首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomal preparations from malignant human breast tumors catalyzed the transfer of mannose and glucose from GDP-[14C]-Man and UDP-[14C]-Glc into lipid-linked sugars and glycoprotein-like substances. As judged by several criteria the obtained lipid-linked monosaccharides behaved as dolichyl phosphate mannose and dolichyl phosphate glucose whereas lipid-linked oligosaccharides behaved as polyprenyl diphosphate derivatives. The optimum conditions for mannosyl- and glucosyl-transfer reactions and the effect of dolichyl phosphate, detergent and EDTA on incubation mixture were described.  相似文献   

2.
The antibiotic, tsushimycin, inhibits the formation of dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl pyrophosphate N-acetylglucosamine in the particulate enzyme preparation from pig aorta. Although this antibiotic also inhibits the incorporation of mannose and glucose into lipid-linked oligosaccharides, these reactions are less sensitive to antibiotic than those involved in the synthesis of lipid-linked monosaccharides. In the presence of tsushimycin, most of the mannose incorporated into lipid-linked oligosaccharides is into one oligosaccharide that has the properties of the heptasaccharide Man5GlcNAc2, whereas in the absence of antibiotic most of the mannose is in larger-sized oligosaccharides. On the other hand, the glucose-labelled lipid-linked oligosaccharides appear to be similar in size in the presence or absence of antibiotic. Tsushimycin also inhibits the formation of lipid-linked monosaccharides by the solubilized enzyme preparation of aorta. Various concentrations of dolichyl phosphate or the detergent, Nonidet P40, had no effect on antibiotic inhibition. Some evidence indicates that tsushimycin binds to the particulate enzyme.  相似文献   

3.
The effects of the glycosylation inhibitor 2-deoxy-2-fluoro-D-glucose on the formation of the lipid-linked oligosaccharides and monosaccharides that are involved in protein glycosylation were investigated. In chick embryo cells treated with fluoroglucose the formation of lipid-linked oligosaccharides cannot go to completion and oligosaccharides with decreased amounts of glucose and mannose can be detected. These oligosaccharides are probably biosynthetic intermediates and serve as acceptors of sugar residues while reversing fluoroglucose-inhibition by the addition of mannose and glucose to the culture medium. In contrast to deoxyglucose, fluoroglucose was not incorporated into lipid-linked oligosaccharides. Fluoroglucose inhibits the formation in vivo of dolichyl phosphate glucose and dolichyl phosphate mannose, but not the transfer of those sugar residues from the lipid monophosphate derivative to the lipid-linked oligosaccharides. The pool size of UDP-glucose, but not of GDP-mannose and UDP-N-acetylglucosamine, was decreased. Also, the formation of lipid-linked N-acetylglucosamine was not affected by fluoroglucose. Fluoroglucose was applied to deplete cellular membranes of endogenous lipid-linked mannose and glucose, and can possibly be used to discern different pathways of glycosylation.  相似文献   

4.
Incorporation of N-acetylglucosamine into endogenous lipid and protein acceptors was investigated on heavy microsomes from rat liver, incubated with UDP-N-acetyl[14C]glucosamine and GDP-mannose in the absence of detergent. This subcellular preparation derived for 95% or more from the rough endoplasmic reticulum and was devoid of Golgi components which contain the enzyme that adds the peripheral N-acetylglucosamine units to glycoproteins. The label was found almost exclusively in dolichyl diphosphate N-acetylglucosamine, except when the subcellular preparation was treated with pyrophosphate and subsequently incubated with the nucleotide sugars in the presence of GTP. Then, the incorporation of N-acetylglucosamine was considerably enhanced, and the additional label was associated with dolichyl diphosphate N,N'-diacetylchitobiose, with dolichyl diphosphate oligosaccharides and with proteins. The time-course of N-acetylglucosamine incorporation in these products was compatible with the pathway of dolichyl diphosphate glycoconjugates for the biosynthesis of the core portion of saccharide chains linked to asparagine residues of glycoproteins. The addition of GDP-mannose to the incubation medium was required to produce labeled dolichyl diphosphate oligosaccharides, but not to incorporate N-acetylglucosamine in protein. It is concluded that rough microsomes are capable of assembling dolichol-linked oligosaccharides from exogenous nucleotide precursors and of transferring N,N'-diacetylchitobiose, or its mannosylated derivatives, from the lipid intermediate to endogenous proteins. However, these metabolic activities are hindered in the original subcellular preparation, and in the absence of GTP. Although the earliest perceptible effect produced jointly by the treatment with pyrophosphate and by GTP was the synthesis of dolichyl diphosphate N,N'-diacetylchitobiose, the primary action of these factors remains uncertain. They may stimulate directly the reaction forming dolichyl diphosphate N,N'-diacetylchitobiose from dolichyl diphosphate N-acetylglucosamine, or activate the synthesis of this latter intermediate from a particular pool of dolichyl monophosphate which is readily converted afterwards into disaccharide and oligosaccharide derivatives and glycosylates protein. The requirement for GTP might have a functional meaning, for GTP acted maximally at a concentration distinctly lower than its actual concentration in liver. The detachment of ribosomes from rough vesicles was the major alteration induced by treatment with pyrophosphate. It is suggested that the removal of ribosomes unmasks the membrane sites where GTP acts.  相似文献   

5.
Dolichyl phosphates of different chain length (C35, C55 , C75 , Dol-mixture of C90 , 95, 100, 105 and C110 ) were tested as lipid acceptors in transglycosylation reactions. In the absence of exogenously added dolichyl phosphates there were no differences in the rate of synthesis in liver of dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl pyrophosphate N-acetylglucosamine between normal and ethionine-treated animals. Addition of exogenous dolichyl phosphates of different chain length stimulated the synthesis of dolichyl phosphate mannose and dolichyl pyrophosphate N-acetyl-glucosamine 2 to 4 times depending on the chain length of dolichols , both in normal and ethionine-treated animals. In liver of ethionine-treated rats the formation of dolichyl phosphate glucose was not stimulated. Following ethionine treatment the concentration of free and esterified with fatty acids dolichols was increased.  相似文献   

6.
Dolichyl monophosphate and its sugar derivatives in plants.   总被引:10,自引:5,他引:5       下载免费PDF全文
A glucose acceptor was isolated from soya beans by extraction with chloroform/methanol (2:1, v/v), followed by DEAE-cellulose column chromatography of the extract. This acceptor could not be distinguished from liver dolichyl monophosphate by t.l.c. It could replace dolichyl monophosphate as a mannose acceptor with a liver enzyme and its glucosylated derivative could replace dolichyl monophosphate glucose as a glucose donor in the same system. These results, together with those already reported [Pont Lezica, Brett, Romero Martinez & Dankert (1975) Biochem, Biophys. Res. Commun. 66, 980-987], indicate that the acceptor from soya bean is a dolichyl monophosphate. Gel filtration of its glucosylated derivative on Sephadex G-75 in the presence of sodium deoxycholate indicated that the acceptor contained 17 or 18 isoprene units. An enzyme preparation from pea seedlings was shown to use endogenous acceptors to form lipid phosphate sugars containing mannose and N-acetylglucosamine from GDP-mannose and UDP-N-acetylglucosamine. Chromatographic and degradative techniques indicated that the compounds formed were lipid monophosphate mannose, lipid pyrophosphate N-acetylglucosamine, lipid pyrophosphate chitobiose and a series of lipid pyrophosphate oligosaccharides containing both mannose and N-acetylglucosamine. None of these compounds was degraded by catalytic hydrogenation, and so the lipid moiety in each case was probably an alpha-saturated polyprenol. The endogenous acceptors for mannose and N-acetylglucosamine in peas may therefore be dolichyl monophosphate, as has been found in mammalian systems.  相似文献   

7.
Particulate membrane fractions from pig brain catalyse the synthesis of lipid-linked sugar derivatives of the dolichyl phosphate pathway. Flavomycin, a phosphoglycolipid antibiotic produced by various species of streptomycetes, interferes with the formation of these glycolipids to a different extent. The formation of dolichyl phosphate glucose was shown to be most susceptible to the antibiotic, being blocked by about 50% in the presence of 0.2mm-flavomycin, whereas the synthesis of dolichyl diphosphate N-acetylglucosamine, dolichyl diphosphate chitobiose and dolichyl diphosphate chitobiosyl mannose required higher concentrations to achieve a comparable inhibition. Although the formation of dolichyl phosphate mannose was hardly affected, the accumulation of oligosaccharides with five to seven sugar units was observed, when dolichyl diphosphate oligosaccharides were synthesized with GDP-[(14)C]mannose in the presence of 1mm-flavomycin. This indicates that the inhibition of the synthesis of larger-sized oligosaccharides, known to be mediated by lipid-bound mannose, was not caused by an actual deficiency in dolichyl phosphate mannose. At flavomycin concentrations that inhibited the formation of dolichyl phosphate glucose by 50%, the transfer of lipid-linked saccharides to either the hexapeptide Tyr-Asn-Gly-Thr-Ser-Val or endogenous protein acceptors was hardly influenced. The mode of action of flavomycin is still obscure, but seems not to be of a competitive nature, since the inhibition was unaffected by increasing concentrations of dolichyl phosphate. Some evidence indicates that, besides a direct interaction of the antibiotic with some transferases, a non-specific incorporation into the membrane and alteration of its properties might be responsible for those inhibitory effects on all enzymes which were observed at high concentrations of flavomycin.  相似文献   

8.
Neuronal perikarya were isolated from rat cerebral cortex at different stages of postnatal development. Membranes sedimenting at 100000 g were obtained from these neurons to study several glycosyltransferases of the dolichol pathway. Enzyme activities from stages before and during synapse formation were compared (days 5 and 15 respectively). Dolichyl diphosphate (Dol-P-P) N-acetylglucosamine, dolichyl phosphate mannose and dolichyl phosphate glucose synthases and the enzymes catalysing Dol-P-P-GlcNAc2Man9Glc3 formation were higher at day 15 of postnatal development. The glycosyl transfer of the latter compound to endogenous protein(s) as well as to a dinitrophenyl-heptapeptide was also measured. The activity was higher at day 15. Furthermore, the activity of dolichyl phosphate mannose synthase was also measured during the time when the number of synapses ceased to increase (day 36) and in the adult stage. The activity of dolichyl phosphate mannose synthase was higher at day 36 than at day 15, and declined in the adult stage. From these results it may be concluded that there is an increase in the glycosylation of asparagine-type glycoproteins during synapse formation in the neurons of the cerebral cortex.  相似文献   

9.
Dolichyl phosphates of various chain length ranging from 7 to 22 isoprene units were tested as lipid acceptors in transglycosylation reactions in chicken liver and Hepatoma MC-29. In the presence of exogenous dolichyl phosphate mixture (18 and 19 isoprene units) the synthesis of dolichyl pyrophosphate N-acetylglucosamine and dolichyl phosphate mannose increased 3 times both in the liver and Hepatoma MC-29, while the formation of dolichyl phosphate glucose was 4 fold higher in the liver and 6-fold higher in Hepatoma MC-29. In liver microsomes the maximum rate of the stimulation of glycosylation was achieved by exogenous dolichyl phosphates, containing 18 and 19 isoprene units, while glycosyl transferases in microsomes from Hepatoma MC-29 did not show any structural requirements to the chain length of dolichyl phosphates.  相似文献   

10.
Preparation and purification of substrate amounts of radioactive as well as non-radioactive dolichyl diphosphate N-acetylglucosamine and dolichyl diphosphate chitobiose made it possible to test and characterize tentatively the first three reactions of the dolichol pathway (enzyme I-III). The test conditions are described in detail. All three enzymes were solubilized from yeast membranes with detergents. Enzyme II and III were purified to give a purification factor of 35-fold and 70-fold, respectively. The reactions required divalent metal ions with an optimum concentration of 10 mM Mg2+. Enzyme II was stimulated almost to the same extent also by Ca2+. The Km values for UDP-N-acetylglucosamine for enzyme I and II were 15 and 10 muM, respectively, and for GDP-mannose (enzyme III) 7 muM. The apparent Km values for the lipophilic acceptor was 180 muM for enzyme I (dolichyl phosphate), 40 muM for enzyme II (dolichyl diphosphate N-acetylglucosamine) and 17 muM for enzyme III (dolichyl diphosphate chitobiose). The corresponding V values were approximately 1, 10, and 50 nmol X h-1 X mg protein-1. All reactions were inhibited by nucleoside diphosphates.  相似文献   

11.
Our previous work has shown that phenyl phosphate acts as an exogenous substrate for GDP-mannose:dolichyl phosphate mannosyltransferase in rat liver microsomal fractions to give rise to phenyl phosphate beta-D-mannose, a compound which, unlike Dol-P-Man (dolichyl phosphate beta-D-mannose), cannot act as mannose donor for further mannose-adding reactions in microsomal fractions. The study has now been extended to the action of various aryl phosphates and structurally related compounds on several other glycosyltransferase systems in the microsomal fractions. (1) Examination of the ability of these compounds to accept sugars from various sugar nucleotides indicated that the individual compounds have specificity as sugar acceptors. Thus phenyl phosphate acted as an effective acceptor for both mannose and glucose, whereas benzenephosphonic acid was active only in accepting mannose. p-Nitrophenyl phosphate was a more effective glucose acceptor than phenyl phosphate, but had only 8% of the mannose-accepting activity of phenyl phosphate. (2) Phenyl phosphate had an inhibitory effect on the transfer of mannose form GDP-mannose to lipid-linked oligosaccharides and to glycoproteins in rat liver microsomal fractions. The inhibition depended on the concentration of phenyl phosphate and on the extent of inhibition of Dol-P-Man synthesis. It is proposed that phenyl phosphate has a direct effect on the synthesis of Dol-P-Man and that its inhibition of synthesis of lipid-linked oligosaccharides and glycoproteins could be a consequence of this effect.  相似文献   

12.
Particulate preparations from the chlorophyta Prototheca zopfii catalyze the incorporation of mannose and N-acetylglucosamine into glycolipids. These had been characterized as lipid monophosphate mannose, lipid pyrophosphate N,N'-diacetylchitobiose and various lipid-linked oligosaccharides containing two N-acetylglucosamine residues plus a variable number of mannose residues. The lipid moiety has the properties expected for dolichyl phosphate. The oligosacchride-linked lipids serve as precursors for the formation of a polymer sensible to pronase digestion. The oligosaccharide is linked by N-glycosidic linkage to an asparagine residue. In longer incubation periods, a polymer insensitive to pronase hydrolysis, but precipitable by copper salts such as cell wall mannans is formed. Polymer formation is inhibited by 1 mM bacitracin. The reactions leading to the formation of the mannoprotein were found associated to the rough endoplasmic reticulum. The synthesis of mannans was found to occur in the Golgi vesicles.  相似文献   

13.
The activity of hepatic protein N-glycosylation was compared in rats of different ages by incubating UDP-[14C]glucose with liver microsomes. Dolichyl-phosphate [14C]glucose, [14C]glucosyl-oligosaccharide-lipid and [14C]glycoproteins formed were increased after birth to maximal levels at 2 weeks; thereafter dolichylphosphate [14C]glucose remained constant, while [14C]glucosyl-oligosaccharide-lipid and [14C]glycoproteins were decreased to constant levels at 4 weeks. The postnatal change in the formation of [14C]glycoproteins was similar to the change in the hexosamine content of N-glycans in liver microsomes and plasma, suggesting that the N-glycosylation of proteins in rat liver increases after birth to a maximum at 2 weeks, and thereafter decreases to a constant level at 4 weeks. The possibility of a regulatory role for dolichyl phosphate in glycoprotein synthesis in rat liver during postnatal development was eliminated by demonstrating the inefficiency of exogenous dolichyl phosphate on the postnatal changes in [14C]glycoprotein formation. The transfer of [14C]glucose from UDP-[14C]glucose to denatured alpha-lactalbumin in liver microsomes increased to a maximum at 2 weeks and then decreased to a constant level, as with transfer to endogenous proteins (i.e. the formation of [14C]glycoproteins). On the other hand, the transfer of oligosaccharide from exogenous [14C]glucosyl-oligosaccharide-lipid to denatured alpha-lactalbumin reached a maximum at 2 weeks and then remained constant. These results strongly suggest that oligosaccharide-lipid available for N-glycosylation is limiting in rat liver after 2 weeks post partum. The activities of dolichyl-phosphate glucose, dolichyl-phosphate mannose and dolichyl-pyrophosphate N-acetylglucosamine synthases increased until 2 weeks post partum. Thereafter, the activity of dolichyl-pyrophosphate N-acetylglucosamine synthase decreased to a constant level at 4 weeks, while the activities of dolichyl-phosphate glucose and dolichyl-phosphate mannose synthases remained constant. These results suggest that N-glycosylation of proteins in rat liver increases until 2 weeks post partum, and that this depends on the activities of dolichol-pathway enzymes as a whole rather than on the activity of specific enzymes. N-Glycosylation then decreases to a constant level at 4 weeks due to decreases in the activities of enzymes responsible for oligosaccharide assembly on lipids, including dolichyl-pyrophosphate N-acetylglucosamine synthase.  相似文献   

14.
It has been shown that in PC12 and its subclone PC12h treatment of the cells with nerve growth factor (NGF) induces a selective decrease in the incorporation of radioactive phosphate into a 100,000-dalton protein, designated in an earlier study as Nsp100, in the subsequent phosphorylation of soluble extracts from cells with (gamma-32P)ATP. In the present study, we show that plant lectins, wheat germ agglutinin (WGA), concanavalin A (Con A), and lens culinaris agglutinin (LCA), inhibit the action of NGF on Nsp100 phosphorylation in PC12h cells. Treatment of the cells with WGA, which binds to N-acetylglucosamine and sialic acid residues on glycoproteins, strongly blocked the inhibitory action of NGF on the protein phosphorylation. Con A and LCA, both of which recognize the same specific sugars (mannose, glucose), displayed only a moderate blocking effect. Unlike the native lectin, succinylated WGA, which has the ability to bind to N-acetylglucosamine but not to sialic acid residues, and other lectins examined in this study did not inhibit the action of NGF on Nsp100. WGA-mediated inhibition of NGF action was reversed by the addition of N-acetylglucosamine and by the addition of a much lower concentration of a sialoglycoprotein, mucin, into the culture. Since the binding of succinylated WGA to N-acetylglucosamine residues of cell-surface glycoconjugates is not sufficient to prevent the action of NGF, WGA might act on sialic acid residues of the NGF receptor molecule to effect the inhibition of biological actions of NGF.  相似文献   

15.
Using conditions to avoid the utilization of labelled precursors by intracellular glycosyltransferases, experiments are described demonstrating that intact rat-spleen lymphocytes are capable of utilizing exogenous GDP-mannose and UDP-N-acetylglucosamine to synthesize dolichyl monophosphate mannose and dolichyl diphosphate oligosaccharides. Kinetic and chase experiments show that dolichyl diphosphate oligosaccharides are either utilized for the transfer of their carbohydrate moieties to protein acceptors or further degraded. Since glycosylation of proteins is limited in resting lymphocytes, the degradation pathway appears as a major event in the fate of the dolichyl diphosphate oligosaccharides synthesized in vitro. These dolichyl diphosphate oligosaccharides are degraded into phospho-oligosaccharides and oligosaccharides which are released in the medium. This enzymatic cleavage of the phosphodiester bond is inhibited by bacitracin. The phospho-oligosaccharides are susceptible to alkaline phosphatase giving neutral oligosaccharides and they are cleaved by endo-N-acetyl-beta-D-glucosaminidase H leaving N-acetylglucosamine 1-phosphate and neutral oligosaccharides. These data suggest that splitting of the phosphodiester bond of colichyl diphosphate oligosaccharides, dephosphorylation and/or endo-N-acetyl-beta-D-glucosaminidase hydrolysis of the phosphorylated oligosaccharides could represent the beginning of the catabolic pathway of dolichyl diphosphate oligosaccharides.  相似文献   

16.
Incubation of rat-spleen lymphocytes with UDP-glucose together with GDP-mannose and UDP-N-acetylglucosamine leads to the formation of glucosylated lipid intermediates characterized as dolichyl phosphate glucose and dolichyl diphosphate oligosaccharides. This latter can be either transferred onto endogenous protein acceptors or cleaved into phosphooligosaccharides. The striking fact is that phosphooligosaccharide populations contain far less glucosylated products than the dolichyl diphosphate oligosaccharide ones from which they are derived. Two hypotheses have been investigated: either a rapid action of glucosidases on the liberated phosphooligosaccharides or a preferential splitting of the non-glucosylated population of dolichyl diphosphate oligosaccharides. Addition of p-nitrophenyl-alpha-D-glucoside inhibits glucosidase activities and allows the production of a major population of dolichyl diphosphate oligosaccharides containing three glucose residues. Using these conditions, it is shown that the amount of phosphooligosaccharides generated from the splitting of dolichyl diphosphate oligosaccharides is greatly decreased and that the major part of these remaining phosphooligosaccharides do not contain glucose. These results show that the presence of glucosyl units prevent dolichyl diphosphate oligosaccharides from further degradation into phosphooligosaccharides.  相似文献   

17.
To establish on a quantitative basis the subcellular distribution of the enzymes that glycosylate dolichyl phosphate in rat liver, preliminary kinetic studies on the transfer of mannose, glucose, and N-acetylglucosamine-1-phosphate from the respective (14)C- labeled nucleotide sugars to exogenous dolichyl phosphate were conducted in liver microsomes. Mannosyltransferase, glucosyltransferase, and, to a lesser extent, N- acetylglucosamine-phosphotransferase were found to be very unstable at 37 degrees C in the presence of Triton X-100, which was nevertheless required to disperse the membranes and the lipid acceptor in the aqueous reaction medium. The enzymes became fairly stable in the range of 10-17 degrees C and the reactions then proceeded at a constant velocity for at least 15 min. Conditions under which the reaction products are formed in amount proportional to that of microsomes added are described. For N- acetylglucosaminephosphotransferase it was necessary to supplement the incubation medium with microsomal lipids. Subsequently, liver homogenates were fractionated by differential centrifugation, and the microsome fraction, which contained the bulk of the enzymes glycosylating dolichyl phosphate, was analyzed by isopycnic centrifugation in a sucrose gradient without any previous treatment, or after addition of digitonin. The centrifugation behavior of these enzymes was compared to that of a number of reference enzymes for the endoplasmic reticulum, the golgi complex, the plasma membranes, and mitochondria. It was very simily to that of enzymes of the endoplasmic reticulum, especially glucose-6-phosphatase. Subcellular preparations enriched in golgi complex elements, plasma membranes, outer membranes of mitochondira, or mitoplasts showed for the transferases acting on dolichyl phosphate relative activities similar to that of glucose- 6-phosphatase. It is concluded that glycosylations of dolichyl phosphate into mannose, glucose, and N-acetylglucosamine-1-phosphate derivatives is restricted to the endoplasmic reticulum in liver cells, and that the enzymes involved are similarly active in the smooth and in the rough elements.  相似文献   

18.
A glycoprotein (GP72) has been isolated from Trypanosoma cruzi and found to contain 41% protein, 49% carbohydrate and 10% phosphate. All phosphate was covalently attached to the carbohydrate which contained the following sugars: ribose, xylose, fucose, galactose, mannose, glucose and glucosamine. The carbohydrate side chains were linked to protein by fucose, xylose and N-acetylglucosamine; 50% of the total N-acetylglucosamine was involved in glycoprotein linkages. Two classes of carbohydrate side chains were detected. One class comprised 15% of the total carbohydrate and contained glucosamine, mannose and galactose; some of these chains were phosphorylated. The other class comprised 85% of the total carbohydrate and contained xylose, ribose, fucose, galactose, mannose, glucosamine and phosphate; these chains were antigenic and reacted with a monoclonal antibody with specificity for the whole glycoprotein.  相似文献   

19.
The peptide antibiotic tridecaptin caused a 2--4-fold stimulation in the incorporation of mannose from GDP-[14C]mannose and glucose from UDP-[3H]glucose into lipid-linked monosaccharides by both the particulate and the soluble enzyme fractions from pig aorta. In both cases, the major products and the ones stimulated by antibiotic were dolichyl phosphate mannose and dolichyl phosphate glucose. The stimulation in activity was unaffected by increasing concentrations of dolichyl phosphate, GDP-mannose, UdP-glucose, Mn2+ or the detergent Nonidet P40. Tridecaptin stimulation was apparently not due to protection of sugar nucleotide substrate, since addition of various concentrations of sugar nucleotides did not alter the stimulation. Nor did the addition of tridecaptin result in any increase in the amount of radioactive sugar nucleotide recovered from incubation mixtures. Tridecaptin bound to the particulate enzyme and could not be removed by centrifugation of the particles.  相似文献   

20.
Cell-free enzyme particles from mung beans (Phaseolus aureus) or cotton (Gossypium hirsutum L.) fibers catalyze the incorporation of mannose from GDP-[14C]mannose and N-acetylglucosamine from UDP-[3H]-N-acetylglucosamine into polyprenyl-type lipids. These lipids have been synthesized and purified and the lipid moieties compared to each other as well as to dolichyl phosphate and to lipids isolated from similar mannoseand N-acetylglucosamine-containing lipids from liver and aorta.

The following lines of evidence indicate that in plants, the lipid carrier for N-acetylglucosamine is different from the lipid carrier for mannose: [List: see text]

We propose that the apparent difference in the lipid carrier for these two sugars may be a point of control of glycoprotein synthesis.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号