首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
[目的]构建含犬干扰素-γ(c IFN-γ)基因的重组腺病毒,并在培养的犬肾细胞MDCK中分析其抗犬细小病毒的活性.[方法]首先将cIFN-γcNDA基因克隆到腺病毒穿梭质粒中,构建成含cIFN-γ基因的腺病毒穿梭质粒pShuttle3-cIFN-γ.利用特异的酶切位点,通过直接连接法将cIFN-γ表达盒插入到腺病毒基因组质粒pAdeno-X中,构建成含cIFN-γ基因的腺病毒基因组质粒pAd-cIFN-γ.pAd-cIFN-γ质粒经酶切线性化后转染人胚胎肾细胞HEK293T,在细胞中拯救出含有cIFN-γ基因的复制缺陷型重组腺病毒.然后用该重组腺病毒处理(感染)培养的犬肾细胞MDCK,再用犬细小病毒感染重组腺病毒处理的细胞,分析重组腺病毒在体外抗犬细小病毒的活性.[结果]通过连接法构建了含cIFN-γ基因的重组腺病毒,构建的重组腺病毒能够介导cIFN-γ在MDCK细胞中进行分泌表达.用含cIFN-γ基因的重组腺病毒处理MDCK细胞,可明显地抑制犬细小病毒在细胞中的增殖,表明构建的重组腺病毒具有明显的抗犬细小病毒的活性.[结论]构建了含cIFN-γ基因的重组腺病毒,并证明该重组病毒在体外具有明显的抗犬细小病毒的活性.  相似文献   

2.
应用PCR方法扩增犬细小病毒VP2基因,将其克隆至Bac-to-Bac杆状病毒表达系统中的转移载体pFastBacHTc上,命名为pFastBacHTc-VP2,将人工合成的犬瘟热病毒抗原表位基因T'TB克隆至VP2基因的上游,命名为 pFastBacHTc-T'TB-VP2.进而转化含穿梭载体Bacmid的感受态细胞DH10Bac中,获得携带犬瘟热病毒T'TB细胞表位和犬细小病毒VP2基因的重组转染质粒Bacmid-BacHT-T'TB-VP2,将其转染昆虫细胞Sf-9后获得融合重组T'TB-VP2蛋白,大小约为70 ku.经Western blot分析,结果显示:表达的蛋白具有良好的免疫原性.表达的重组蛋白在无佐剂参与的情况下,按确定的免疫程序免疫6~8周龄的BALB/c小鼠,检测小鼠的体液免疫学指标.结果表明:表达蛋白能诱导小鼠产生抗CDV和CPV的特异性中和抗体.本实验为重组犬瘟热与犬细小病毒新型亚单位疫苗的研制奠定了重要的物质基础.  相似文献   

3.
根据Bergeron等报道的猪细小病毒(PPV)基因组,设计一对包含VP2全基因的PCR引物,上下游均引入一个BamHI位点,扩增得到VP2基因后,将其插入到pUSK载体中,构建了转移载体pUSK-VP2.采用脂质体介导的转染方法,将伪狂犬病毒TK-/gG-/LacZ 株的基因组DNA与pUSK-VP2共转染PK-15细胞,待细胞病变后收集病毒液,在空斑纯化的同时,利用检测PPV VP2基因和LacZ基因的PCR方法筛选重组病毒TK-/gG-/VP 2株,Southern blotting、SDS-PAGE、Western blotting和电镜观察鉴定重组病毒,并在不同细胞上测定重组病毒的增殖滴度,接种小鼠进行安全性试验.结果发现,外源基因VP2已成功地插入到TK-/gG-/LacZ 亲本株的基因组中,并获得了表达.表达的VP2蛋白可以与猪细小病毒阳性血清反应,而且可以自行装配成病毒样颗粒.同时发现,VP2基因的插入不影响重组病毒的增殖特性,其毒力与亲本株相当.  相似文献   

4.
腺相关病毒 (adeno- associated virus,AAV)属细小病毒科 ,是一种最小的动物病毒 .具有其他病毒载体所没有的优点 ,在基因治疗中日益受到瞩目 .以 AAV的一种多克隆载体为基础 ,构建了携带 MDR1基因的重组腺相关病毒载体 (r AAV- MDR1 ) ,经 2 93细胞包装成重组病毒 .将重组质粒、重组病毒分别转染和感染 NIH3T3细胞 ,用 PCR和 MTT法检测了人 MDR1基因的转导及表达 .为 MDR1基因用于临床和腺相关病毒载体在基因治疗中的应用提供了依据  相似文献   

5.
目的:构建人乳头瘤病毒16型与11型L1基因双价重组杆状病毒转移质粒并对其进行鉴定。方法:采用:PCR法从尖锐湿疣组织标本中扩增人乳头瘤病毒11型晚期基因L1,并对其进行克隆测序;利用基因重组技术将人乳头瘤病毒16型和11型L1晚期基因共同装入杆状病毒转移载体中,分别位于强启动子Ppolh和弱启动子P10之下;利用酶切和PCR技术对双价重组杆状病毒转移质粒进行鉴定。结果:PCR扩增法获得尖税湿疣组织中感染的人乳头瘤病毒11型的L1基因,得到人乳头瘤病毒16型L1和11型L1基因双价重组杆状病毒转移质粒,经酶切电泳鉴定验证重组成功。结论:本研究成功构建了双价重组杆状病毒转移质粒,为进一步构建双价L1蛋白表达系统进而建立双价基因工程亚单位疫苗打下基础。  相似文献   

6.
恶性肿瘤是一种严重危害人类生命和健康的疾病,而致瘤性DNA病毒是多种恶性肿瘤的主要致病因子.致瘤性DNA病毒的整合可以使宿主细胞正常组织逐步向炎症组织转变,并可导致癌变.病毒整合可引起宿主细胞基因组不稳定和重排,产生新的融合基因,并导致宿主基因表达异常,也是病毒本身得以复制,逃避宿主免疫识别并长期维系自我生存的机制之一.本文综述了目前对致瘤性DNA病毒整合规律以及致瘤性DNA病毒整合致瘤效应的研究和进展,并展望致瘤性DNA病毒整合的研究方向以及在肿瘤发生、发展、诊断和治疗上的应用前景.  相似文献   

7.
将分别编码猪细小病毒(PPV)主要免疫保护性抗原VP2蛋白与大肠杆菌不耐热肠毒素B亚单位(LTB)基因插入乳酸杆菌细胞表面表达载体pPG中, 成功构建了重组表达载体pPG-VP2-LTB, 将其电转化干酪乳杆菌Lactobacillus casei 393, 获得了表达猪细小病毒VP2-LTB融合蛋白的重组乳酸菌表达系统, 经2%乳糖诱导, SDS-PAGE和Western-blot检测表明, 有大小约78 kD的蛋白得到了表达, 具有与天然病毒蛋白一样的抗原特异性, 全细胞ELISA结果表明, LTB同  相似文献   

8.
摘要:【目的】利用真核细胞分泌表达犬细小病毒VP2蛋白和研究其特性。【方法】为构建犬细小病毒(Canine parvovirus, CPV)VP2基因的真核分泌型表达载体,首先通过酶切从含有人CD5信号肽序列的质粒中将CD5信号肽基因片段切出,将其连接到真核表达载体pcDNA3.1A的多克隆位点上,构建成pcDNA3.1-CD5sp质粒。然后再通过PCR方法从含有犬细小病毒VP2基因的质粒中扩增VP2基因,并将其插入到pcDNA3.1- CD5sp载体中CD5信号肽的下游,构建成VP2基因的真核分泌型表达载体pcDNA-CD5sp-VP2。经磷酸钙介导转染293T细胞,使其在真核细胞中进行分泌表达,并通过ELISA检测表达的VP2蛋白与犬转铁蛋白受体(TfR)结合的活性。【结果】序列分析结果表明,本实验构建的犬细小病毒VP2基因真核分泌型表达载体结构正确,将该表达载体转染的293T细胞,在培养基中通过Western-blot检测到有VP2重组蛋白的存在。经ELISA检测表明表达的重组VP2蛋白具有与犬转铁蛋白受体结合的活性。【结论】 利用人的CD5信号肽实现了犬细小病毒VP2蛋白在真核细胞中的分泌表达,表达的VP2蛋白具有与犬转铁蛋白受体结合的活性。  相似文献   

9.
目的:构建携带受Tet-On以及VEGF启动子双调控自杀基因HSVtk的重组腺相关病毒载体,研究其在乳腺癌细胞MCF-7中的可调控表达.方法:用PCR方法扩增VEGF启动予,将其插入pAAV/TRE/HSVtk/Tet-On中形成重组载体pAAV/VEGF/TRE/HSVtk/Tet-On质粒.进行病毒包装后得到了rAAV/VEGF/TRE/HSVtk/Tet-On重组腺相关病毒.用重组腺相关病毒感染乳腺癌细胞株MCF-7和正常乳腺HBL-100细胞,用MTT法及RT-PCR检测在Dox诱导下,GCV对rAAV感染的MCF-7细胞和HBL-100细胞的杀伤作用以及HSVtk基因在MCF-7细胞内的表达情况.结果:在rAAV+Dox+GCV组,GCV对rAAV感染的MCF-7细胞的杀伤作用明显高于rAAV+Dox组,rAAV+Dox组以及HBL-100组,并且RT-PCR结果显示经Dox诱导HSVtk表达较明显.结论:成功构建了携带双调控自杀基因的重组腺相关病毒载体,该病毒载体能有效的感染乳腺癌细胞MCF-7,并能联合GCV治疗,抑制肿瘤细胞生长,而且具有靶向性.  相似文献   

10.
为了构建HPV16型晚期蛋白重组杆状病毒,并使其在昆虫细胞中获得高效表达.首先构建2株重组杆状病毒转移质粒,分别携带人乳头瘤病毒晚期基因L1及L1和L2,再用线性化的杆状病毒DNA与该重组杆状病毒转移质粒共转染sf9昆虫细胞进行同源重组,获得2株重组杆状病毒.经鉴定该重组病毒中有目的基因存在且可表达所编码的L1或L2晚期蛋白.结果表明HPV16型晚期蛋白在昆虫细胞中获得成功表达,为HPV16型预防性基因工程亚单位疫苗的研制和诊断试剂的研究开发奠定了基础.  相似文献   

11.
Autonomous parvoviruses are small nuclear-replicating DNA viruses. The rodent parvoviruses usually are non- or weakly pathogenic in adult animals, bind to surface receptors which are expressed on most cells, and do not appear to integrate into host chromosomes during either lytic or persistent infections. Interestingly, malignant transformation of the target cells was often found to correlate with an increase in their capacity for amplifying and/or expressing the incoming parvoviral DNA, and is associated with oncolysis, i.e., the selective killing of the infected tumor cells. Moreover, the closely related parvoviruses MVM, H-1 and LuIII efficiently infect human cell lines. This finding makes these parvoviruses promising candidate vectors for therapies that require transient expression of a transduced gene. In particular, parvoviruses may be suitable to target and kill tumor cells and simultaneously deliver appropriate transgenes, e.g., genes coding for immuno-stimulatory factors. Pilot experiments performed in animals to assess whether parvovirus-based vectors carrying the interleukin 2 (IL-2) cytokine gene have reinforced anti-cancer capacity showed that these recombinant viruses suppressed tumor formation more efficiently than viruses devoid of a transgene. Strong anti-cancer effects of recombinant parvoviruses expressing interferon gamma-inducible protein 10 (IP-10) and monocyte chemotactic protein 3 (MCP-3) were also observed against established hemangiosarcomas and melanomas in immuno-competent mice, respectively. Altogether, these data illustrate the enormous potential of recombinant autonomous parvoviruses as anti-tumor agents and give hope of using them against human cancer.  相似文献   

12.
The current classification of parvoviruses is based on virus host range and helper virus dependence, while little data on evolutionary relationships among viruses are available. We identified and analyzed 472 sequences of parvoviruses, among which there were (virtually) full-length genomes of all 41 viruses currently recognized as individual species within the family Parvoviridae. Our phylogenetic analysis of full-length genomes as well as open reading frames distinguished three evolutionary groups of parvoviruses from vertebrates: (i) the human helper-dependent adeno-associated virus (AAV) serotypes 1 to 6 and the autonomous avian parvoviruses; (ii) the bovine, chipmunk, and autonomous primate parvoviruses, including human viruses B19 and V9; and (iii) the parvoviruses from rodents (except for chipmunks), carnivores, and pigs. Each of these three evolutionary groups could be further subdivided, reflecting both virus-host coevolution and multiple cross-species transmissions in the evolutionary history of parvoviruses. No parvoviruses from invertebrates clustered with vertebrate parvoviruses. Our analysis provided evidence for negative selection among parvoviruses, the independent evolution of their genes, and recombination among parvoviruses from rodents. The topology of the phylogenetic tree of autonomous human and simian parvoviruses matched exactly the topology of the primate family tree, as based on the analysis of primate mitochondrial DNA. Viruses belonging to the AAV group were not evolutionarily linked to other primate parvoviruses but were linked to the parvoviruses of birds. The two lineages of human parvoviruses may have resulted from independent ancient zoonotic infections. Our results provide an argument for reclassification of Parvovirinae based on evolutionary relationships among viruses.  相似文献   

13.
The preferential expression of autonomous parvoviruses in tumour cells and their oncolytic activity has attracted attention to the potential use of these viruses as vectors for cancer gene therapy. Moreover, they are non-pathogenic in adult animals and they seem to be associated with low or no immunogenicity. Other interesting features are their episomal replication and high stability. Vectors derived from the autonomous parvoviruses MVM(p) or H1 express proteins that can directly or indirectly interfere with tumour development. They retain cis- and trans-acting sequences required for viral DNA amplification; the transgene replaces part of the capsid coding genes. Their development has been hampered by low titres and contamination with replication-competent virus (RCV) that is generated through homologous recombination with helper plasmids. Several approaches have been used to avoid recombination between vectors and helpers. In most instances, reducing the homology up- or downstream of the transgene in either the vector or the helper did not significantly affect RCV production. However, completely eliminating homology downstream of the transgene, splitting VP genes on different helpers or pseudotyping vectors resulted in the production of RCV-free stocks. Although VP-containing particles could sometimes be identified in these stocks by in situ hybridisation, they did not amplify and are therefore not true RCV. The integration of capsid-coding sequences into packaging cells also reduced contamination by RCV and allowed for the amplification of vectors through serial infections. Great progress has been made recently towards the generation of truly RCV-free stocks of vectors derived from autonomous parvoviruses H1 and MVMp. Combining these new vectors with a new packaging cell line should greatly facilitate their development.  相似文献   

14.
15.
16.
Porcine parvovirus (PPV) causes reproductive failure in sows and has spread worldwide. Several new types of porcine parvoviruses have recently been identified in pig herds. The prevalence of five porcine parvoviruses in the Chiangmai area of Thailand was studied. The prevalence in 80 pigs was 53% for PPV (PPV‐Kr or ‐NADL2 being the new abbreviations), 83% for PPV2 (CnP‐PARV4), 73% for PPV3 (P‐PARV4), 44% for PPV4 (PPV4), and 18% for PBo‐likeV (PBoV7). Over 60% of the pigs carried more than three of the five porcine parvoviruses and occurrence together of the two pairs of viral genes, PPV1/PPV3 and PPV2/PBo‐likeV were observed. Phylogenetic analyses for PPV2 and PPV3 indicated the existence of only two major clades of PPV2 and one major clade of PPV3.  相似文献   

17.
Liu H  Fu Y  Xie J  Cheng J  Ghabrial SA  Li G  Peng Y  Yi X  Jiang D 《Journal of virology》2011,85(19):9863-9876
Parvoviruses infect humans and a broad range of animals, from mammals to crustaceans, and generally are associated with a variety of acute and chronic diseases. However, many others cause persistent infections and are not known to be associated with any disease. Viral persistence is likely related to the ability to integrate into the chromosomal DNA and to establish a latent infection. However, there is little evidence for genome integration of parvoviral DNA except for Adeno-associated virus (AAV). Here we performed a systematic search for homologs of parvoviral proteins in publicly available eukaryotic genome databases followed by experimental verification and phylogenetic analysis. We conclude that parvoviruses have frequently invaded the germ lines of diverse animal species, including mammals, fishes, birds, tunicates, arthropods, and flatworms. The identification of orthologous endogenous parvovirus sequences in the genomes of humans and other mammals suggests that parvoviruses have coexisted with mammals for at least 98 million years. Furthermore, some of the endogenized parvoviral genes were expressed in eukaryotic organisms, suggesting that these viral genes are also functional in the host genomes. Our findings may provide novel insights into parvovirus biology, host interactions, and evolution.  相似文献   

18.
19.
Autonomous parvoviruses are thought to uniquely encapsidate single-stranded DNA of minus polarity. In contrast, the defective adeno-associated viruses separately encapsidate equal amounts of plus and minus DNA strands. We reexamined the uniqueness of minus strand encapsidation for the autonomous parvoviruses. Although we found that Kilham rat virus and H-1 virus encapsidate varying but small amounts of complementary-strand DNA, it was unexpected to find that LuIII virus encapsidated equal amounts of plus and minus DNA. The extracted LuIII DNA possessed properties of double-stranded replicative-form DNA, including insensitivity to S1 endonuclease, cleavage by restriction enzymes, and conversion to unit-length, single-stranded DNA when electrophoresed under denaturing conditions. However, the inability of this DNA to form single-stranded DNA circles when denatured and then renatured in the presence of formamide and the lack of double-stranded DNA circle formation after treatment with exonuclease III and reannealing shows a lack of sequence homology of the 3' and 5' termini of LuIII DNA, in contrast to adeno-associated virus DNA. Digestion of LuIII double-stranded DNA with EcoRI and HincII and separation of plus and minus DNA strands on composite agarose-acrylamide gels identified a heterogeneity present only in the plus DNA strand. These results suggest that strand specificity of viral DNA encapsidation is not a useful property for differentiation between the autonomous and defective parvoviruses. Furthermore, encapsidation by LuIII of equal amounts of complementary DNA strands in contrast to encapsidation of minus strands by H-1 virus, when propagated in the same host cell type, suggests that selection of strands for encapsidation is a virus-coded rather than host-controlled event.  相似文献   

20.
Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to “fractional” methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号