首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Summary Studies on intercalary regeneration in several organisms have shown that a regenerate is formed when surfaces of different positional value along the proximo-distal axis are opposed. One of the main problems posed by this phenomenon is to know which piece contributes to the building of the regenerate. In the present work we have studied this problem in planarians using chimaeras made between pieces of different body levels, irradiated or not, of the sexual and asexual races ofDugesia(S)mediterranea that differ in a chromosomal marker.The results found show very clearly that intercalary regenerates in planarians are formed by cells coming from both pieces (stumps), and that irradiated pieces keep the positional values and interact with non-irradiated pieces to restore the missing parts. This means that distal and proximal transformation do actually occur at the same time during intercalary regeneration in planarians. The implications of these results as regards to the origin of cells in the regenerate and to present models of intercalary regeneration are discussed.  相似文献   

2.
Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor radiation response.  相似文献   

3.
Hybrid cells were obtained by fusion of irradiated and non-irradiated mouse cells of two different lines; they differed from the parent lines and from the hybrid cells of non-irradiated parents in their morphological, growth and karyological properties. The frequency of their occurrence was lower than in hybrids from non-irradiated cells, and unlike the irradiated cells of the parent line, these hybrid cells were capable of permanent proliferation in vitro. Chromosomes of the irradiated parent line were preferentially eliminated from the karyotype of the hybrids.  相似文献   

4.
It has been established that X-ray irradiation localized to a forelimb or entire irradiation of premetamorphic Pleurodeles larvae prevented limb regeneration. Transplantation of non-irradiated skin, dermis or muscle to limb stumps of locally irradiated newts was sufficient to allow a blastema to develop. Transplantation of the same tissues to limb stumps of entirely irradiated newts yielded different results with the different graft types. Skin graft allowed a normal blastema to be established but dermis or muscle grafts did not. In order to define more precisely the role played by the epidermis in the establishment of a blastema, and in the growth of a regenerate, different combinations of limb tissues, either irradiated or not, were carried out at the level of amputated limb stumps. At four different times (8-10 days; 13-15 days; 20-23 days; 30 days or more) after amputation the stumps were examined in histological longitudinal sections to study the first events of regeneration, that is dedifferentiation and growth. Dedifferentiation occurred in both normal and irradiated tissues of mesodermal origin. The healthy mesenchymal cells began dividing and formed a growing blastema only when associated with a non-irradiated epidermis. Healthy mesenchymal cells covered with an irradiated epidermis exhibited a few mitoses after dedifferentiation, but the mitotic figures became rarer and rarer until the animals died. The lack of dense accumulation of blastemal cells in such limb stumps suggested that the healthy epidermis allows the mesenchymal cells to divide actively to constitute a growing blastema. Hence, X-ray irradiation seems to be responsible for the loss of such an epidermal mitogenic influence on the underlying mesenchymal cells.  相似文献   

5.
The effects of radiation on the kinetics of Interleukin-2 (IL-2) production and utilization by mononuclear cells (MNCs) were studied. Mononuclear cells from normal, healthy individuals were subjected to various doses of radiation ranging from 0 to 2,000 rad and cultured in the presence of PHA. Supernatants from these cultures were harvested at various periods and their IL-2 contents determined by both the standard bioassay and ELISA. A radiation dose of 800 rad and higher had a marked effect on both IL-2 production and consumption. Although the supernatants from both the irradiated and non-irradiated MNCs contained maximal concentrations of IL-2 between 8 and 24 h of culture, the former had three times as much IL-2 as the latter. An increase in IL-2-mRNA levels was also noticed in irradiated, PHA-stimulated cells. Moreover, the supernatants from irradiated MNCs collected as late as 72 h after the initiation of culture contained more than 30% of the total IL-2 produced compared to less than 8% in supernatants from non-irradiated cells. Supernatants from non-irradiated cells incubated further with irradiated cells contained relatively higher quantities of IL-2 than those incubated continuously with non-irradiated cells. Supernatants from co-cultures of irradiated and non-irradiated MNCs contained less than expected amounts of IL-2 in two of the three subjects. Despite a difference in both the production and consumption of IL-2 between the irradiated and non-irradiated cells, there was no difference in their ability to generate IL-2 receptors. The results indicate that inactivation of radiosensitive suppressor T cells is associated with superinduction of IL-2 mRNA, increased production and decreased consumption of IL-2 by MNCs, thereby resulting in increased accumulation of IL-2.  相似文献   

6.
The radiation-induced bystander effect is a well-established phenomenon which results in damage in non-irradiated cells in response to signaling from irradiated cells. Since communication between irradiated and bystander cells could be reciprocal, we examined the mutual bystander response between irradiated cells and co-cultured with them non-irradiated recipients. Using a transwell culture system, irradiated human melanoma (Me45) cells were co-cultured with non-irradiated Me45 cells or normal human dermal fibroblasts (NHDF) and vice versa. The frequency of micronuclei and of apoptosis, ROS level, and mitochondrial membrane potential were used as the endpoints. Irradiated Me45 and NHDF cells induced conventional bystander effects detected as modest increases of the frequency of micronuclei and apoptosis in both recipient neighbors; the increase of apoptosis was especially high in NHDF cells co-cultured with irradiated Me45 cells. However, the frequencies of micronuclei and apoptosis in irradiated Me45 cells co-cultured with NHDF cells were significantly reduced in comparison with those cultured alone. This protective effect was not observed when irradiated melanomas were co-cultured with non-irradiated cells of the same line, or when irradiated NHDF fibroblasts were co-cultured with bystander melanomas. The increase of micronuclei and apoptosis in irradiated Me45 cells was paralleled by an increase in the level of intracellular reactive oxygen species (ROS), which was reduced significantly when they were co-cultured for 24h with NHDF cells. A small but significant elevation of ROS level in NHDF cells shortly after irradiation was also reduced by co-culture with non-irradiated NHDF cells. We propose that in response to signals from irradiated cells, non-irradiated NHDF cells trigger rescue signals, whose nature remains to be elucidated, which modify the redox status in irradiated cells. This inverse bystander effect may potentially have implications in clinical radiotherapy.  相似文献   

7.
Zhou H  Suzuki M  Geard CR  Hei TK 《Mutation research》2002,499(2):135-141
Recent studies have indicated that extranuclear or extracellular targets are important in mediating the bystander genotoxic effects of alpha-particles. In the present study, human-hamster hybrid (A(L)) cells were plated on either one or both sides of double-mylar dishes 2-4 days before irradiation, depending on the density requirement of experiments. One side (with or without cells) was irradiated with alpha-particles (from 0.1 to 100 Gy) using the track segment mode of a 4 MeV Van de Graaff accelerator. After irradiation, cells were kept in the dishes for either 1 or 48 h. The non-irradiated cells were then collected and assayed for both survival and mutation. When one side with cells was irradiated by alpha-particles (1, 10 and 100 Gy), the surviving fraction among the non-irradiated cells was significantly lower than that of control after 48 h co-culture. However, such a change was not detected after 1h co-culture or when medium alone was irradiated. Furthermore, co-cultivation with irradiated cells had no significant effect on the spontaneous mutagenic yield of non-irradiated cells collected from the other half of the double-mylar dishes. These results suggested that irradiated cells released certain cytotoxic factor(s) into the culture medium that killed the non-irradiated cells. However, such factor(s) had little effect on mutation induction. Our results suggest that different bystander end points may involve different mechanisms with different cell types.  相似文献   

8.
Following conjugation of the hypotrichous ciliate Euplotes aediculatus, the posterior fragments of the old (prezygotic) macronucleus persist until after the first vegetative division. These fragments remain viable during exconjugant development as shown by their ability to regenerate should the cell's new macronucleus be damaged. It thus seemed possible that these parental nuclear fragments might participate in the development of the new macronucleus and/or the crucial post-conjugant cortical reorganization that restores the exconjugant cell's ability to feed. This idea was tested by damaging the posterior fragments with various doses of microbeam ultraviolet (UV) light and assessing the results of such treatment on subsequent cortical and nuclear development. When the posterior fragments of the macronucleus were irradiated at the beginning of cortical morphogenesis, the new macronucleus in 1/3 to 1/2 of the cells assumed a “folded” appearance but did not mature. These cells did not undergo cortical reorganization. Cells irradiated at earlier stages did not detectably develop an oral apparatus; their new macronucleus remained arrested at the spherical anlage stage. The results show that the posterior fragments of the parental macronucleus are necessary for normal nuclear and cortical development. These old nuclear fragments appear to influence the growing macronuclear anlage directly and probably the cortex as well. There also appears to be an information flow from the non-irradiated partner of a persistently joined exconjugant doublet to its irradiated counterpart, enabling normal anlage and cortex development in the irradiated cell.  相似文献   

9.
Sokolov MV  Neumann RD 《PloS one》2010,5(12):e14195

Background

The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.

Methodology/Principal Findings

Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05).

Conclusions/Significance

These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.  相似文献   

10.
The cell tumorigenic ability and the cell clonogenicity in semi-solid medium of highly radioresistant variant cell line, PIC-20 (the progeny of djungarian hamster fibroblast cell line DX-TK- surviving acute exposure to 20 Gy of gamma-irradiation), were examined. In the absence of additional radiation, no differences between tested features of non-irradiated PIC-20 cells and parental DX-TK- cells were observed. On the contrary, after gamma-irradiation with high doses the essential differences in the properties of the examined cell lines were revealed. After exposure to 10 Gy the surviving fraction of PIC-20 cells was 20 times higher than that of the parental cells. Both irradiated and non-irradiated PIC-20 cells produced colonies of similar size. It is revealed that even after irradiation with doses of 5, 10 or 15 Gy, the PIC-20 cells kept their tumorigenicity as high as non-irradiated ones. In all these cases the 90-100% of animals had the tumour, with the average latent period of tumour appearance after inoculation being the same both for irradiated and non-irradiated PIC-20 cells. After irradiation of parental DX-TK- cells with the highest dose of 15 Gy, the amount animals with tumour decreased by 70% and the average latent period of tumour appearance increased fivefold as compared with that for non-irradiated DX-TK- cells. The data obtained indicate that PIC-20 is highly radioresistant cells, which are able to proliferate both in semi-solid medium and in an animal organism even after radiation exposure to high doses.  相似文献   

11.
The purpose of this study was to evaluate the effect of 0.05% sodium fluoride and 0.12% chlorhexidine mouthwashes on the micro-hardness of tooth enamel and cementum that was exposed to therapeutic doses of gamma radiation. Sixty extracted human teeth were divided into two groups, one was irradiated, the other was not irradiated. The two groups were further subdivided into three subgroups, which were each treated either with 0.05% sodium fluoride or with 0.12% chlorhexidine; the third subgroup served as a control. After demineralization–remineralization cycling, teeth from the irradiated groups showed a significantly lower micro-hardness when compared to those from the non-irradiated groups. Both in the irradiated and non-irradiated groups, teeth from the control subgroups showed a significantly lower micro-hardness, as compared to teeth treated with sodium fluoride and chlorhexidine. For non-irradiated enamel samples, those treated with chlorhexidine showed a significantly less micro-hardness compared to those treated with sodium fluoride. In contrast, irradiated enamel showed no significant difference in micro-hardness, whatever treatment (chlorhexidine or sodium fluoride) was applied. For cementum, treatment with chlorhexidine resulted in a significantly lower micro-hardness compared to sodium fluoride, both for the irradiated and non-irradiated groups. It is concluded that gamma irradiation with therapeutic doses typically used for head and neck carcinoma treatment has a direct effect in reducing micro-hardness of tooth enamel and cementum. Mouthwash protocols including, for example, application of 0.05% sodium fluoride or 0.12% chlorhexidine three times per day for 6 weeks, can protect enamel and cementum against the reduction in hardness and demineralization caused by gamma irradiation. Sodium fluoride offers more protection compared to chlorhexidine.  相似文献   

12.
The production of chimeric birds is an important tool for the investigation of vertebrate development, the conservation of endangered birds, and the development of various biotechnological applications. This study examined whether gamma (γ)-irradiation depletes endogenous primordial germ cells and enhances the efficiency of somatic chimerism in chickens. An optimal irradiation protocol for stage X embryos was determined after irradiation at various doses (0, 100, 300, 500, 600, 700, and 2,000 rad). Exposure to 500 rad of γ-irradiation for 73 s significantly decreased the number of primordial germ cells (P < 0.0001). Somatic chimera hatchlings were then produced by transferring blastodermal cells from a Korean Oge into either an irradiated (at 500 rad) or intact stage X White Leghorn embryo. An analysis of feather color pattern and polymerase chain reaction-based species-specific amplification of various tissues of the hatchlings confirmed chimerism in most organs of the chick produced from the irradiated recipient; a lesser degree of chimerism was observed in the non-irradiated control recipient. In conclusion, the exposure of chick embryos to an optimized dose of γ-irradiation effectively depleted germ cells and yielded greater somatic chimerism than non-irradiated control embryos. This technique can be applied to interspecies reproduction or the production of transgenic birds.  相似文献   

13.
The mutual influence of irradiated (1 Gy) and non-irradiated cells was demonstrated on the model of the mixed culture oflymphocytes from opposite gender donors using chromosome aberrations (ChA) as an endpoint. The number of ChA in non-irradiated lymphocytes in mixed cultures with irradiated ones increased as compared to the corresponding monocultures. At the same time, the number of induced ChA decreased in the irradiated lymphocytes cultivated with non-irradiated ones.  相似文献   

14.

Background

Despite effective radiotherapy for the initial stages of cancer, several studies have reported the recurrence of various cancers, including medulloblastoma. Here, we attempt to capitalize on the radiation-induced aggressive behavior of medulloblastoma cells by comparing the extracellular protease activity and the expression pattern of molecules, known to be involved in cell adhesion, migration and invasion, between non-irradiated and irradiated cells.

Methodology/Principal Findings

We identified an increase in invasion and migration of irradiated compared to non-irradiated medulloblastoma cells. RT-PCR analysis confirmed increased expression of uPA, uPAR, focal adhesion kinase (FAK), N-Cadherin and integrin subunits (e.g., α3, α5 and β1) in irradiated cells. Furthermore, we noticed a ∼2-fold increase in tyrosine phosphorylation of FAK in irradiated cells. Immunoprecipitation studies confirmed increased interaction of integrin β1 and FAK in irradiated cells. In addition, our results show that overexpression of uPAR in cancer cells can mimic radiation-induced activation of FAK signaling. Moreover, by inhibiting FAK phosphorylation, we were able to reduce the radiation-induced invasiveness of the cancer cells. In this vein, we studied the effect of siRNA-mediated knockdown of uPAR on cell migration and adhesion in irradiated and non-irradiated medulloblastoma cells. Downregulation of uPAR reduced the radiation-induced adhesion, migration and invasion of the irradiated cells, primarily by inhibiting phosphorylation of FAK, Paxillin and Rac-1/Cdc42. As observed from the immunoprecipitation studies, uPAR knockdown reduced interaction among the focal adhesion molecules, such as FAK, Paxillin and p130Cas, which are known to play key roles in cancer metastasis. Pretreatment with uPAR shRNA expressing construct reduced uPAR and phospho FAK expression levels in pre-established medulloblastoma in nude mice.

Conclusion/Significance

Taken together, our results show that radiation enhances uPAR-mediated FAK signaling and by targeting uPAR we can inhibit radiation-activated cell adhesion and migration both in vitro and in vivo.  相似文献   

15.
Wright EG  Coates PJ 《Mutation research》2006,597(1-2):119-132
The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. Whilst the majority of studies to date have used in vitro systems, some adverse non-targeted effects have been demonstrated in vivo. However, at least for haemopoietic tissues, radiation-induced genomic instability in vivo may not necessarily be a reflection of genomically unstable cells. Rather the damage may reflect responses to ongoing production of damaging signals; i.e. bystander responses, but not in the sense used to describe the rapidly induced effects resulting from direct interaction of irradiated and non-irradiated cells. The findings are consistent with a delayed and long-lived tissue reaction to radiation injury characteristic of an inflammatory response with the potential for persisting bystander-mediated damage. An important implication of the findings is that contrary to conventional radiobiological dogma and interpretation of epidemiologically-based risk estimates, ionizing radiation may contribute to malignancy and particularly childhood leukaemia by promoting initiated cells rather than being the initiating agent. Untargeted mechanisms may also contribute to other pathological consequences.  相似文献   

16.
To investigate the mechanism of radiation-induced decrease in cell electrophoretic mobility and its recovery by added adenosine triphosphate, specific enzymes and buffer solutions of different ionic strength were utilized. Decrease in the mobility of irradiated cells was detected only with the buffer solution of ionic strengths higher than 0.100. In this range of ionic strengths, removal of hyaluronic acid from cell surface by hyaluronidase had no effect on the electrophoretic mobility of irradiated cells, while the enzyme treatment resulted in 27% mobility reduction in non-irradiated cells. The removal of sialic acid and chondroitin sulfate by their specific enzymes resulted in the similar decrease in mobility either in irradiated and non-irradiated cells. These results suggest that the X-ray induced translocation of hyaluronic acid from the peripheral zone of 0–7.5 Å into the deeper zone of about 10–17 Å, if we use the Debye-Hückel's thickness of ion atmosphere for an approximate estimate of effective depth of electrokinetic plane of shear. Hyaluronic acid reappeared to the peripheral zone by the subsequent incubation after small dose irradiation, or by the addition of 1 mM adenosine triphosphate with Ca2+.  相似文献   

17.
Transplanted hematopoietic stem cells (HSC) regenerate more rapidly in the femoral marrow of lethally irradiated hosts pretreated with cyclophosphamide (CY) 4 days prior to X-irradiation than they do in that of uninjected irradiated hosts (control). On the other hand, regeneration of HSC transplanted into irradiated hosts given CY 7 days before X-irradiation is slower than in controls.
The microenvironment in the femoral marrow was studied at various times after giving CY. Four days after injecting CY, the number of colony forming units (CFU), total nucleated hematopoietic cells, and mature myeloid and erythroid cells in the femoral marrow is markedly reduced. Seven days after injecting CY, the number of CFU in the femoral marrow is still reduced, the total nucleated cell count is back to normal, but the number of mature myeloid elements in the marrow are significantly increased. These observations suggest the conclusion that the rate of proliferation of HSC is modulated by the number of mature myeloid cells in the microenvironment.  相似文献   

18.
Planarians are well known for their remarkable regenerative capacity. This capacity to regenerate is thought to be due to the presence of totipotent somatic stem cells known as ‘neoblasts’, which have particular morphological characteristics. The totipotency of neoblasts was supported by Baguñà's experiment, which involved the introduction of donor cells into irradiated hosts. However, since Baguñà's experiment did not include the use of a phenotypic marker, the donor cells could not be traced. In the current study, a genetic mutant planarian, menashi, an eye‐defective mutant that lacks the pigmented area in the eyes, was established. This planarian is excellent for tracing the fate of cells after their introduction into irradiated hosts. To investigate the differentiation potency more directly, a neoblast‐rich fraction obtained from normal worms was transplanted into an X‐ray‐irradiated menashi strain. Planarians that survive X‐ray irradiation were developed, and we observed the pigment of the area in the eyes of the regenerating planarians. This result suggests that the neoblast‐rich fraction contains cells that can proliferate and differentiate. These cells can replace the cells and structures lost by X‐ray irradiation and ablation, and they can also differentiate into eye pigment cells.  相似文献   

19.
Low doses of ionizing radiation induce the adaptive effect (AE) development in human cells which is followed by a number of cell responses. These responses can be transmitted from irradiated cells to non-irradiated ones (bystander effect, BE). The major role in radiation-induced BE is played by an oxidative stress (OS) and a DNA-signaling pathway, in which extracellular DNA fragments (ecDNA) are the factors of stress-signalization. We propose the following sequence of events in this signaling system: irradiation-OS-DNA modification-apoptosis of irradiated cells-ecDNA-signal acceptance by non-irradiated cells-OS-DNA modification, etc. We observed a radiation-induced BE which is accompanied by DNA-signaling pathway in differentiated and undifferentiated human cells forming monolayer or suspension cultures. Here we discuss several aspects of the radiation-induced BE mechanism and its persistence possibilities.  相似文献   

20.
The activity of alkaline and acid phosphatases in the bone marrow from the femoral cavity was investigated in the following groups of mice: (1) normal (non-irradiated); (2) irradiated with 600 R; (3) irradiated and repopulated with syngeneic bone marrow; (4) irradiated and repopulated with syngeneic marrow stroma; (5) non-irradiated, infused with allogeneic bone marrow (host versus graft reaction, HvG); (6) irradiated and repopulated with allogeneic bone marrow (graft versus host reaction, GvH). In addition, the activity of alkaline and acid phosphatases was examined in bone marrow stromal cultures. In irradiated animals the activity of both enzymes was lower than in non-irradiated ones, repopulation with syngeneic bone marrow restoring it to normal. Repopulation with allogeneic marrow (GvH) resulted in a very deep reduction of alkaline, but not acid, phosphatase. It is postulated that the decrease in bone marrow alkaline phosphatase activity can be a sensitive test for the early GvH reaction, preceding such parameters as splenomegaly. Marrow stroma cultured in vitro also showed very low alkaline phosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号