首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The force produced within skeletal muscle fibers is transmitted to the bone via a myotendinous junction. This junctional region was examined by light and electron microscopy in the sartorius muscles of three Rana temporaria. The muscle fibers tapered and inserted at an angle of about 25 degrees with the connective tissue fascia near the bone. The composition of the structures within the last 100 microns of the fiber was analyzed morphometrically. The T-system, terminal cisternae, and caveolae were the same as in the central region of the muscle fiber. However, the mitochondrial content was higher and the volume of longitudinal sarcoplasmic reticulum was lower than elsewhere in the fiber. The membrane at the end of the fiber had extensive villiform processes interdigitating with the tendon. The surface area of the membrane around the villiform processes was estimated with point-counting techniques and calculated from the stereological equations appropriate for partially anisotropic structures. The extra membrane involved in the myotendinous junction was about 32 times that of the cross-sectional area of the fiber. Part of this additional membrane contained specialized adherens junctions through which the contractile proteins of the muscle are anchored to collagen. The increased area at the myotendinous junction presumably provides greater mechanical strength than a flat termination. The high values of membrane capacitance and specific resistance measured electrophysiologically at the end of the fiber also can be attributed to the characteristics of the terminal membrane structure.  相似文献   

2.
Transneuronal effects on amphibian limb regeneration   总被引:1,自引:0,他引:1  
  相似文献   

3.
Limb regeneration in adult urodele amphibians proceeds by formation of a blastema at the amputation plane. This paper discusses how the blastema forms, and how its positional identity on the proximodistal axis is manifest. Retinoic acid is able to reset axial specification and there is particular interest in determining how it acts. Although limb regeneration is restricted among vertebrates to the urodeles, its mechanism poses fundamental questions in development biology.  相似文献   

4.
A new index is proposed for assessing the extent of composition divergence between two proteins of equal length. It is defined as half the sum of squares of the differences between the numbers of residues of each type in the two proteins. It is an unbiased estimator of the number of differences between the two sequences, with a coefficient of variation of about 0·4. For unrelated proteins of length N the index is expected to exceed 0·42 N in about 95 % of comparisons. The index can also be defined for pairs of proteins of which one is about double the length of the other. Recent data for glucokinase and hexokinase type II, both from rats, are used to illustrate the analysis proposed, and suggest that the two sequences are about 85% identical. Of other indexes currently in use, the one proposed by Marchalonis &; Weltman (1971) appears to be the most easily interpretable and is simply related to the one proposed in this paper.  相似文献   

5.
The duration of the cell cycle in the blastema of regenerating limbs of axolotls has been measured by means of [3H]thymidine pulse labelling and autoradiography. A chase was required to define the pulse period. An average cell cycle at 20 degrees C takes 53 h, S-phase takes 38 h; including parts of mitosis, G1 is 10 h and G2 is 5 h long. The protracted cycle and S-phase are consonant with the large genome in axolotis and other urodeles. The rapidly growing blastema probably contains a steady population of about 5000 proliferating cells, as there is a regular withdrawal of differentiating cells from the population. The kinds of determination which exist in this population of cells, or are exerted on it, are briefly considered.  相似文献   

6.
7.
"Trophic" effect of transferrin on amphibian limb regeneration blastemas   总被引:2,自引:0,他引:2  
In light of the recent demonstration that one "neurotrophic factor" of peripheral nerves is the iron-transport glycoprotein transferrin, we tested the effects of heterologous transferrin on cellular events in cultured newt forelimb blastemas. Addition of transferrin to medium containing 1% fetal bovine serum resulted in DNA labeling and mitotic activity approximately twice as high as that of blastemas cultured in medium with 1% serum alone. Blastemas maintained for 24 hr in medium with 1% serum were stimulated to increased levels of DNA synthesis by the addition of transferrin, and this response was dose-dependent. Varying the concentrations of iron and transferrin in the medium gave results indicating that the glycoprotein's trophic effect is due to its ability to furnish iron to the cells in an appropriate manner. Results of the study are consistent with the hypothesis that blastema cell proliferation is promoted by transferrin or transferrin-like factors released from nerves.  相似文献   

8.
Limb regeneration is an excellent model for understanding organ reconstruction along PD, AP and DV axes. Re-expression of genes involved in axial pattern formation is essential for complete limb regeneration. The cellular positional information in the limb blastema has been thought to be a key factor for appropriate gene re-expression. Recently, it has been suggested that epigenetic mechanisms have an essential role in development and regeneration processes. In this review, we discuss how epigenetic mechanisms may be involved in the maintenance of positional information and the regulation of gene re-expression during limb regeneration.  相似文献   

9.
Amphibian limb regeneration is a process in which it has been suggested that cells of one differentiated type may dedifferentiate and give rise to cells of another type in the regenerate. We have used two tissue-specific hypomethylations in the newt cardioskeletal myosin heavy chain gene as lineage markers to follow the fate of cells during limb regeneration. Analysis of genomic DNA from different muscle cell populations allowed the assignment of one marker to the muscle (Hypo A) lineage and the other, more tentatively, to the 'connective tissue' (Hypo B) component of muscle. The contribution to regenerated limb cartilage and limb blastemal tissue by cells carrying these markers was estimated by quantitative analysis of Southern blot hybridizations using DNA from regenerate tissues. The results are consistent with a contribution of cells from both muscle and connective tissue lineages to cartilage in regenerated limbs. In addition, removal of the humerus at the time of amputation (eliminating any contribution from pre-existing cartilage), has provided evidence for an increased representation of cells carrying the connective tissue marker in regenerate cartilage but did not affect the representation of cells carrying the muscle cell marker.  相似文献   

10.
11.
Summary In order to study mitogenic control during axolotl limb regeneration, we have developed a primary blastema cell culture as a very sensitive bioassay for blastema mitogens. Transferrin, an iron-binding glycoprotein which has been shown to be the neurotrophic factor for muscle cells, is the mitogen which has been analysed in the present report. Addition of approximately 2 g human transferrin/ ml of serum-free culture medium enhances blastema cell proliferation 11-fold over control levels and 2-fold over that produced by the addition of nerve extracts or purified growth factors extracted from nerve tissues (basic and acidic fetal growth factor, FGF). At a higher concentration (20 g/ml), transferrin alone has no mitogenic effect unless the medium is also supplemented with FeCl3 (100 M). The results are discussed with regard to the sensitivity of the blastema cell culture bioassay and in the context of the neurotrophic theory of urodele limb regeneration.  相似文献   

12.
Three amputation surfaces were formed on the lower arm of a single newt. Growth occurred on all combinations of these surfaces. The proximal surface (the only single surface to form regenerates) produced more regenerates (76% of the cases) than the two more distal surfaces. Blocking the proximal surface with whole skin greatly stimulates the production of accessory structures on the first and/or second more distal surfaces. The mean number of nerve fibers on the proximal surface is considerably higher than the nerve counts of the first more and second most distal surfaces. Limbs possessing a notch or digit(s) on the proximal surface and the absence of growth on the first more and second distal surfaces also show a decrease in nerve number on the first more and second most distal surfaces. An analysis of the mean number of nerve fibers on the blocked (proximal) surface shows a noticeable decrease in comparison with nerve fibers in an equivalent level on normal limbs. Nerve fiber counts on the first more and second most distal surfaces are markedly increased on those limbs where the proximal surface was blocked with whole skin. Threshold experiments suggest that the irregular occurrence of accessory structures on the first more distal and second most distal surfaces may be related to an insufficient number of nerve fibers on these surfaces. Similarly, a possible explanation for the regular occurrence of accessory structures on the proximal surface is that nerve number on this surface is always above threshold.  相似文献   

13.
The proximodistal identity of a newt limb regeneration blastema is respecified by exposure to retinoic acid, but its molecular basis is unclear. We identified from a differential screen the cDNA for Prod 1, a gene whose expression in normal and regenerating limbs is regulated by proximodistal location and retinoic acid: Prod 1 is the newt ortholog of CD59. Prod 1/CD59 was found to be located at the cell surface with a GPI anchor which is cleaved by PIPLC. A proximal newt limb blastema engulfs a distal blastema after juxtaposition in culture, and engulfment is specifically blocked by PIPLC, and by affinity-purified antibodies to two distinct Prod 1/CD59 peptides. Prod 1 is therefore a cell surface protein implicated in the local cell-cell interactions mediating positional identity.  相似文献   

14.
15.
16.
In urodele amphibians, an early step in limb regeneration is skeletal muscle fiber dedifferentiation into a cellulate that proliferates to contribute new limb tissue. However, mammalian muscle cannot dedifferentiate after injury. We have developed a novel, small-molecule-based method to induce dedifferentiation in mammalian skeletal muscle. Muscle cellularization was induced by the small molecule myoseverin. Candidate small molecules were tested for the induction of proliferation in the cellulate. We observed that treatment with the small molecules BIO (glycogen synthase-3 kinase inhibitor), lysophosphatidic acid (pleiotropic activator of G-protein-coupled receptors), SB203580 (p38 MAP kinase inhibitor), or SQ22536 (adenylyl cyclase inhibitor) induced proliferation. Moreover, these proliferating cells were multipotent, as confirmed by the chemical induction of mesodermal-derived cell lineages. Microarray analysis showed that the multipotent, BIO-treated cellulate possessed a markedly different gene expression pattern than lineage-restricted C2C12 myoblasts, especially for genes related to signal transduction and differentiation. Sequential small molecule treatment of the muscle cellulate with BIO, SB203580, or SQ22536 and the aurora B kinase inhibitor, reversine, induced the formation of cells with neurogenic potential (ectodermal lineage), indicating the acquirement of pluripotency. This is the first demonstration of a small molecule method that induces mammalian muscle to undergo dedifferentiation and rededifferentiation into alternate cell lineages. This method induces dedifferentiation in a simple, stepwise approach and has therapeutic potential to enhance tissue regeneration in mammals.  相似文献   

17.
Cell proliferation during the early phase of growth in regenerating amphibian limbs requires a permissive influence of nerves. Based on analyses of proliferative activity in denervated blastemas, it was proposed that nerves provide factors important for cells to complete the proliferative cycle rather than for mitogenesis itself. One such factor, the iron-transport protein transferrin (Tf), is abundant in regenerating peripheral nerves where it is axonally transported and released at growth cones. Using blastemas in organ culture, which have been widely used in previous investigations of the neural effect on growth, it was shown here that the growth-promoting activity of neural extract was completely removed by immuno-absorption with antiserum against Tf and restored by addition of Tf. Purified Tf or a low molecular weight ferric ionophore were as active as the neural extract in this assay, indicating that the trophic effect of Tf involves its capacity for iron delivery. Both Tf and ferric ionophore also maintained DNA synthesis in denervated blastemas in vivo . A dose-response assay indicated that purified axolotl Tf stimulates growth of cultured blastemal cells at concentrations as low as 100 ng/mL. The Tf mRNA in axolotl nervous tissue was shown by northern analysis to be similar in size to that of liver. These results are discussed together with those from previous in vitro studies of blastemal growth and support the hypothesis that cell division in the blastema depends on axonally released Tf during the early, nerve-dependent phase of limb regeneration.  相似文献   

18.
19.
Following peripheral nerve deviation in the limbs of urodele amphibians axons regrow distally toward their previous target muscles (Holder et al. 1984; Proc. Roy. Soc. Lond. B 222, 477-489). This study describes analysis of this axon regeneration over time following deviation of the forearm flexor nerve in Triturus cristatus and the extensor cranialis nerve in the axolotl. Using horseradish peroxidase (HRP) axonal tracing, electrophysiology and electron microscopy, we describe the sequence of events leading to reestablishment of functional innervation. HRP fills reveal axons leaving the deviated nerve via a number of possible routes and they invariably grow distally. Many axons take a path close to that of the original nerve but others fasciculate forming parallel paths. Electrophysiology and electron microscopy show that axons in the deviated region of the nerve degenerate extensively compared with cut, but undeviated, controls. The results are discussed in terms of the possible axon-growth-promoting mechanisms that result in directed growth.  相似文献   

20.
Adult urodele amphibians, such as the newt, can regenerate their limbs and various other structures. This is the result of the plasticity and reprogramming of residual differentiated cells, rather than the existence of a 'reserve-cell' mechanism. The recent demonstrations of plasticity in mouse myotubes should facilitate comparative studies of the pathways that underlie the regenerative response, as well as proposing new approaches to promote mammalian regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号