首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carra S  Seguin SJ  Landry J 《Autophagy》2008,4(2):237-239
Protein quality control involves molecular chaperones that recognize misfolded proteins thereby preventing their aggregation, and associated co-chaperones that modulate substrate sorting between renaturation and proteasomal degradation. We recently described a new chaperone complex that stimulates degradation of protein substrates by macroautophagy. The complex is formed of HspB8, a member of the HspB family of molecular chaperones, which is found mutated in neuromuscular diseases, and Bag3, a member of the co-chaperone family of Bag domain-containing proteins. In this complex, Bag3 was shown to be responsible for macroautophagy stimulation. Here we analyzed the role of the three Bag3 canonical protein interaction domains. We show that the proline-rich region is essential for the Bag3-mediated stimulation of mutated huntingtin clearance. Surprisingly, deletion of the BAG domain that mediates Bag3 interaction with Hsp70 and Blc-2, did not affect its activity. We propose that in the HspB8- Bag3 complex, HspB8 is responsible for recognizing the misfolded proteins whereas Bag3, at least in part through its proline-rich domain, might recruit and activate the macroautophagy machinery in close proximity to the chaperone-loaded substrates.  相似文献   

2.
《Autophagy》2013,9(2):237-239
Protein quality control involves molecular chaperones that recognize misfolded proteins thereby preventing their aggregation, and associated co-chaperones that modulate substrate sorting between renaturation and proteasomal degradation. We recently described a new chaperone complex that stimulates degradation of protein substrates by macroautophagy. The complex is formed of HspB8, a member of the HspB family of molecular chaperones, which is found mutated in neuromuscular diseases, and Bag3, a member of the co-chaperone family of Bag domain-containing proteins. In this complex, Bag3 was shown to be responsible for macroautophagy stimulation. Here we analyzed the role of the three Bag3 canonical protein interaction domains. We show that the proline-rich region is essential for the Bag3-mediated stimulation of mutated huntingtin clearance. Surprisingly, deletion of the BAG domain that mediates Bag3 interaction with Hsp70 and Blc-2, did not affect its activity. We propose that in the HspB8-Bag3 complex, HspB8 is responsible for recognizing the misfolded proteins whereas Bag3, at least in part through its proline-rich domain, might recruit and activate the macroautophagy machinery in close proximity to the chaperone-loaded substrates.

Addendum to: Carra S, Seguin SJ, Lambert H, Landry J. HSPB8 chaperone activity towards poly-Q containing proteins depends on its association with BAG3, a stimulator of macroautophagy. J Biol Chem 2007; In press.  相似文献   

3.
《Autophagy》2013,9(1):120-121
The Bcl-2 associated athanogene (BAG) family of proteins function as cochaperones by bridging molecules that recruit molecular chaperones to target proteins. BAG-1 provides a physical link between the heat shock proteins Hsc70/Hsp70 and the proteasome to facilitate ubiquitin-proteasome-mediated protein degradation. In addition to the proteasome, protein degradation via autophagy is responsible for maintaining cellular metabolism, organelle homeostasis and redox equilibrium. Our recent report shows that autophagy plays an important role in cardiac adaptation-induced cell survival against ischemia-reperfusion injury in association with the BAG-1 protein. BAG-1 is associated with the autophagosomal membrane protein LC3-II and it may participate in the induction of autophagy via Hsc70. Moreover, another BAG family member, BAG-3, is responsible for the induction of macroautophagy in association with HspB8. These results show the involvement of BAG family members in the induction of autophagy for the degradation of damaged or oxidized proteins to promote cell survival.  相似文献   

4.
Macroautophagy is a regulated bulk degradation process of cellular components, mainly long-lived proteins or cytoplasmic organelles. Nutrient depletion is a classic inducer of macroautophagy. In this report, we have induced heat-mediated macroautophagy in several cell lines in the absence of nutrient depletion. Heat treatment increased the autophagic markers LC3-I and LC3-II at the protein levels. Interestingly, expression of a constitutively active HSF1 mutant suppressed basal LC3-II protein level and heat-induced increase of LC3-II. Our results provide evidence that heat is a potent inducer of macroautophagy in mammalian cells, and implicate the negative role of active HSF1 in this process.  相似文献   

5.
Interaction of human Bag3 with small heat shock proteins HspB6, HspB8 and its K141E mutant was analyzed by different biochemical methods. The data of size-exclusion chromatography indicate that the wild type HspB8 forms tight complexes with Bag3. K141E mutant of HspB8 and especially HspB6 weaker interact with Bag3. The data of chemical crosslinking and analytical ultracentrifugation indicate that in vitro the stoichiometry of complexes formed by HspB8 and Bag3 is variable and is dependent on concentration of protein partners. Interaction of Bag3 and HspB8 is accompanied by increase of thermal stability measured by intrinsic tryptophan fluorescence and increased resistance to limited chymotrypsinolysis. The data of size-exclusion chromatography, analytical ultracentrifugation and limited proteolysis indicate that Bag3 belongs to the group of intrinsically disordered proteins. It is supposed that having unordered structure Bag3 might weakly interact with different small heat shock proteins which recognize unfolded proteins and this interaction is especially strong with intrinsically disordered HspB8. The complexes formed by Bag3 and HspB8 might have variable stoichiometry and can participate in different processes including clearing of the cell from improperly folded proteins.  相似文献   

6.
Ubiquilin proteins are conserved across all eukaryotes and function in the regulation of protein degradation. We found that ubiquilin functions to regulate macroautophagy and that the protein is also a substrate of chaperone-mediated autophagy.Key words: autophagy, cell death, LC3, protein turnover, ubiquitinUbiquilin proteins are present in all eukaryotes and appear to function in protein degradation pathways. Humans contain four ubiquilin genes each encoding a separate protein. The proteins are approximately 600 amino acids in length and share extensive homology with one another. They are characterized by an N-terminal sequence that is very similar to ubiquitin, called the ubiquitin-like domain (UBL), followed by a longer, more variable central domain, and terminate with a conserved 50-amino-acid sequence called a ubiquitin-associated domain (UBA). This structural organization is characteristic of proteins that function to deliver ubiquitinated proteins to the proteasome for degradation. In accordance with this function, the UBL domain of ubiquilin binds subunits of the proteasome, and its UBA domain binds to polyubiquitin chains that are typically conjugated onto proteins that are marked for destruction. Indeed, we recently showed that ubiquilin is recruited to the endoplasmic reticulum where it binds and promotes the degradation of misfolded proteins to the proteasome during ER-associated degradation (ERAD).Remarkably, ubiquilin was also recently reported to be involved in macroautophagy. The finding was based on colocalization of ubiquilin with autophagosomal marker LC3 in cells, and because overexpression of ubiquilin-1 suppresses and silencing of its expression enhances, starvation-induced cell death. In our recently published paper we describe our evidence linking ubiquilin to autophagy. We demonstrate that ubiquilin is indeed present in different structures associated with macroautophagy and that it is required for a critical step in autophagosome formation. Additionally, we also demonstrate that ubiquilin is a substrate of chaperone-mediated autophagy. The findings suggest that ubiquilin might play an important, and perhaps a crucial, role in dictating the pathway of protein degradation in cells.In previous studies we found that ubiquilin proteins expressed in normal growing HeLa cells are very stable with a rate of turnover in excess of 20 h. Because most long-lived proteins are degraded by autophagy, we felt it was important to distinguish whether ubiquilin localization in autophagosomes was simply related to the expected route of degradation of the protein or whether it was related to some special function in autophagy. Accordingly, our experiments were designed to distinguish between these two possibilities.Using double immunofluorescence microscopy we found that endogenous ubiquilin and LC3 proteins are present in puncta in HeLa cells. To ensure this was not an artifact of the staining procedure, we cotransfected HeLa cells with ubiquilin-1 and LC3 expression constructs that were tagged with either mRFP or GFP proteins and again found that the two expressed proteins are colocalized in puncta, irrespective of which tag was fused to the proteins. Further evidence supporting ubiquilin localization to autophagosomes was obtained by showing strong enrichment of ubiquilin proteins upon purification of autophagosomes from mouse liver and by the strong immunogold staining of the protein in autophagosomes in mouse brains in a transgenic mouse model of Alzheimer disease.To determine if ubiquilin localization to autophagosomes is mediated by interaction with LC3 we conducted immunoprecipitation experiments to examine whether the two proteins coimmunoprecipitate with each other. Indeed, our results showed that the two proteins coimmunoprecipitate with one another, indicating that they bind together in a complex. However, we did not detect any strong binding between bacterially expressed forms of the proteins, suggesting that the interaction between the proteins in cells might be mediated by a bridging factor(s).We next used a pH-sensitive tandem-tagged mCherry-GFP-LC3 reporter that is used to monitor maturation of autophagosomes to autolysosomes to determine whether ubiquilin is present during the different steps of macroautophagy. Indeed, we found that anti-ubiquilin staining is present throughout the different structures involved in the process, and interestingly, we also noted that the structures are enriched for K48- and K63-ubiquitin linkages. Because ubiquilin contains a UBA domain that binds ubiquitin chains we examined whether proteins containing K48- and K63-ubiquitin linkages coimmunoprecipitate with ubiquilin. Indeed, our immunoblots indicated that proteins containing both of these types of linkages coprecipitate with ubiquilin, consistent with the idea that ubiquilin might target proteins with diverse ubiquitin linkages for degradation by autophagy.To determine if ubiquilin is required for autophagy, we knocked down the ubiquilin-1 and -2 proteins in HeLa cells (which mainly express these two ubiquilin isoforms) by siRNA transfection and examined if loss of the proteins altered LC3-I and LC3-II levels. Interestingly, we found that ubiquilin knockdown over a 72 h time period is associated with a progressive increase in LC3-I levels and a concomitant decrease in LC3-II levels. Furthermore, ubiquilin knockdown led to an ∼45% reduction in the number of cells containing five or more autophagosomes. Based on these results we propose that ubiquilin is required for maturation of LC3-I to LC3-II, which we speculate might be related to the requirement of the protein in macroautophagy.We next asked if ubiquilin protein is consumed during autophagy. We examined this by treating HeLa cells with puromycin to induce protein misfolding and macroautophagy. Immunoblot analysis of the protein lysates examined at 2 h intervals over a 7 h period of exposure to puromycin revealed a direct correlation between stimulation of macroautophagy and a time-dependent decrease in the ubiquilin and LC3-II protein levels. The time-dependent decline in the proteins is inhibited by treatment of cells with two different autophagy inhibitors, 3-methyladenine and bafilomycin A1. The results suggest that ubiquilin protein is consumed during macroautophagy.The consumption of ubiquilin during macroautophagy prompted us to examine if ubiquilin might also be involved in chaperone-mediated autophagy (CMA), which involves the active transport of proteins into lysosomes. Support for this idea arose because ubiquilin proteins contain two sequences that conform to a pentapeptide motif involved in CMA. An in vitro CMA assay using recombinant GST-ubiquilin-1 fusion protein and purified lysosomes confirmed ubiquilin is an active CMA substrate. The results suggested that ubiquilin can be consumed by two different types of autophagy, macroautophagy and CMA. We speculate that this dual mode of consumption may provide a potential switch whereby changes in ubiquilin levels beyond a certain threshold might trigger execution of either macroautophagy or CMA. The idea that such a switch exists stems from previous work that showed inhibition of CMA can lead to activation of macroautophagy and vice versa.Several intriguing new questions emerge from this and previous works, including what exact function ubiquilin serves in autophagy, particularly in the execution of macroautophagy and CMA. Is there a signal that instructs ubiquilin to choose between its known functions in autophagy and ERAD or is the choice random? What role do its different domains play in these processes? The answers to these questions are likely to be important because in previous studies we showed that overexpression of ubiquilin protects cells against potentially toxic mutant huntingtin proteins containing polyglutamine expansions. In our new work we also found that ubiquilin overexpression protects cells against starvation-induced cell death caused by mutations in presenilin-2 proteins. The underlying conclusion from these studies is that ubiquilin appears to play important roles in regulating protein degradation pathways that are likely to have important implications in cell survival. Clearly, understanding ubiquilin function in different protein degradation pathways could lead to novel approaches to prevent diseases associated with protein misfolding.  相似文献   

7.
The Hsc/Hsp70 co-chaperones of the BAG (Bcl-2-associated athanogene) protein family are modulators of protein quality control. We examined the specific roles of BAG1 and BAG3 in protein degradation during the aging process. We show that BAG1 and BAG3 regulate proteasomal and macroautophagic pathways, respectively, for the degradation of polyubiquitinated proteins. Moreover, using models of cellular aging, we find that a switch from BAG1 to BAG3 determines that aged cells use more intensively the macroautophagic system for turnover of polyubiquitinated proteins. This increased macroautophagic flux is regulated by BAG3 in concert with the ubiquitin-binding protein p62/SQSTM1. The BAG3/BAG1 ratio is also elevated in neurons during aging of the rodent brain, where, consistent with a higher macroautophagy activity, we find increased levels of the autophagosomal marker LC3-II as well as a higher cathepsin activity. We conclude that the BAG3-mediated recruitment of the macroautophagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro-oxidant and aggregation-prone milieu characteristic of aging.  相似文献   

8.
Rosenfeldt MT  Nixon C  Liu E  Mah LY  Ryan KM 《Autophagy》2012,8(6):963-969
(Macro)Autophagy is a phylogenetically conserved membrane-trafficking process that functions to deliver cytoplasmic cargoes to lysosomes for digestion. The process is a major mechanism for turnover of cellular constituents and is therefore critical for maintaining cellular homeostasis. Macroautophagy is characteristically distinct from other forms of autophagy due to the formation of double-membraned vesicles termed autophagosomes which encapsulate cargoes prior to fusion with lysosomes. Autophagosomes contain an integral membrane-bound form (LC3-II) of the microtubule-associated protein 1 light chain 3 β (MAP1LC3B), which has become a gold-standard marker to detect accumulation of autophagosomes and thereby changes in macroautophagy. Due to the role played by macroautophagy in various diseases, the detection of autophagosomes in tissue sections is frequently desired. To date, however, the detection of endogenous LC3-II on paraffin-embedded tissue sections has proved problematic. We report here a simple, optimized and validated method for the detection of LC3-II by immunohistochemistry in human and mouse tissue samples that we believe will be a useful resource for those wishing to study macroautophagy ex vivo.  相似文献   

9.
《Autophagy》2013,9(6):963-969
(Macro)Autophagy is a phylogenetically conserved membrane-trafficking process that functions to deliver cytoplasmic cargoes to lysosomes for digestion. The process is a major mechanism for turnover of cellular constituents and is therefore critical for maintaining cellular homeostasis. Macroautophagy is characteristically distinct from other forms of autophagy due to the formation of double-membraned vesicles termed autophagosomes which encapsulate cargoes prior to fusion with lysosomes. Autophagosomes contain an integral membrane-bound form (LC3-II) of the microtubule-associated protein 1 light chain 3 β (MAP1LC3B), which has become a gold-standard marker to detect accumulation of autophagosomes and thereby changes in macroautophagy. Due to the role played by macroautophagy in various diseases, the detection of autophagosomes in tissue sections is frequently desired. To date, however, the detection of endogenous LC3-II on paraffin-embedded tissue sections has proved problematic. We report here a simple, optimized and validated method for the detection of LC3-II by immunohistochemistry in human and mouse tissue samples that we believe will be a useful resource for those wishing to study macroautophagy ex vivo.  相似文献   

10.
Zhang N  Chen Y  Jiang R  Li E  Chen X  Xi Z  Guo Y  Liu X  Zhou Y  Che Y  Jiang X 《Autophagy》2011,7(6):598-612
The epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites proven to trigger both apoptotic and necrotic cell death of tumor cells. However, the underlying mechanism of their regulatory role in macroautophagy and the interplay between autophagy and apoptosis initiated by the ETPs, remain unexplored. In the current work, we found that 11'-deoxyverticillin A (C42), a member of the ETPs, induces autophagosome formation, accumulation of microtubule-associated protein 1 light chain 3-II (LC3-II ) and degradation of sequestosome 1 (SQSTM1/p62). In addition, the LC3-II accrual and p62 degradation occur prior to caspase activation and coincide with PARP activation. Inhibition of autophagy by either chemical inhibitors or by RNA interference single knockdown of essential autophagic genes partially reduces the cell death and the cleavage of both caspase 3 and PARP. Necrostatin-1, a specific inhibitor of necroptosis, inhibits both the augmentation of LC3-II and the cleavage of caspase 3, which was confirmed by depletion of receptor-interacting protein 1 (RIP-1), a crucial necrostatin-1-targeted adaptor kinase mediating cell death and survival. Moreover, inhibition of PARP by either chemical inhibitors or RNA interference provides obvious protection for cell viability and suppresses the LC3-II accretion caused by C42 treatment. Interestingly, double silencing of LC3 and p62 completely suppressed PARP cleavage and concurrently and maximally augmented the PAR formation induced by C42. Collectively, we have demonstrated that C42 enhances the cellular autophagic process, which requires both PARP and RIP-1 participation, preceding and possibly augmenting, the caspase-dependent apoptotic cell death.  相似文献   

11.
《Autophagy》2013,9(6):598-612
The epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites proven to trigger both apoptotic and necrotic cell death of tumor cells. However, the underlying mechanism of their regulatory role in macroautophagy and the interplay between autophagy and apoptosis initiated by the ETPs, remain unexplored. In the current work, we found that 11'-deoxyverticillin A (C42), a member of the ETPs, induces autophagosome formation, accumulation of microtubule-associated protein 1 light chain 3-II (LC3-II ) and degradation of sequestosome 1 (SQSTM1/p62). In addition, the LC3-II accrual and p62 degradation occur prior to caspase activation and coincide with PARP activation. Inhibition of autophagy by either chemical inhibitors or by RNA interference single knockdown of essential autophagic genes partially reduces the cell death and the cleavage of both caspase 3 and PARP. Necrostatin-1, a specific inhibitor of necroptosis, inhibits both the augmentation of LC3-II and the cleavage of caspase 3, which was confirmed by depletion of receptor-interacting protein 1 (RIP-1), a crucial necrostatin-1-targeted adaptor kinase mediating cell death and survival. Moreover, inhibition of PARP by either chemical inhibitors or RNA interference provides obvious protection for cell viability and suppresses the LC3-II accretion caused by C42 treatment. Interestingly, double silencing of LC3 and p62 completely suppressed PARP cleavage and concurrently and maximally augmented the PAR formation induced by C42. Collectively, we have demonstrated that C42 enhances the cellular autophagic process, which requires both PARP and RIP-1 participation, preceding and possibly augmenting, the caspase-dependent apoptotic cell death.  相似文献   

12.
Conformational diseases are associated with the conversion of normal proteins into aggregation-prone toxic conformers with structures similar to that of β-amyloid. Spatial distribution of amyloid-like proteins into intracellular quality control centers can be beneficial, but cellular mechanisms for protective aggregation remain unclear. We used a high-copy suppressor screen in yeast to identify roles for the Hsp70 system in spatial organization of toxic polyglutamine-expanded Huntingtin (Huntingtin with 103Q glutamine stretch [Htt103Q]) into benign assemblies. Under toxic conditions, Htt103Q accumulates in unassembled states and speckled cytosolic foci. Subtle modulation of Sti1 activity reciprocally affects Htt toxicity and the packaging of Htt103Q into foci. Loss of Sti1 exacerbates Htt toxicity and hinders foci formation, whereas elevation of Sti1 suppresses Htt toxicity while organizing small Htt103Q foci into larger assemblies. Sti1 also suppresses cytotoxicity of the glutamine-rich yeast prion [RNQ+] while reorganizing speckled Rnq1–monomeric red fluorescent protein into distinct foci. Sti1-inducible foci are perinuclear and contain proteins that are bound by the amyloid indicator dye thioflavin-T. Sti1 is an Hsp70 cochaperone that regulates the spatial organization of amyloid-like proteins in the cytosol and thereby buffers proteotoxicity caused by amyloid-like proteins.  相似文献   

13.
《Autophagy》2013,9(2):84-91
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D, and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

14.
15.
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

16.
Macroautophagy is a cellular mechanism for the clearance of protein aggregates and damaged organelles. Impaired macroautophagy has been observed in neurodegenerative disorders. We investigated the macroautophagy pathway in essential tremor (ET) cases compared to age-matched controls. We analyzed microtubule-associated protein light chain 3-II (LC3-II), S6K, phosphorylated S6K, beclin-1, and mitochondrial membrane proteins levels by Western blot in the post-mortem cerebellum of 10 ET cases and 11 controls. We also performed immunohistochemistry in 12 ET cases and 13 controls to quantify LC3 clustering in Purkinje cells (PCs). LC3-II protein levels were significantly lower in ET cases vs. controls on Western blot (0.84±0.14 vs. 1.00±0.14, p = 0.02), and LC3-II clustering in PCs by immunohistochemistry was significantly lower in ET cases vs. controls (2.03±3.45 vs. 8.80±9.81, p = 0.03). In ET cases, disease duration was inversely correlated with LC3-II protein level (r = −0.64, p = 0.046). We found that mitochondrial membrane proteins were accumulated in ET (TIM23: 1.36±0.11 in ET cases vs. 1.00±0.08 in controls, p = 0.02; TOMM20: 1.63±0.87 in ET cases vs. 1.00±0.14 in controls, p = 0.03). Beclin-1, which is involved in macroautophagy, was strikingly deficient in ET (0.42±0.13 vs. 1.00±0.35, p<0.001). Decreased macroautophagy was observed in the ET cerebellum, and this could be due to a decrease in beclin-1 levels, which subsequently lead to mitochondrial accumulation as a result of autophagic failure. This provides a possible means by which perturbed macroautophagy could contribute to PC pathology in ET.  相似文献   

17.
Macroautophagy is a major degradation mechanism of cell components via the lysosome. Macroautophagy greatly contributes to not only cell homeostasis but also the prevention of various diseases. Because macroautophagy proceeds through multi-step reactions, researchers often face a persistent question of how macroautophagic activity can be measured correctly. To make a straightforward determination of macroautophagic activity, diverse monitoring assays have been developed. Direct measurement of lysosome-dependent degradation of radioisotopically labeled cell proteins has long been applied. Meanwhile, indirect monitoring procedures have been developed. In these assays, autophagosome marker proteins, microtubule-associated proteins 1A/1B light chain 3B-II (LC3B-II) and gamma-aminobutyric acid receptor-associated protein-II (GABARAP-II) have been analyzed and the validity of the assays strongly depends on appropriate assessment of the fluctuation of LC3-II and/or GABARAP-II levels in the presence or absence of lysosomal inhibitors. This article describes these monitoring methods, paying special attention to the principles and characteristics of each procedure.  相似文献   

18.
The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G2/M cell cycle arrest which was associated with the formation of LC3+ autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.  相似文献   

19.
Skeletal muscle fibers show a high level of constitutive and starvation-induced macroautophagy. Sporadic Inclusion Body Myositis (sIBM) is the most common acquired skeletal muscle disease in patients above the age of 50 years and is characterized by inflammation and intracellular accumulation of aggregate-prone proteins such as amyloid precursor protein (APP)/beta-amyloid, hyperphosphorylated tau, and presenilin. In a recent study, we found that muscle fibers of sIBM patients show increased frequencies of Atg8/LC3(+) autophagosomes and that intracellular APP/beta-amyloid colocalized with Atg8/LC3 in degenerating fibers. Colocalization of APP/beta-amyloid with LC3(+) autophagosomes was further associated with upregulation of major histocompatibility complex (MHC) class I and class II molecules and T cell infiltration. These findings indicate that APP/beta-amyloid is a substrate for autophagy in skeletal muscle fibers and suggest that degradation of aggregate-prone proteins via macroautophagy can be linked with both immune-mediated and degenerative tissue damage. A better understanding of this pathway in skeletal muscle and in the inflammatory environment of sIBM might provide a rationale for novel therapeutic strategies targeting pathogenic protein aggregation.  相似文献   

20.
Little is known about the protein constituents of autophagosome membranes in mammalian cells. Here we demonstrate that the rat microtubule-associated protein 1 light chain 3 (LC3), a homologue of Apg8p essential for autophagy in yeast, is associated to the autophagosome membranes after processing. Two forms of LC3, called LC3-I and -II, were produced post-translationally in various cells. LC3-I is cytosolic, whereas LC3-II is membrane bound. The autophagic vacuole fraction prepared from starved rat liver was enriched with LC3-II. Immunoelectron microscopy on LC3 revealed specific labelling of autophagosome membranes in addition to the cytoplasmic labelling. LC3-II was present both inside and outside of autophagosomes. Mutational analyses suggest that LC3-I is formed by the removal of the C-terminal 22 amino acids from newly synthesized LC3, followed by the conversion of a fraction of LC3-I into LC3-II. The amount of LC3-II is correlated with the extent of autophagosome formation. LC3-II is the first mammalian protein identified that specifically associates with autophagosome membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号