首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally thought that females can receive more of the material benefits from males by increasing mating frequency and polyandry can lead to greater reproductive success. The cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae), is a highly promiscuous species, in which females or males can readily mate repeatedly with a given partner or multiple partners at a very high frequency. In the present study, the effect of mating frequency (number of matings) and mating pattern (polyandry vs. monogamy) on female reproductive fitness was investigated by measuring fecundity, fertility, and female longevity. The results indicated that increased female mating frequency with the same male did not result in variation in lifetime fecundity, but significantly increased fertility and decreased female longevity. Moreover, five copulations were sufficient to acquire maximal reproductive potential. Female lifetime fecundity also did not differ between polyandrous and monogamous treatments. However, monogamous females exhibited a significant increase in fertility and significant prolongation of longevity compared with polyandrous females, further demonstrating that monogamy is superior to polyandry in this beetle.  相似文献   

2.
The relative force of direct and indirect selection underlying the evolution of polyandry is contentious. When females acquire direct benefits during mating, indirect benefits are often considered negligible. Although direct benefits are likely to play a prominent role in the evolution of polyandry, post‐mating selection for indirect benefits may subsequently evolve. We examined whether polyandrous females acquire indirect benefits and quantified direct and indirect effects of multiple mating on female fitness in a nuptial gift‐giving spider (Pisaura mirabilis). In this system, the food item donated by males during mating predicts direct benefits of polyandry. We compared fecundity, fertility and survival of singly mated females to that of females mated three times with the same (monogamy) or different (polyandry) males in a two‐factorial design where females were kept under high and low feeding conditions. Greater access to nutrients and sperm had surprisingly little positive effect on fitness, apart from shortening the time until oviposition. In contrast, polyandry increased female reproductive success by increasing the probability of oviposition, and egg hatching success indicating that indirect benefits arise from mating with several different mating partners rather than resources transferred by males. The evolution of polyandry in a male‐resource‐based mating system may result from exploitation of the female foraging motivation and that indirect genetic benefits are subsequently derived resulting from co‐evolutionary post‐mating processes to gain a reproductive advantage or to counter costs of mating. Importantly, indirect benefits may represent an additional explanation for the maintenance of polyandry.  相似文献   

3.
Classical sexual selection theory assumes that the reproductive success of females is primarily limited by the resources available for egg production rather than by the number of mating partners. However, there is now accumulating evidence that multiple mating can entail fitness costs or benefits for females. In this study we investigated the effect of polyandry (i.e., the mating with different mating partners) and food availability on the reproductive output of the female sex function in an outcrossing simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. We exposed virgin worms to different group sizes, a treatment that has previously been shown to affect the level of polyandry in this species. Moreover, we manipulated the food availability throughout the subsequent egg laying period, during which the worms were kept in isolation. The number of offspring produced was used as an estimate of female fecundity. We found that food availability, but not group size, had a significant effect on female fecundity. Additionally, female fecundity was positively correlated with the number of stored sperm in the female sperm-storage organ at the time of isolation, but it was not correlated with body or ovary size of the worms. Our results suggest that female fecundity in M. lignano is primarily determined by the resources available for egg production, and not by the level of polyandry, confirming classic sexual selection theory for simultaneous hermaphrodites.  相似文献   

4.
The frequency of mating in insects is often an important determinant of female reproductive output and male sperm competition. In Lepidoptera that provide male nutrients to the female when mating, it is hypothesized that polyandry may be more prevalent. This is thought to be especially so among species described as income breeders; that is, in species who do not derive all their nutrients for reproductive output entirely from the resources obtained during the larval stage. We selected the geometrid moth, Mnesampela privata (Guenée) (Lepidoptera: Geometridae), to examine this hypothesis further. We found this species was best characterized as an income breeder with female weight on emergence positively correlated with total egg load but not with the number of eggs laid. Further, in accord with income breeders, females emerged with a partially developed egg load and lifetime fecundity was positively correlated with the number of oviposition days. However, in the laboratory we found that incidence of repeated matings or polyandry was rare. When moths were paired singly over their lifetime, only 4% of mated females multiple mated. When females were paired with three males concurrently, female mating success increased from 60 to 81% with multiple mating among mated females increasing to just 15%. Dissection of wild caught M. privata found that polyandry levels were also low with a maximum of 16.4% of females collected at any one time being multiple mated. In accord with theory, mating significantly increased the longevity of females, but not of males, suggesting that females acquire essential resources from male ejaculates. Despite this, multiple mated females showed a trend toward decreasing rather than increasing female reproductive output. Spermatophore size, measured on death of the female, was not correlated with male or female forewing length but was negatively correlated with the number of fertile eggs laid and female longevity. Smaller spermatophore width may be related to uptake of more nutrients by the female from a spermatophore. We discuss our findings in relation to income breeding and its relationship to polyandry in Lepidoptera.  相似文献   

5.
Despite the importance of polyandry for sexual selection, the reasons why females frequently mate with several males remain poorly understood. A number of genetic benefits have been proposed, based on the idea that by taking multiple mates, females increase the likelihood that their offspring will be sired by genetically more compatible or superior males. If certain males have intrinsically “good genes,” any female mating with them will produce superior offspring. Alternatively, if some males have genetic elements that are incompatible with a particular female, then she may benefit from polyandry if the sperm of such males are less likely to fertilize her eggs. We examined these hypotheses in the field cricket Gryllus bimaculatus (Orthoptera: Gryllidae). By allocating females identical numbers of matings but different numbers of mates we investigated the influence of number of mates on female fecundity, and both short- and long-term offspring fitness. This revealed no effect of number of mates on number of eggs laid. However, hatching success of eggs increased with number of mates. This effect could not be attributed to nongenetic effects such as the possibility that polyandry reduces variance in the quantity or fertilizing ability of sperm females receive, because a control group receiving half the number of copulations showed no drop in hatching success. Offspring did not differ in survival, adult mass, size, or development time with treatment. When males were mated to several different females there were no repeatable differences between individual males in the hatching success of their mate's eggs. This suggests that improved hatching success of polyandrous females is not due to certain males having genes that improve egg viability regardless of their mate. Instead, our results support the hypothesis that certain males are genetically more compatible with certain females, and that this drives polyandry through differential fertilization success of sperm from more compatible males.  相似文献   

6.
Females across many taxa may mate with several males or mate more than once with the same male within one reproductive event. Although many researchers have discussed the effects of multiple mating on reproductive success of females, few studies have attempted to disentangle whether the reproductive success of females differs with respect to whether females mate with multiple males or mate more than once with one male. In this study, we hypothesized that female leopard geckos (Eublepharis macularius) increase aspects of their reproductive success, such as fecundity, fertility and relative clutch mass, by mating more than once within one reproductive event, either by mating repeatedly with the same male or multiply mating with different males. We controlled for the potentially confounding variables of mating frequency and mate number by allowing females to mate once with one male, twice with the same male, or twice with two different males. We found that females that mated with more than one male laid more clutches, exhibited increased egg fertility and invested more in clutches relative to females that mated only once with one male, whereas females that mated twice to the same male were intermediate for these variables. Thus, reproductive success is higher among female leopard geckos that mated with more than one male compared to female leopard geckos that mated only once.  相似文献   

7.
Females of many organisms mate more than once and with more than one male, suggesting that polyandry confers some advantage to the female or her offspring. However, variation in maternal investment in response to mate choice and mate number can confound efforts to determine if there are benefits of polyandry. Access to multiple mates could increase maternal investment in offspring via a number of different mechanisms. Few studies have determined if investment is influenced by mate choice and number, and data are particularly lacking for marine invertebrates. This study was designed to determine if maternal investment and offspring size increase with access to increasing numbers of mates in the protandrous intertidal slipper snail Crepidula cf. marginalis. Virgin female slipper limpets were exposed to one, three, or five potential mates and their fecundity, egg size, and hatchling size were measured for multiple clutches. Treatment had a significant effect on fecundity, with fecundity increasing with the number of potential mates. Treatment did not have an effect on the size of eggs or hatchlings, on the variation in egg size or hatchling size within broods, or on the frequency of oviposition. Treatment did alter the variation in average offspring size among females, but not in the way predicted by theory. The main result, that access to multiple mates does not have an effect on per offspring maternal investment, makes C. cf. marginalis an ideal candidate to study the effects of polyandry on offspring fitness without having to take into account confounding effects of variation in maternal investment.  相似文献   

8.
Many studies investigate the benefits of polyandry, but repeated interactions with males can lower female reproductive success. Interacting with males might even decrease offspring performance if it reduces a female's ability to transfer maternal resources. Male presence can be detrimental for females in two ways: by forcing females to mate at a higher rate and through costs associated with resisting male mating attempts. Teasing apart the relative costs of elevated mating rates from those of greater male harassment is critical to understand the evolution of mating strategies. Furthermore, it is important to test whether a male's phenotype, notably body size, has differential effects on female reproductive success versus the performance of offspring, and whether this is due to male body size affecting the costs of harassment or the actual mating rate. In the eastern mosquitofish Gambusia holbrooki, males vary greatly in body size and continually attempt to inseminate females. We experimentally manipulated male presence (i.e., harassment), male body size and whether males could copulate. Exposure to males had strong detrimental effects on female reproductive output, growth and immune response, independent of male size or whether males could copulate. In contrast, there was a little evidence of a cross‐generational effect of male harassment or mating rate on offspring performance. Our results suggest that females housed with males pay direct costs due to reduced condition and offspring production and that these costs are not a consequence of increased mating rates. Furthermore, exposure to males does not affect offspring reproductive traits.  相似文献   

9.
鸟类婚配制度的生态学分类   总被引:1,自引:1,他引:0  
在Emlen和Oring鸟类婚配制度生态学分类系统的基础上,根据近年来鸟类行为生态学研究的成果,对鸟类的婚配制度进行了补充分类,并强调了应以进化稳定策略的观念来认识乌类的婚配制度。补充的鸟类婚配制度生态型包括:合作型一雄一雌制(cooperative monogamy)、临界型一雄一雌制(critical monogamy)、保卫雌性型一雄一雌制(female defense mognogamy)、从领域型一雄多雌制(poly-terri-tory polygyny)和社群繁殖制。合作型一雄一雌制的鸟 类雌雄个体爱力合作才保证繁殖的成功;临界型一悲欢离合一雌制鸟类雌雄个体都有多配倾向,但迫于生态压力必须共同抚育后代才能繁殖成功;保卫雌性型一雄一雌制的鸟 类通过保卫一个雌鸟不被其它雄鸟占有而保证繁殖成功,多领域型一雄多雌制的雄鸟通过占有多个领域而多个雌鸟交配;社群繁殖制的鸟 类由三个以上个体参与工部分参与繁殖,所有个体共同抚育一批后代,现有的鸟类婚配制度可以归为一雄一雌制(monogamy)、一雄多雌繁殖,所有个体共同抚育一批后代。现有的鸟类婚配制度可以归为一雄一雌制(polygyny)、一雌多雄制(polyandry)快速多窝型多配制(rapid-multiple-clutch polygamy)和社群繁殖制(social breeing systen)五大类型。  相似文献   

10.
Optimal mating frequencies differ between sexes as a consequence of the sexual differentiation of reproductive costs per mating, where mating is normally more costly to females than males. In mating systems where sexual reproduction is costly to females, sexual conflict may cause both direct (i.e. by reducing female fecundity or causing mortality) and indirect (i.e. increased risk of mortality, reduced offspring viability) reductions in lifetime reproductive success of females, which have individual and population consequences. We investigated the direct and indirect costs of multiple mating in a traumatically inseminating (TI) predatory Warehouse pirate bug, Xylocoris flavipes (Reuter) (Hemiptera: Anthocoridae), where the male penetrates the female's abdomen during copulation. This study aimed to quantify the effects of TI on female fecundity, egg viability, the lifetime fecundity schedule, longevity and prey consumption in this cosmopolitan biocontrol agent. We found no difference in the total reproductive output between mating treatments in terms of total eggs laid or offspring viability, but there were significant differences found in daily fecundity schedules and adult longevity. In terms of lifetime reproduction, female Warehouse pirate bugs appear to be adapted to compensate for the costs of TI mating to their longevity.  相似文献   

11.
In species where females gain a nutritious nuptial gift during mating, the balance between benefits and costs of mating may depend on access to food. This means that there is not one optimal number of matings for the female but a range of optimal mating numbers. With increasing food availability, the optimal number of matings for a female should vary from the number necessary only for fertilization of her eggs to the number needed also for producing these eggs. In three experimental series, the average number of matings for females of the nuptial gift‐giving spider Pisaura mirabilis before egg sac construction varied from 2 to 16 with food‐limited females generally accepting more matings than well‐fed females. Minimal level of optimal mating number for females at satiation feeding conditions was predicted to be 2–3; in an experimental test, the median number was 2 (range 0–4). Multiple mating gave benefits in terms of increased fecundity and increased egg hatching success up to the third mating, and it had costs in terms of reduced fecundity, reduced egg hatching success after the third mating, and lower offspring size. The level of polyandry seems to vary with the female optimum, regulated by a satiation‐dependent resistance to mating, potentially leaving satiated females in lifelong virginity.  相似文献   

12.
Sexual selection theory predicts that the larger sex shouldbe that for which fitness increases at the faster rate withsize. In butterflies, as in most invertebrates, females areusually the larger sex, but previous comparative analysis hasshown that relative male size increases with female polyandryamong butterflies. In agreement with this pattern, males arelarger than females in the strongly polyandrous green-veinedwhite butterfly, Pieris napi L., and in this article we assessthe size dependence of reproductive success in both sexes. Inan experiment where virgin males and females were released inthe field, we found no strong association between size and malemating success. However, laboratory experiments showed thatthere was a strong correlation between size and the ejaculatethat the male delivered to the female at mating and that largeejaculates delayed female remating for a longer time comparedto small ejaculates. Moreover, female P. napi utilize male-derivednutrients received at mating to increase their fecundity. Hence,large males sire more offspring both by way of donating morenutrients to female egg production and by way of delaying femaleremating (given that the last male to mate with the female willfather most of the offspring). Laboratory experiments showedthat the association between size and fecundity was low, ornonexistent, among P. napi females allowed to mate only once.However, weak size dependence was found for polyandrous females.We hypothesize that size dependence of female fecundity maybe especially weak among polyandrous butterflies because a fundamentalsource of variation in fecundity relates to their ability tofind nutrient giving males, an ability which may be unrelatedto female size. According to this hypothesis there is a causalassociation between weak size dependence of female fecundityand polyandry, and a strong size dependence of male reproductivesuccess that may underlie the comparative pattern of positivecorrelation between relative male size and polyandry.  相似文献   

13.
1. The patterns of multiple paternity among the progeny of females are key properties of genetic mating systems. Female multiple mating should evolve due to direct or indirect benefits, but it may also partly be driven by the encounter rate with different potential mates. 2. In this study this hypothesis was experimentally tested in the European earwig (Forficula auricularia L.) by establishing experimental mating groups that differed in the number of males and females (i.e. density). The number of sires and mean sibling relatedness in each clutch were estimated using microsatellite‐based paternity analysis. 3. As predicted, the mean number of sires per clutch was significantly increased, and sibling relatedness decreased, in the higher density treatment where more potential male mates were available. This change was less than proportional to the number of males in the mating groups, indicating that mechanisms limiting multiple paternity in large mating groups were involved. There were no significant relationships between female reproductive success or male siring success with morphology (body size, weight, and forceps size). 4. The present results show that multiple paternity in F. auricularia clutches is partly determined by the availability of male mates and suggest that this effect is modulated by mechanisms in males and/or females that limit multiple paternity.  相似文献   

14.
Among a variety of fish mating systems, promiscuity with random-mating seems to be most prevalent. However, detailed studies of promiscuity have been rare due partly to the peculiar difficulty in examination of male mating and reproductive success in the random mating. Females of the armoured catfish Corydoras aeneus (no sexual dimorphism other than size of males > females) spawn 10–20 egg-clutches with multiple males at a time, but an entire egg clutch is inseminated by sperm of a single male. We studied mating system of this fish in aquarium. Males had neither mating territories nor monopolized females, never being aggressive against rival males. Evidence of female preference for certain male traits including size was not detected. Females mated a male in proportion to his relative courtship frequency among males. Courtship frequency was not related to male size, and male mating success was not different between small and large males. Clutch size and insemination rate were different neither between small and large males nor between frequently and less frequently courting males. Thus, the male reproductive success will not be related to the male size, but directly to courtship frequency, indicating the random mating in this fish. There seemed to be fecundity advantage with size in female, and the consequent sexual difference in energy allocation will be responsible to the sexual dimorphism. We also discuss the low male-GSI in this promiscuous fish in which sperm competition hardly occurred.  相似文献   

15.
A tree cricket,Truljalia hibinonis, is known to show a novel sperm removal during copulation. The pattern of copulations and ovipositions showed that the sperm removal functioned to increase reproductive success for sperm removing males. The sperm removal by males evolves under the system in which female accept multiple mating. The possible benefits of multiple mating for females are examined. Multiple mating did not seem to be necessary for avoiding sperm depletion, because females stored huge number of sperm in their sperm storage organ after finishing oviposition. The ingestion of metanotal secretion during copulation also had no effect on increasing fecundity and egg size. However, mating experience may have a positive effect on increasing fecundity slightly, though there were no differences between once- and twice-mated females. The other possible benefits for each male and female are discussed.  相似文献   

16.
1. The fertility restoration hypothesis posits that polyandry can evolve when female fertility is reduced by matings with related males, but restored by matings with unrelated ones. 2. Using a promiscuous ladybird, this hypothesis was tested by mating mature, virgin females twice with sib and non‐sib males in all four permutations and observing female fertility. The development of progeny from the first and 10th clutches was also followed to test for differences in paternal effects. 3. Mating treatment did not affect fecundity, but egg viability was reduced by sib matings, and restored by non‐sib matings, regardless of mating sequence. In addition, negative paternal effects of sib matings on progeny (lower survival) were compensated by non‐sib matings. 4. The survival of offspring in first clutches was sensitive to the paternal mating sequence and was higher if a sibling male was preceded by a non‐sib male, compared with the reverse, consistent with a time lag in response to male epigenetic signals. Offspring survival did not differ between these two treatments in the 10th clutch, suggesting a blending of paternal effects over time. 5. The results are indicative of interactions between the paternal effects contributed by different males, and between paternal and maternal effects, the latter causing faster development in later clutches. 6. Thus, the reproductive benefits of polyandry for H. convergens females are potentially both genetic and epigenetic, as both egg fertility and beneficial paternal effects were diminished by sib matings, but restored by matings with unrelated males.  相似文献   

17.
Omkar    Uzma Afaq 《Insect Science》2013,20(4):531-540
In the Parthenium beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae), variation in body size exists between and within the sexes. The females are larger than the males. Darwin (1874) proposed the fecundity advantage hypothesis, that is, large‐sized females produce more progeny, with subsequent studies supporting, as well as, refuting the hypothesis. Thus, in order to evaluate whether this hypothesis stands in Z. bicolorata we performed experiments to investigate the role of body size in influencing: (i) assortative mating; (ii) reproductive attributes; and (iii) growth, development and survival of offspring. It is the first attempt in this beetle. We found that size influenced assortative mating, reproductive output and offspring fitness. Larger males and females were preferred as mates over smaller ones. The pairs, having larger adults as mates, had higher fecundity, while the egg viability was influenced by the male size only. The offspring of larger parents had fast development and higher survival, indicating thereby possible better nutrient allotment by the female and supply of accessory gland proteins by the male in addition to better quality of genes.  相似文献   

18.
Female mating with multiple males in a single reproductive period, or polyandry, is a common phenomenon in animals. In this study we investigated variation in female mating behavior and its fitness consequences among three genetic strains of the red flour beetle, Tribolium castaneum. We found that the extent of polyandry and its fitness consequences varied significantly among the strains. In the first strain PRUZ, females mated multiply but incurred costs of polyandry in the form of reduced offspring production. Females of the second strain, NDG11, mated readily with multiple partners and benefited because polyandry led to higher offspring quality. Finally, TIW1 females were resistant to multiple mating and polyandry resulted in lower offspring production but improved offspring quality. Thus, in the first population we observed only costs of polyandry, in the second strain only benefits of polyandry whereas in the third we detected both costs and benefits of polyandry. Possible explanations for such a pattern are discussed.  相似文献   

19.
Several hypotheses have been proposed to explain the evolutionof polyandry in species that provide nuptial gifts. When nuptialgifts are in the form of nutritional elements in the ejaculateand ejaculate size is correlated with male body size, femalescan accrue both direct (nutritional) and indirect (genetic)benefits from multiple mating. We examined remating decisionsin females of the seed beetle Stator limbatus and, using pathanalysis, examined the effects of male body size on the sizeof his ejaculate, the amount of ejaculate that was successfullytransferred to females, and the overall effect of these variableson female fecundity. Larger males produced larger ejaculatesand consequently transferred a larger ejaculate to females,but the effects on female fecundity differed between the females'first and second mates. Both larger first and second males wereable to transfer more of their ejaculate to females than weresmaller males. Both the total amount of ejaculate transferredby these males and polyandry (number of matings) were positivelycorrelated to female fecundity independently of each other.However, larger second males were more successful at stimulatingfemale fecundity independently of how much ejaculate they transferred.We also provide evidence that females are choosy during theirsecond mating opportunity. Both female choosiness and higherfemale investment after mating with larger second males suggestthat females may benefit from both direct and indirect effectsfrom multiple mating. We also conclude that male body size isunder both directional fecundity selection and directional sexualselection.  相似文献   

20.
Monandry and polyandry as alternative lifestyles in a butterfly   总被引:10,自引:3,他引:7  
Butterflies show considerable variability in female mating frequency, ranging from monandrous species to females mating several timesin their lifetime. Degree of polyandry also varies within species,with some females only mating once and others mating multiply.Previous studies have shown that one reason for female multiplemating is to obtain nutritious male donations that both increasethe longevity of females and result in higher lifetime fecundity.Despite the presence of male nutrient donations, some femalesof the green-veined white butterfly (Pieridae: Pieris napi)never mate more than once. In this study, we examined thisapparent paradox. We assessed to what degree polyandry is undergenetic control by a full-sib analysis, and we also estimatedthe broad sense heritability of female lifetime fecundity in singly mated females. Both polyandry and lifetime fecundityhave a genetic component. However, degree of polyandry appearsto be traded off against reduced longevity when denied theopportunity to mate more than once. It is possible that femaleP. napi display different reproductive strategies, with somefemales relying on male donations to realize their potentialfecundity and others relying on their own resources for egg production. In nature, polyandrous females may be preventedfrom mating multiply due to unfavorable weather. We discussthe possibility that the trade-off between degree of polyandryand life span when singly mated may affect the maintenanceof genetic variability in female mating frequency in this species.Possible reasons for these different reproductive strategiesare discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号