首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of macrophages during Theiler's virus infection.   总被引:11,自引:8,他引:3       下载免费PDF全文
Theiler's virus, a murine picornavirus, causes a persistent infection of the central nervous system with chronic inflammation and primary demyelination. We examined the nature of infected cells at different times postinoculation (p.i.) with a combined immunocytochemistry-in situ hybridization assay. The virus was found in the gray matter of the brain, mostly in neurons, during the first week p.i. During the following weeks, the virus was present in the spinal cord, first in the gray and white matter, then exclusively in the white matter. Approximately 10% of infected cells were astrocytes at any time during the study. Infected oligodendrocytes were first noticed on day 14 p.i. and amounted to approximately 6% of infected cells. The number of infected macrophages increased with time and reached a plateau by day 21 p.i., when at least 45% of infected cells were macrophages. The role of blood-borne macrophages during infection was studied by depleting them with mannosylated liposomes containing dichloromethylene diphosphonate. The virus did not persist in the majority of the mice treated with liposomes. These mice showed only minimal mononuclear cell infiltration and no demyelination.  相似文献   

2.
The temporal relationship between the activity of cathepsin D (CD), the major brain acid proteinase, inflammatory cell infiltration and reactive astrocytosis was examined in a hamster model of measles virus infection of the central nervous system. Twenty-five day old hamsters were inoculated intracerebrally with the HBS strain of measles virus and sacrificed 6, 10, and 16 days later. Mean CD levels in aqueous extracts of infected brain were significantly elevated on days 10 and 16 compared to control animals. Histologic examination showed that while the degree of inflammatory cell infiltration did not correlate with the elevations in CD activity (r=.38), there was a correlation with the degree of astrocytosis (r=.995). This suggests that the increase in CD was due to astrocytic changes and not directly related to mononuclear inflammatory cell infiltration.Preliminary results presented at the 20th Annual meeting of the American Society of Neurochemistry, Chicago, IL, March 9, 1989  相似文献   

3.
Human CMV infection of the neonatal CNS results in long-term neurologic sequelae. To define the pathogenesis of fetal human CMV CNS infections, we investigated mechanisms of virus clearance from the CNS of neonatal BALB/c mice infected with murine CMV (MCMV). Virus titers peaked in the CNS between postnatal days 10-14 and infectious virus was undetectable by postnatal day 21. Congruent with virus clearance was the recruitment of CD8(+) T cells into the CNS. Depletion of CD8(+) T cells resulted in death by postnatal day 15 in MCMV-infected animals and increased viral loads in the liver, spleen, and the CNS, suggesting an important role for these cells in the control of MCMV replication in the newborn brain. Examination of brain mononuclear cells revealed that CD8(+) T cell infiltrates expressed high levels of CD69, CD44, and CD49d. IE1(168)-specific CD8(+) T cells accumulated in the CNS and produced IFN-gamma and TNF-alpha but not IL-2 following peptide stimulation. Moreover, adoptive transfer of brain mononuclear cells resulted in decreased virus burden in immunodepleted MCMV-infected syngeneic mice. Depletion of the CD8(+) cell population following transfer eliminated control of virus replication. In summary, these results show that functionally mature virus-specific CD8(+) T cells are recruited to the CNS in mice infected with MCMV as neonates.  相似文献   

4.
Neutrophils are the first infiltrating cell population to appear within the CNS during infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV). To determine whether neutrophils play a role in limiting acute JHMV infection, mice were depleted of neutrophils. Infection of neutropenic animals resulted in increased levels of virus replication and mortality compared with control mice. Furthermore, neutropenia resulted in significantly reduced mononuclear leukocyte infiltration possibly due to reduced loss of blood brain barrier integrity during acute JHMV infection. These data suggest that infiltrating neutrophils are crucial for limiting virus replication during acute JHMV infection, contribute to the loss of blood brain barrier integrity and play a role in shaping adaptive immunity within the CNS.  相似文献   

5.
Human cytomegalovirus (HCMV) is the most frequent cause of congenital viral infections in humans and frequently leads to long-term central nervous system (CNS) abnormalities that include learning disabilities, microcephaly, and hearing loss. The pathogenesis of the CNS infection has not been fully elucidated and may arise as a result of direct damage of CMV-infected neurons or indirectly secondary to inflammatory response to infection. We used a recently established model of mouse CMV (MCMV) infection in newborn mice to analyze the contribution of humoral immunity to virus clearance from the brain. In brains of MCMV-infected newborn mice treated with immune serum, the titer of infectious virus was reduced below detection limit, whereas in the brains of mice receiving control (nonimmune) serum significant amounts of virus were recovered. Moreover, histopathological and immunohistological analyses revealed significantly less CNS inflammation in mice treated with immune serum. Treatment with MCMV-specific monoclonal antibodies also resulted in the reduction of virus titer in the brain. Recipients of control serum or irrelevant antibodies had more viral foci, marked mononuclear cell infiltrates, and prominent glial nodules in their brains than mice treated with immune serum or MCMV-specific antibodies. In conclusion, our data indicate that virus-specific antibodies have a protective role in the development of CNS pathology in MCMV-infected newborn mice, suggesting that antiviral antibodies may be an important component of protective immunological responses during CMV infection of the developing CNS.  相似文献   

6.
One- to 21-day-old mice were examined pathologically after inoculated intracerebrally or subcutaneously with the Kakegawa strain of bovine coronavirus. In 1- to 4-day-old mice inoculated intracerebrally, the brain contained a small number of neutrophils and lymphocytes having infiltrated diffusely and perivascularly and some degenerative neurons. In mice inoculated intracerebrally at 7 to 21 days of age, severe necrosis of pyramidal cells was shown in Ammon's horn. Perivascular infiltrations of neutrophils and lymphocytes were moderate to severe. Some neurons were degenerative in the cerebral cortex, thalamus and midbrain. Degeneration of some neurons and mild infiltration of neutrophils and lymphocytes were observed in the brain of mice inoculated subcutaneously at 1 to 7 days of age. Perivascular infiltration of neutrophils and lymphocytes was prominent in the cerebral cortex of mice inoculated subcutaneously at 14 days of age. Cellular infiltration was also seen in the thalamus, Ammon's horn, midbrain, cerebellum and medulla oblongata. All the mice, except one, inoculated subcutaneously at 21 days of age were free from neural changes. Electron-microscopically, virus particles were observed in and outside of the degenerative neurons. They had a core 70 nm in diameter and an envelope with spikes.  相似文献   

7.
Ibaraki virus multiplied and induced cytopathic effects in primary cell cultures of bovine, sheep and hamster kidney and chick embryo, and cultures of BHK21-WI2 cells of baby hamster kidney origin and mouse fibroblastic L cells, but did not in primary cultures of horse and swine kidney cells and HeLa cell cultures. The virus was readily passaged serially in 4 to 5-day-old eggs using the yolk sac inoculation and incubation at 33.5 C. The viral growth was better in eggs incubated at 33.5 C than 37 C, and in younger eggs, with high yields in yolk, yolk sac and embryo. The virus was passaged serially in newborn mice by the intracerebral route. The virus multiplied in the brain of mice of any age, but younger mice supported better viral growth and developed encephalitis. As the age of mice increased, the morbidity and mortality became lower, no deaths being observed in 2 to 3-week-old mice. These observations in cell cultures, embryonated eggs and mice emphasize the similarity of Ibaraki virus to bluetongue virus. No evidence was obtained that young adult rabbits and weanling guinea pigs are susceptible to Ibaraki virus. The virus seemed to have little if any pathogenicity but infectivity of a low grade for sheep, while the virus is capable of inducing clinical illness, even severe in some instances, in cattle. This is in contrast to bluetongue virus which is highly pathogenic for sheep and much less so for cattle. Serial passages in embryonated eggs and suckling mice resulted in attenuation for cattle of Ibaraki virus.  相似文献   

8.
Bovine adenovirus type 3 (BAV-3), which has been reported to produce tumors in newborn hamsters, induced cellular deoxyribonucleic acid (DNA) synthesis in a contact-inhibited mouse kidney cell line (C3H2K). In this system, the virus did not multiply, whereas virus-specific tumor antigen (T antigen) was detected in nearly all cells. Replication of viral DNA could not be detected by DNA-DNA hybridization on membrane filters. The cellular DNA synthesis induced by BAV-3 did occur in the absence of added serum. Extent of induction of cellular DNA synthesis was closely correlated with the multiplicity of infection. Cells activated to synthesize DNA in the serum-free medium by the virus infection progressed to cell division without noticeable cell killing.  相似文献   

9.
The VR strain of avian encephalomyelitis virus, which had been adapted to embryonated hen's eggs, was inoculated into 2-day-old chicks by the subcutaneous route (10(2.5) approximately 10(3.0) EID50) or by the oral route (10(4.8) EID50). The chicks were examined chronologically for the distribution of the virus in the body. As a result, minute amounts of the virus were detected from the liver, spleen, pancreas, and muscle at the site of inoculation one day after inoculation and various amounts from almost all the organs 3 days and more after inoculation. The virus titer could nearly reach a maximum 7 to 9 days after inoculation. Above all, such high virus titers as ranging from 10(4.3) to 10(5.8) EID50/0.1 g were demonstrated in the brain, heart, liver, spleen, and pancreas. After that, there was a tendency for virus titer to decrease in most organs and for virus to multiply persistently in the pancreas, brain, and eyeball. Virus titer was maintained at a level of 10(2.3) approximately 10(2.8) EID50/0.1 g in these three organs even 21 days after inoculation. In the group of subcutaneous inoculation, all the chicks manifested clinical signs of infection 5 to 10 days after inoculation. On the other hand, no chicks were involved in clinical infection in the group of oral inoculation. Multiplication of the virus was delayed in the body of these chicks. Small amounts of the virus were detected from the spleen and pancreas 11 days after inoculation. Low titers (10(2.7) EID50/0.1 g at the highest) of the virus were only detected from the brain, spinal cord, spleen, pancreas, esophagus, and other organs 14 and 21 days after inoculation.  相似文献   

10.
11.
Resistance to the paralytic effects of a wild mouse (Cas-Br-M) murine leukemia virus infection develops with age and is complete by 10 days of age in susceptible NFS mice. The possibility that cell-mediated immunity plays a significant role in this resistance was suggested by the observation that treatment of 10-day-old mice with antithymocyte serum rendered them susceptible to paralysis. By comparison, mice rendered incapable of generating a humoral immune response by treatment from birth to 1 month of age with anti-immunoglobulin M serum did not develop paralysis after challenge with virus at day 10. Transfer of unseparated and T-cell-enriched populations of Cas-Br-M murine leukemia virus-immune spleen cells protected neonatally infected NFS recipients from paralysis; transfer of Cas-Br-M murine leukemia virus-immune populations enriched for B cells delayed the onset but did not ultimately protect neonatally infected NFS mice from paralysis. Transfer of naive adult spleen cells had no protective effect in neonatally infected NFS mice. High-level virus replication occurred in the spleens and brains of all mice that developed paralysis regardless of treatment; low-level virus replication in spleen and barely detectable replication in brain occurred in mice that remained clinically normal. These studies suggest that the age-acquired resistance to the paralytic effect of Cas-Br-M murine leukemia virus infection is immunologically mediated and that T cells may play a major role.  相似文献   

12.
Using the recombinant murine coronavirus mouse hepatitis virus (MHV) expressing the T cell-chemoattractant CXCL10 (MHV-CXCL10), we demonstrate a potent antiviral role for CXCL10 in host defense. Instillation of MHV-CXCL10 into the CNS of CXCL10-deficient (CXCL10(-/-)) mice resulted in viral infection and replication in both brain and liver. Expression of virally encoded CXCL10 within the brain protected mice from death and correlated with increased infiltration of T lymphocytes, enhanced IFN-gamma secretion, and accelerated viral clearance when compared with mice infected with an isogenic control virus, MHV. Similarly, viral clearance from the livers of MHV-CXCL10-infected mice was accelerated in comparison to MHV-infected mice, yet was independent of enhanced infiltration of T lymphocytes and NK cells. Moreover, CXCL10(-/-) mice infected with MHV-CXCL10 were protected from severe hepatitis as evidenced by reduced pathology and serum alanine aminotransferase levels compared with MHV-infected mice. CXCL10-mediated protection within the liver was not dependent on CXC-chemokine receptor 2 (CXCR2) signaling as anti-CXCR2 treatment of MHV-CXCL10-infected mice did not modulate viral clearance or liver pathology. In contrast, treatment of MHV-CXCL10-infected CXCL10(-/-) mice with anti-CXCL10 Ab resulted in increased clinical disease correlating with enhanced viral recovery from the brain and liver as well as increased serum alanine aminotransferase levels. These studies highlight that CXCL10 expression promotes protection from coronavirus-induced neurological and liver disease.  相似文献   

13.
During inflammation, chemokines are conductors of lymphocyte trafficking. The chemokine CXCL10 is expressed early after virus infection. In a virus-induced mouse model for type 1 diabetes, CXCL10 blockade abrogated disease by interfering with trafficking of autoaggressive lymphocytes to the pancreas. We have generated transgenic rat insulin promotor (RIP)-CXCL10 mice expressing CXCL10 in the beta cells of the islets of Langerhans to evaluate how bystander inflammation influences autoimmunity. RIP-CXCL10 mice have islet infiltrations by mononuclear cells and limited impairment of beta cell function, but not spontaneous diabetes. RIP-CXCL10 mice crossed to RIP-nucleoprotein (NP) mice expressing the NP of the lymphocytic choriomeningitis virus in the beta cells had massively accelerated type 1 diabetes after lymphocytic choriomeningitis virus infection. Mechanistically, we found a drastic increase in NP-specific, autoaggressive CD8 T cells in the pancreas after infection. In situ staining with H-2D(b)(NP(396)) tetramers revealed islet infiltration by NP-specific CD8 T cells in RIP-NP-CXCL10 mice early after infection. Our results indicate that CXCL10 expression accelerates the autoimmune process by enhancing the migration of Ag-specific lymphocytes to their target site.  相似文献   

14.
Apoptosis has been suggested as a mechanism by which dengue (DEN) virus infection may cause neuronal cell death (P. Desprès, M. Flamand, P.-E. Ceccaldi, and V. Deubel, J. Virol. 70:4090–4096, 1996). In this study, we investigated whether apoptotic cell death occurred in the central nervous system (CNS) of neonatal mice inoculated intracerebrally with DEN virus. We showed that serial passage of a wild-type human isolate of DEN virus in mouse brains selected highly neurovirulent variants which replicated more efficiently in the CNS. Infection of newborn mice with these neurovirulent variants produced fatal encephalitis within 10 days after inoculation. Virus-induced cell death and oligonucleosomal DNA fragmentation were observed in mouse brain tissue by day 9. Infected mouse brain tissue was assayed for apoptosis by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and for virus replication by immunostaining of viral antigens and in situ hybridization. Apoptotic cell death and DEN virus replication were restricted to the neurons of the cortical and hippocampal regions. Thus, DEN virus-induced apoptosis in the CNS was a direct result of virus infection. In the murine neuronal cell line Neuro 2a, neuroadapted DEN virus variants showed infection patterns similar to those of the parental strain. However, DEN virus-induced apoptosis in these cells was more pronounced after infection with the neurovirulent variants than after infection with the parental strain.  相似文献   

15.
A procedure was developed for the cultivation of cells derived from the cerebral hemispheres of the 21-day old rat. Approximately 98 percent of the cells in a 10 day culture are astrocytes that contain glial fibrillary acidic protein. Analysis of the extracted gangliosides by thin layer chromatography revealed that ganglioside GM1 was absent and that the predominant ganglioside was GM3. Very small amounts of the polysialogangliosides GD1a, GD1b, and GT1b were detected. The concentration of gangliosidic NeuNAc per mg protein in these astrocytes was only 3 percent that observed in the 5 day culture of a mixed cell preparation from newborn rat brain. Immunohistochemical and histochemical studies were performed on the mixed cell population of the minced tissue of 21-day old rat brain prior to cultivation. Astrocytes did not stain for hyaluronectin. These cells also did not provide a positive staining reaction for ganglioside GM1 utilizing the antiganglioside GM1 peroxidase-antiperoxidase procedure and the biotinylated choleragen-avidin-peroxidase procedure. These two histochemical methods for ganglioside GM1 also did not stain astrocytes that had been cultured for 5 days. Oligodendroglial cells, which were also present in the uncultured 21-day-old minced brain tissue, stained positively for ganglioside GM1 and hyaluronectin. Hyaluronectin had previously been shown to be a marker for oligodendroglia. Oligodendroglial cells which were present in the 5 day cultures of 21-day old brain tissue also provided a positive reaction for ganglioside GM1. It is concluded that ganglioside GM1 is absent in astroglia. The presence of small amounts of polysialogangliosides in the "pure" astrocyte preparation is discussed.  相似文献   

16.
Two Hantaan virus strains, clone 1 (cl-1), which is virulent in newborn mice, and its attenuated mutant (mu11E10), were used to examine the pathogenesis of Hantaan virus infection in a mouse model and identify virus factors relating to virulence. After subcutaneous inoculation of newborn BALB/c mice, cl-1 caused fatal disease with high viral multiplication in peripheral organs, but mu11E10 produced nonfatal infection with a low level of virus multiplication. Intracerebral inoculation of either strain caused fatal disease. Histopathological changes in the dead animals were prominent in the brain, indicating that the brain is the target organ and produces the fatal outcome. These results indicate that mu11E10 has a generally less virulent phenotype, and because of decreased multiplication in peripheral tissues, neuroinvasiveness is also decreased. An experiment with genetic reassortant viruses showed that in newborn mice the M segment is the most related to virulence and the L segment is partly related. Sequence comparison detected a single deduced amino acid change (cl-1 Ile to mu11E10 Thr) at amino acid number 515 in glycoprotein G1. One nucleotide change, but no amino acid substitution, was observed in the noncoding region of the L segment. In mouse brain microvascular endothelial cells in vitro, viruses possessing a cl-1-derived M segment grew more rapidly than viruses containing a mu11E10-derived M segment. These results suggest that the single amino acid change in the glycoprotein alters peripheral growth, which affects invasion of the central nervous system in mice.  相似文献   

17.
Some of mouse hepatitis virus strains contain an optional envelope glycoprotein, hemagglutinin-esterase (HE) protein. To understand the functional significance of this protein, monoclonal antibodies (MAbs) specific for this protein were generated and used for passive immunization of mice. None of these MAbs showed any virus-neutralizing activity in vitro; however, mice passively immunized with the purified MAbs were protected from lethal infection by the JHM strain of mouse hepatitis virus. Passive immunization altered the pathogenicity such that the virus caused subacute and chronic demyelination instead of acute lethal encephalitis. Virus titers in the brains of the immunized mice were significantly lower than those for the nonimmunized control mice, suggesting that the virus replication or spread was inhibited. In addition, histopathological analysis indicated that the spread of virus in the brain and spinal cord was significantly inhibited in the immunized mice. Furthermore, the mononuclear cell infiltration in the immunized mice appeared earlier than in the nonimmunized mice, suggesting that the exogenous antibody might have activated host immune responses, and thus facilitated clearance of the virus or virus-infected cells. The same protective effects were observed for both JHM(2) and JHM(3) viruses, which expressed different amounts of the HE protein. In contrast, mice infected with At11f, a variant of JHM which does not express the HE protein, were not protected by these MAbs, suggesting that protection was mediated by the specific interaction between the MAb and the HE protein. Thus, the mechanism of protection by the exogenous HE-specific MAbs may represent the early activation of innate immune mechanisms in response to the interaction between the MAbs and the HE protein.  相似文献   

18.
Wang Y  Lobigs M  Lee E  Müllbacher A 《Journal of virology》2003,77(24):13323-13334
C57BL/6J mice infected intravenously with the Sarafend strain of West Nile virus (WNV) develop a characteristic central nervous system (CNS) disease, including an acute inflammatory reaction. Dose response studies indicate two distinct kinetics of mortality. At high doses of infection (10(8) PFU), direct infection of the brain occurred within 24 h, resulting in 100% mortality with a 6-day mean survival time (MST), and there was minimal destruction of neural tissue. A low dose (10(3) PFU) of infection resulted in 27% mortality (MST, 11 days), and virus could be detected in the CNS 7 days postinfection (p.i.). Virus was present in the hypogastric lymph nodes and spleens at days 4 to 7 p.i. Histology of the brains revealed neuronal degeneration and inflammation within leptomeninges and brain parenchyma. Inflammatory cell infiltration was detectable in brains from day 4 p.i. onward in the high-dose group and from day 7 p.i. in the low-dose group, with the severity of infiltration increasing over time. The cellular infiltrates in brain consisted predominantly of CD8(+), but not CD4(+), T cells. CD8(+) T cells in the brain and the spleen expressed the activation markers CD69 early and expressed CD25 at later time points. CD8(+) T-cell-deficient mice infected with 10(3) PFU of WNV showed increased mortalities but prolonged MST and early infection of the CNS compared to wild-type mice. Using high doses of virus in CD8-deficient mice leads to increased survival. These results provide evidence that CD8(+) T cells are involved in both recovery and immunopathology in WNV infection.  相似文献   

19.
The chemokine CXCL10 is expressed within the CNS in response to intracerebral infection with mouse hepatitis virus (MHV). Blocking CXCL10 signaling results in increased mortality accompanied by reduced T cell infiltration and increased viral titers within the brain suggesting that CXCL10 functions in host defense by attracting T cells into the CNS. The present study was undertaken to extend our understanding of the functional role of CXCL10 in response to MHV infection given that CXCL10 signaling has been implicated in coordinating both effector T cell generation and trafficking. We show that MHV infection of CXCL10(+/+) or CXCL10(-/-) mice results in comparable levels of T cell activation and similar numbers of virus-specific CD4+ and CD8+ T cells. Subsequent analysis revealed no differences in T cell proliferation, IFN-gamma secretion by virus-specific T cells, or CD8+ T cell cytolytic activity. Analysis of chemokine receptor expression on CD4+ and CD8+ T cells obtained from MHV-immunized CXCL10(+/+) and CXCL10(-/-) mice revealed comparable levels of CXCR3 and CCR5, which are capable of responding to ligands CXCL10 and CCL5, respectively. Adoptive transfer of splenocytes acquired from MHV-immunized CXCL10(-/-) mice into MHV-infected RAG1(-/-) mice resulted in T cell infiltration into the CNS, reduced viral burden, and demyelination comparable to RAG1(-/-) recipients of immune CXCL10(+/+) splenocytes. Collectively, these data imply that CXCL10 functions primarily as a T cell chemoattractant and does not significantly influence T cell effector response following MHV infection.  相似文献   

20.
BALB/c mice and congenic H-2Ld-deficient BALB/c-H-2dm2 (dm2) mice were experimentally infected intranasally with isolates of vesicular stomatitis virus (VSV). The survival of infected hosts, viral replication in lungs and brains, and histopathologic in the two mouse strains were compared. In both strains of mice, mortality occurred during the period 7 to 10 days postinfection. However, dm2 mice were relatively resistant to lethal infections. Viral replication occurred at low levels in the lungs of both strains and did not evoke significant pathologic changes. In contrast, viral replication in the brains was much greater; in the BALB/c strain, this was accompanied by more frequent and more severe pathologic changes. In general, mice surviving at day 10 had effectively cleared virus from central nervous system but not respiratory sites. Evidence is presented that viral replication occurs first in the nasal cavity and is transmitted both to the lungs and to the olfactory bulb where focal cytopathology occurs. Virus enters the ventricles, causing encephalitis; necrosis occurs around the ventricles and in the lumbosacral region of the spinal cord. Necrotic lesions were accompanied by mononuclear infiltration. Mice immunized with virus of the same serotype or with a vaccinia virus hybrid encoding the VSV glycoprotein were protected from lethal infection; in contrast, mice immunized with heterotypic virus were susceptible to challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号