首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large part of the hexokinase activity of the rat brain 20,000g supernatant became mitochondrial bound when incubated with rat heart mitochondria which had been pretreated with glucose-6-phosphate. This binding was dependent on small-molecular compounds (as yet unidentified) of the brain supernatant. Divalent cations, spermine, and pentalysine strongly stimulated the binding of brain supernatant hexokinase to heart mitochondria. Inorganic phosphate, alpha-glycerophosphate, and fructose-1,6-diphosphate showed some stimulatory effect. No effect was observed with insulin or glucose. Mitochondria isolated from hearts of fasted rats had less specific hexokinase activity than mitochondria from fasted and then carbohydrate refed rats. This dietary treatment had no significant effect on the total heart hexokinase activity. Oligomycin did not inhibit the formation of creatine phosphate or glucose-6-phosphate by isolated rabbit heart mitochondria incubated in the presence of phosphoenolpyruvate and pyruvate kinase. However, the presence of creatine inhibited the formation of glucose-6-phosphate when the ATP/ADP ratio was low, indicating that creatine kinase has a greater access to ATP/ADP translocation than has hexokinase.  相似文献   

2.
In rabbit reticulocytes more than half of the total hexokinase activity is mitochondrial bound and shows a fast decay during reticulocyte maturation. During in vitro incubation of rabbit reticulocytes, Ca2+ increases the decay of hexokinase while salicylhydroxamate (SHAM), an inhibitor of lipoxygenase, reduces the decay. Swelling of mitochondria, by incubation of the cells in hypotonic solutions, greatly enhances hexokinase decay, but both the Ca2+ and SHAM are still appreciable suggesting that Ca2+ and the swelling act by additive mechanisms, both able to influence hexokinase decay. This was confirmed by incubation of rabbit brain mitochondria in hypotonic solutions which does not promote any hexokinase decay, while the presence of Ca2+ does. Analyses of hexokinase isozymic pattern after incubation of reticulocytes in hypotonic solution both with and without Ca2+ and SHAM showed that the decay of hexokinase mainly involves the mitochrondrial bound isozymic forms.Abbreviations SHAM Salicylhydroxamate - HPLC High-Performance Liquid Chromatography  相似文献   

3.
In rabbit heart, results show that two isoenzymes of hexokinase (HK) are present. The enzymatic activity associated with mitochondria consists of only one isoenzyme; according to its electrophoretic mobility and its apparent Km for glucose (0.065 mm), it has been identified as type I isoenzyme. The bound HK I exhibits a lower apparent Km for ATPMg than the solubilized enzyme, whereas the apparent Km for glucose is the same for bound and solubilized HK. Detailed studies have been performed to investigate the interactions which take place between the enzyme and the mitochondrial membrane. Neutral salts efficiently solubilize the bound enzyme. Digitonin induces only a partial release of the enzyme bound to mitochondria; this result could be explained by the existence of contacts between the outer and the inner mitochondrial membranes [C. R. Hackenbrock (1968)Proc. Natl. Acad. Sci. USA61, 598–605]. Furthermore, low concentrations (0.1 mm) of glucose 6-phosphate (G6P) or ATP4? specifically solubilize hexokinase. The solubilizing effect of G6P and ATP4?, which are potent inhibitors of the enzyme, can be prevented by incubation of mitochondria with Pi or Mg2+. In addition, enzyme solubilization by G6P can be reversed by Mg2+ only when the proteolytic treatment of the heart homogenate is omitted during the course of the isolation of mitochondria. These results concerning the interaction of rabbit heart hexokinase with the outer mitochondrial membrane agree with the schematic model proposed by Wilson [(1982) Biophys. J.37, 18–19] for the brain enzyme. This model involves the existence of two kinds of interactions between HK and mitochondria; a very specific one with the hexokinase-binding protein of the outer mitochondrial membrane, which is suppressed by glucose 6-phosphate, and a less specific, cation-mediated one.  相似文献   

4.
The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase was studied in a system containing isolated rabbit heart mitochondria, hexokinase and adenylate kinase at low concentrations of adenine nucleotides. Oxygen consumption by mitochondria and glucose-6-phosphate synthesis by hexokinase were recorded. It was found that with adenylate kinase being active both in mitochondria and in the washing solution, the rate and efficiency of glucose-6-phosphate synthesis considerably increases. The effects of adenylate kinase activity are fully abolished by diadenosine pentaphosphate, an inhibitor of adenylate kinase. The experimental results based on the use of adenylate kinase demonstrate the possibility of increasing the rate and efficiency of energy transfer between two spatially uncoupled biochemical processes in vitro with the aid of an enzymatic system.  相似文献   

5.
The interaction of hexokinase with mitochondria has emerged as a powerful mechanism in protecting many cell types against cell death. However, the role of mitochondrial hexokinase (mitoHK) in cardiac ischemia-reperfusion injury has as of yet received little attention. In this review we examine whether increased binding of hexokinase to the mitochondrion is also an integral component of cardioprotective signalling. We discuss observations in cardiac mitochondrial activation that directed us to the hypothesis of hexokinase cellular redistribution with reversible, cardioprotective ischemia, summarize the data showing that many cardioprotective interventions, such as ischemic preconditioning, insulin, morphine and volatile anesthetics, increase mitochondrial hexokinase binding within the intact heart, and discuss similarities between mitochondrial hexokinase association and ischemic preconditioning. Although most data indicate that mitochondrial hexokinase may indeed be an integral part of cardioprotection, a definitive proof for a causal relation between the amount of mitoHK and cardiac ischemia-reperfusion injury in the intact heart is eagerly awaited. When such relationship is indeed observed, the association of hexokinase with mitochondria will offer an opportunity to develop new therapies to combat ischemic cardiac diseases.  相似文献   

6.
The subcellular distribution and isozyme pattern of hexokinase in rat lung were studied. Of the total hexokinase activity of lung, one-third was bound to mitochondria and one-third of the mitochondrial activity was in a latent form. The overt-bound mitochondrial hexokinase was specifically solubilized by physiological concentrations of glucose 6-phosphate and ATP. Inorganic phosphate partially prevented the solubilization by glucose 6-phosphate (Glc 6-P), whereas Mg2+ ions promoted rebinding of the solubilized enzyme to mitochondria. Thus, the distribution of hexokinase between soluble and particulate forms in vivo is expected to be controlled by the relative concentrations of Glc 6-P, ATP, Pi, and Mg2+. Study of the isozyme pattern showed that hexokinase types I, II, and III constitute the cell-sap enzyme of lung. The overt and latent hexokinase activities could be separately isolated by successive treatments of mitochondria with Glc 6-P and Triton X-100. The overt-bound activity consisted primarily of hexokinase type I, with a small proportion of type II isozyme. The latent activity, on the other hand, exclusively consisted of type I isozyme. Type I hexokinase, the predominant isozyme in lung, was strongly inhibited by intracellular concentration of Glc 6-P and this inhibition was counteracted by Pi. The bound form of hexokinase exhibited a significantly higher apparent Ki for Glc 6-P inhibition and a lower apparent Km for ATP as compared to the soluble form. Thus, the particulate form of hexokinase is expected to promote glycolysis and may provide a mechanism for the high rate of aerobic glycolysis in lung.  相似文献   

7.
Binding of the Type I isozyme of mammalian hexokinase to mitochondria is mediated by the porin present in the outer mitochondrial membrane. Type I hexokinase from rat brain is avidly bound by rat liver mitochondria while, under the same conditions, there is no significant binding to mitochondria from S. cerevisiae. Previously published work demonstrates the lack of significant interaction of yeast hexokinase with mitochondria from either liver or yeast. Thus, structural features required for the interaction of porin and hexokinase must have emerged during evolution of the mammalian forms of these proteins. If these structural features serve no functional role other than facilitating this interaction of hexokinase with mitochondria, it seems likely that they evolved in synchrony since operation of selective pressures on the hexokinase–mitochondrial interaction would require the simultaneous presence of hexokinase and porin capable of at least minimal interaction, and be responsive to changes in either partner that affected this interaction. Recent studies have indicated that a second type of binding site, which may or may not involve porin, is present on mammalian mitochondria. There are also reports of hexokinase binding to mitochondria in plant tissues, but the nature of the binding site remains undefined.  相似文献   

8.
The rate and efficiency of energy transport were examined in a system containing isolated rabbit heart mitochondria, hexokinase, adenylate kinase and low concentrations of adenine nucleotides. Oxygen consumption by mitochondria and glucose-6-phosphate synthesis by hexokinase were registered. It was found that when adenylate kinase is active both in mitochondria and in the environmental solution, the rate and efficiency (glucose-6-phosphate/O ratio) of glucose-6-phosphate formation considerably increase. The effects of adenylate kinase activity are fully abolished by diadenosine pentaphosphate, an inhibitor of adenylate kinase.  相似文献   

9.
Mitochondrial function requires maintaining metabolite fluxes across the mitochondrial outer membrane, which is mediated primarily by the voltage dependent anion channel (VDAC). We applied fluorescence correlation spectroscopy (FCS) to study regulation of the VDAC functional state by monitoring distribution of fluorescently labeled ATP (BODIPY-FL-ATP) in isolated intact rat liver and heart mitochondria. Addition of mitochondria to BODIPY-FL-ATP solution resulted in accumulation of the fluorescent probe in these organelles. The addition of hexokinase II (HKII) isolated from rat heart led to a decrease in the BODIPY-FL-ATP accumulation, while a 15-residue peptide corresponding to the N-terminal domain of hexokinase did not produce this effect. Therefore, the hexokinase-induced inhibition of the ATP flow mediated by VDAC was revealed in isolated mitochondria.  相似文献   

10.
The association in vitro of rat brain hexokinase to mitochondria from rat liver or yeast (wildtype, porinless, or expressing recombinant human porin) was studied in an effort to identifyminimal requirements for each component. A short hydrophobic N-terminal peptide ofhexokinase, readily cleavable by proteases, is absolutely required for its binding to all mitochondria.Mammalian porins are significantly cleaved at two positions in putative cytoplasmic loopsaround residues 110 and 200, as determined by proteolytic-fragment identification usingantibodies. Recombinant human porin in yeast mitochondria is more sensitive to proteolysisthan wild-type porin in rat liver mitochondria. Recombinant yeast mitochondria, harboringseveral natural or engineered porins from various sources, bind hexokinase to variable extentwith marked preference for the mammalian porin1 isoform. Genetic alteration of this isoformat the C-, but not the N-terminal, results in a significant reduction of hexokinase bindingability. Macromolecular crowding (dextran) promotes a stronger association of the enzyme toall recombinant mitochondria, as well as to proteolytically digested organelles. Consequently,brain hexokinase association with heterologous mitochondria (yeast) in these conditions occursto an extent comparable to that with homologous (rat) mitochondria. The study, also pertinentto the topology and organization of porin in the membrane, represents a necessary first stepin the functional investigation of the physiological role of mammalian hexokinase binding tomitochondria in reconstituted heterologous recombinant systems, as models to cellularmetabolism.  相似文献   

11.
The subcellular localization of hexose phosphorylating activity in extracts of pea stems has been studied by differential centrifugation and sucrose density gradient centrifugation. The hexokinase (EC 2.7.1.1) was associated with the mitochondria, whereas fructokinase (EC 2.7.1.4) was in the cytosolic fraction. Some properties of the mitochondrial hexokinase were studied. The enzyme had a high affinity for glucose (Km 76 micromolar) and mannose (Km 71 micromolar) and a relatively low affinity for fructose (Km 15.7 millimolar). The Km for MgATP was 180 micromolar. The addition of salts stimulated the activity of the hexokinase. Al3+ was a strong inhibitor at pH 7 but not at the optimum pH (8.2). The enzyme was not readily solubilized but, in experiments with intact mitochondria, was susceptible to proteolysis. A location on the outer mitochondrial membrane is suggested for the hexokinase of pea stems.  相似文献   

12.
Inhibition of mitochondrial oxidative phosphorylation by adriamycin   总被引:2,自引:0,他引:2  
The antitumour antibiotic, adriamycin, inhibited oxidative phosphorylation in freshly prepared mitochondria from the heart, liver and kidney of the rat. It abolished respiratory control and stimulated ATPase activity. Succinate oxidation by heart mitochondria was extremely sensitive to the drug when hexokinase was present in the reaction medium. The sensitive site has been identified to lie in the region between the succinate dehydrogenase flavoprotein and ubiquinone of the respiratory chain.  相似文献   

13.
In Cuscuta reflexa 16% of the hexokinase activity was associated with the particulate fraction and the rest in the 105 000 g, 1 hr supernatant. In a sucrose gradient, hexokinase activity banded with an organelle at a mean density of 1.20 g cm?3, coinciding with the mitochondrial marker, cytochrome c oxidase. Fractionation of isolated mitochondria by digitonin showed the presence of the enzyme in the outer membrane along with its marker rotenone-insensitive NADH cytochrome c reductase. No latent form of hexokinase was detected.  相似文献   

14.
A major fraction of hexokinase was found to be bound, presumably to mitochondria, in both normal and tumoral rat pancreatic islet cells examined after either mechanical disruption or digitonin treatment. Spermidine enhanced the binding and glucose 6-phosphate caused the release of hexokinase to and from islet mitochondria, in a manner comparable to that seen in parotid or brain homogenates. In hepatocytes, some hexokinase, but no glucokinase, was found in the bound form. In islet cells, however, the pattern of glucokinase binding was similar to that of hexokinase. It is speculated that the preferential location of both hexokinase and glucokinase on mitochondria may favor the maintenance of a high cytosolic ATP content in islet cells.  相似文献   

15.
Hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) has been synthesized in the rabbit reticulocyte lysate system directed by poly(A)+ mRNA isolated from rat brain. Identification of the in vitro synthesis product as hexokinase was based on its immunoprecipatation with anti-hexokinase serum as well as the generation of identical peptide maps after partial cleavage of the in vitro product and authentic hexokinase with Staphylococcus aureus V8 proteinase or chymotrypsin. The in vitro product and authentic hexokinase were indistinguishable in molecular weight (SDS-gel electrophoresis); thus, despite the fact that, in situ, much of the hexokinase in brain is found in association with mitochondria, it is not synthesized in the form of a higher molecular weight precursor as is characteristic of other mitochondrial proteins. This is in accord with the view that hexokinase is best considered as a classical ‘soluble’ enzyme which is capable of exhibiting reversible association with mitochondria. The in vitro product cochromatographs (during anion-exchange HPLC) with authentic hexokinase previously shown to have a blocked (presumably acetylated) N-terminus; this procedure is capable of resolving the N-terminally blocked form of the enzyme from a partially proteolyzed form having a free N-terminal amino group. Thus the in vitro product is apparently N-acetylated by an enzyme system previously shown to be present in reticulocyte lysates. A significant fraction of the in vitro synthesized hexokinase attained a conformation characteristic of the native enzyme as judged by the observations that (1) it could be immunoprecipitated by monoclonal antibodies recognizing the native enzyme but not by antibodies recognizing denatured hexokinase, and (2) limited tryptic cleavage of the in vitro product gave fragments identical to those seen with the native enzyme and thought to reflect the organization of structural domains in that enzyme. However, based on these same criteria, the majority of the hexokinase synthesized in vitro appears to exist in a folding state that is not identical to that of either the fully denatured or native enzyme.  相似文献   

16.
A mitochondrial fraction prepared from calf brain cortex possessed negligible glycolytic activity in the absence of the enzymes of the high speed supernatant fraction. When mitochondria were added to a supernatant system supplemented with optimal amounts of crystalline hexokinase, a 20 per cent stimulation of glycolysis was observed. The supernatant fraction produced minimal amounts of lactate in the absence of exogenous hexokinase; the addition of mitochondria doubled the lactate production. The substitution of glycolytic intermediates for glucose as substrates as well as the addition of exogenous glycolytic enzymes to the supernatant fraction or supernatant fraction plus mitochondria indicated that the mitochondria contributed mainly hexokinase and phosphofructokinase. By direct assay of all of the enzymes of the glycolytic pathway, only hexokinase and phosphofructokinase were shown to be concentrated in the mitochondrial fraction. All other glycolytic enzymes were found to exhibit higher total and specific activities in the supernatant fraction.  相似文献   

17.
Development of mitochondrial energy metabolism in rat brain   总被引:6,自引:6,他引:0       下载免费PDF全文
1. The development of pyruvate dehydrogenase and citrate synthase activity in rat brain mitochondria was studied. Whereas the citrate synthase activity starts to increase at about 8 days after birth, that of pyruvate dehydrogenase starts to increase at about 15 days. Measurements of the active proportion of pyruvate dehydrogenase during development were also made. 2. The ability of rat brain mitochondria to oxidize pyruvate follows a similar developmental pattern to that of the pyruvate dehydrogenase. However, the ability to oxidize 3-hydroxybutyrate shows a different developmental pattern (maximal at 20 days and declining by half in the adult), which is compatible with the developmental pattern of the ketone-body-utilizing enzymes. 3. The developmental pattern of both the soluble and the mitochondrially bound hexokinase of rat brain was studied. The total brain hexokinase activity increases markedly at about 15 days, which is mainly due to an increase in activity of the mitochondrially bound form, and reaches the adult situation (approx. 70% being mitochondrial) at about 30 days after birth. 4. The release of the mitochondrially bound hexokinase under different conditions by glucose 6-phosphate was studied. There was insignificant release of the bound hexokinase in media containing high KCl concentrations by glucose 6-phosphate, but in sucrose media half-maximal release of hexokinase was achieved by 70μm-glucose 6-phosphate 5. The production of glucose 6-phosphate by brain mitochondria in the presence of Mg2++glucose was demonstrated, together with the inhibition of this by atractyloside. 6. The results are discussed with respect to the possible biological significance of the similar developmental patterns of pyruvate dehydrogenase and the mitochondrially bound kinases, particularly hexokinase, in the brain. It is suggested that this association may be a mechanism for maintaining an efficient and active aerobic glycolysis which is necessary for full neural expression.  相似文献   

18.
Summary Interactions between cations in modifying the binding of hexokinases I and II to mitochondria was examined with reference to the intracellular condition. Mitochondria-binding of either of hexokinases I and II, both prepared from mouse ascites ELD cells, was markedly increased by Mg2+ as has been known well. However, even in the absence of Mgs+, marked binding was attained by 100 mM K+ alone especially for hexokinase I, which seemed generally more ready to bind to mitochondria. On the other hand, the effect of Mg2+ to increase the binding was reduced by the addition of K+, and the decreasing effect of K+ was much more marked for hexokinase II than I. These results indicate that, in addition to Mg2+, monovalent cations as represented by K+, also have marked effect on the binding, and the effect is different for each of hexokinases I and II, which may be responsible for the difference in the intracellular distribution between these hexokinases.  相似文献   

19.
Summary The intracellular localization and isozyme distribution of hexokinase were studied during rabbit reticulocyte maturation and aging. In reticulocytes 50% of the enzyme was particulate while in the mature erythrocytes all the hexokinase activity was soluble. The bound enzyme co-sediments with mitochondria and by column chromatography it was found to be hexokinase Ia. The cytosol of reticulocytes contains hexokinase Ia (38%) and hexokinase Ib (62%) while the mature erythrocytes contain only hexokinase Ia. The amount of bound hexokinase decreases very quickly during cell maturation and aging as was shown by following in vivo reticulocyte maturation or by analysis of hexokinase compartmentation in cells of different ages, obtained by density gradient ultracentrifugations. A role for this intracellular distribution of hexokinase is suggested.  相似文献   

20.
It has proposed that hexokinase bound to mitochondria occupies a preferred site to wich ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740–749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) ot any combination of these, suggesting a source of ATP in addition to oxidative phosphorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentraions, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号