletonema costatum exhibited a 9 day lag before cell division commenced, the rate of growth subsequently being the same as in the control (no DDT). A further inoculation of this culture of S. costatum into 80 parts per billion DDT gave another 9-day lag before initiation of normal growth.  相似文献   

16.
A glutathione S-transferase (GST) from the mosquito Aedes aegypti (aagste2), selected in the field as a major metabolic resistance enzyme for this parasite vector, was employed to produce a highly specific assay for the determination of DDT [1,1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene]. Detection is based on the pH change occurring in an appropriate buffer system by the concomitant release of H+ during the aagste2-catalyzed dehydrochlorination reaction and is monitored potentiometrically or colorimetrically in the presence of a pH marker. The theoretical limit of detection (LOD) of the assay is 3.8 μg/ml, and the linear range of quantification is 12 to 250 μg/ml. The method does not recognize biologically inactive DDT analogues or major DDT photodegradants and breakdown molecules, and it is highly specific for the insecticidal p.p’DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane]. The biosensor was validated with a number of insecticide swabs from DDT-sprayed surfaces and found to be reproducible and reliable as compared with high-performance liquid chromatography (HPLC) (correlation coefficient R2 = 0.98). Given the current expansion of DDT residual sprayings in many regions of Africa as a key strategic intervention for malaria vector control, this simple assay to monitor DDT levels for vector control spraying programs could have an important impact on malaria control.  相似文献   

17.
The effect of DDT in resistant and susceptible barley on variousphotosynthetic electron transport activities involving photosystems1 and 2 functioning alone and in series is reported. Whereasnone of the measured activities in resistant barleys were affectedby DDT treatment, in susceptible barley two sites of interactionof DDT with the photosynthetic electron transport chain weredemonstrated. The first site of inhibition was located beforephotosystem 2, between the sites of electron donation from diphenylcarbazideat pH 6·0 and 8·0, and on the oxidizing side ofthe inhibitions resulting from tris washing or heat treatment.Mn2+ ions, which can act as donor before photesystem 2, appearedto donate electrons on the H2O side of the site of inhibitionby DDT. The second site of DDT inhibition was located in thepath of electron flow from photosystem 2 to NADP+ or diquat,and was demonstrated by using dichlorophenolindophenol and phenylenediaminesas electron donors.  相似文献   

18.
The metabolites of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD) found in the urine of female Swiss mice are reported. The metabolites of DDT are DDD, 1-chloro-2,2-bis(p-chlorophenyl)ethene (DDMU), 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (DDE), 2,2-bis(p-chlorophenyl)acetic acid (DDA), 2-hydroxy-2,2-bis(p-chlorophenyl)acetic acid (αOH-DDA) and 2,2-bis(p-chlorophenyl)ethanol (DDOH), while DDD afforded DDMU, DDE, DDA, αOH-DDA and DDOH. The relative excreted levels of DDA and DDOH and the absence of 2,2-bis(p-chlorophenyl)acetaldehyde (DDCHO) are not consistent with the generally accepted path way for DDA formation, which involves sequential metabolism of DDT and DDD via DDOH to afford DDA. The quantitative results are interpreted to mean that DDA is formed by hydroxylation at the chlorinated sp3-side chain carbon of DDD to give 2,2-bis(p-chlorophenyl)acetyl chloride (DDA-Cl), which in turn is hydrolyzed to DDA. The excretion of αOH-DDA from both DDT- and DDD-treated mice has never been previously observed. It is suggested that this metabolite arises from the initial epoxidation of DDMU, a metabolite of DDT and DDD, to yield 1,2-epoxy-1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMU-epoxide). This chloroepoxide is then hydrolyzed and oxidized to produce the αOH-DDA.  相似文献   

19.
20.
The linA gene from Pseudomonas paucimobilis was highly expressed in Escherichia coli, and the linA product (LinA), named γ-HCH dehydrochlorinase, was purified to homogeneity. LinA released three chloride ions per one molecule of γ-HCH. Degradation assay of halogenated compounds by purified LinA showed that the substrate specificity of LinA is very narrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号